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ABSTRACT
The interparticle Coulombic decay process in paired quantum dots is studied by electron dynamics calculations. We consider a pair of
Coulomb-coupled one-electron charged gallium arsenide quantum dots embedded in a nanowire. The two-electron decay process is approx-
imately described by a single active electron model. Within this model, we employ the time-dependent wavepacket approach to the Fermi
golden rule (introduced in the context of vibrational predissociation) to calculate autoionization rates, which are compared to exact rates
obtained from fully correlated two-electron dynamics calculations. We found that the approximate decay rates agree well with the exact
results in the limit of sufficiently separated quantum dots. Finally, we explore whether the short-range behavior of the new model can be
further enhanced by the inclusion of local exchange effects by means of regularization of the Coulomb-potential based on a Jastrow-Slater
wavefunction. The proposed method may open a route to study the interparticle Coulombic decay in more intricate systems, e.g., paired
metal-nanoparticle—quantum dot systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5131849., s

I. INTRODUCTION

The interparticle (interatomic) Coulombic decay (ICD) is a
nonlocal decay process, whereby a system in an inner-valence ion-
ized electronic state decays to the electronic ground state by electron
emission from a neighboring site.1 In the case of atomic and molec-
ular systems in the gas phase, ICD results in the creation of a pair of
ions undergoing Coulomb explosion.

ICD takes place on the ultrafast timescales of femtoseconds
to picoseconds and over long spatial ranges from angstroms to
nanometers, which make ICD often competitive compared to other
decay processes such as photon emission.1–4 ICD has been stud-
ied predominately for weakly bound van der Waals systems.1,5–11

Importantly, ICD and related processes also occur in water12–15

and in biomolecules,16 where they likely play an important role for
radiation damage in living cells due to creation of highly reactive

low-energy electrons.3,17 Another field of increasing significance is
nanoscience, where ICD has been studied for helium droplets18,19

and for hollow atoms on graphene sheets.20 Recent comprehensive
reviews have been given by Averbukh et al.,2 Hergenhahn,3 and
Jahnke.4

Another class of systems for which ICD has been predicted21,22

and theoretically investigated in great detail is for electrons con-
fined to paired quantum dots (PQDs)21–26 and paired quantum wells
(PQWs).27,28 As schematically depicted in Figs. 1(a)–1(d), ICD in
these systems involves the deexcitation of a two-level QD mediated
by Coulomb coupling to a one-level QD which is simultaneously
ionized.

Clearly, the study of decay processes due to pairing of QDs
is important as they may affect QD arrays which show potential
for use in optoelectronic devices and information technology appli-
cations.29 Furthermore, it has been proposed and corroborated by
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FIG. 1. Sketch of the intraband ICD process (b)–(d) in PQDs embedded within
a GaAs nanowire (a). The electron in the left two-level QD couples through the
Coulomb interaction (denoted by double arrows) to a second electron bound in
the right one-level QD. The different magnitudes of the Coulomb interaction with
respect to the ground and the excited state of the left QD are color coded by
magenta and green, respectively. (b) The left QD is excited resonantly from the
ground state. The metastable two-electron state (c) then decays to the final state
(d) where the left QD is deexcited and the right QD is ionized. [(e) and (f)] Sin-
gle active electron picture of ICD in PQDs. The green (magenta) colored coupled
effective potential includes the local Coulomb interaction with respect to the ground
(excited) state of the left QD. (e) Excitation to the upper effective potential. (f)
The electron decays into the continuum states of the lower potential. In order to
facilitate the comparison of the two and one-electron pictures, Coulomb arrows in
panels (b)–(d) and their effective potentials in panels (e) and (f) share the same col-
ors. Furthermore, similar colored process arrows depict excitation and ionization
processes.

theoretical calculations that ICD in PQDs (PQWs) could be
exploited for highly sensitive wavelength specific next-generation
infrared (IR) photodetectors and solar cells.21,22,24,27 Recent
electron dynamics experiments on self-assembled QDs30 may
open a promising pathway toward future ICD experiments on
QDs.

ICD in PQDs takes place on the picosecond timescale and
over distances of tens of nanometers.21,22 Previous theoretical
investigations revealed many facets of ICD in these systems,
specifically

(i) the dependence of the decay rate on the inter-QD separation
and on the shape of the QDs,21,22,24,26,31

(ii) the existence and effect of shape resonances,27 leading to
preferential directions for electron emission as well as the
dependence of the right-to-left partial decay width on the
inter-QD distance,22

(iii) the excitation by laser pulses, the presence of Rabi-
oscillations, and the role of multiphoton processes,23,25,31,32

(iv) the impact of acoustic phonons,33

(v) the role of additional ionization channels in a three-electron
three-QD system.34

Furthermore, related phenomena such as the inter-Coulombic elec-
tron capture process have been studied extensively.35–38

The theoretical description of intra-(conduction)-band pro-
cesses is typically carried out within the single-band effective mass
approximation39 (EMA). In this model, low-dimensional effective
confinement potentials are employed to represent QDs and only few
electrons are treated explicitly. The low dimensionality of the model,
compared to that of molecular systems, then allows us to study
the ICD process using numerically exact electron dynamics calcula-
tions, i.e., by solving the time-dependent Schrödinger equation.22–26

Another route applied to ICD in PQDs and PQWs is the numer-
ically exact calculation of decay rates using the Fermi golden rule,
where the initial and final states are subject to continuum boundary
conditions in complex scaling.21,27,28

In this contribution, we present an alternative but approximate
treatment of the electron dynamics of ICD in PQDs. Compared
to the more rigorous treatments listed above, which are limited
to few-electron systems, the present approach has the potential to
describe ICD for many-electron systems coupled to a QD, for exam-
ple, paired metal-nanoparticle—QD systems. However, herein we
limit the investigation to PQDs as a proof of principle and to facil-
itate the comparison to the exact results. The present approach is
based on an approximate factorization of the two-electron wave-
function, considering only the local electrostatic Coulomb potentials
exerted on the outgoing electron by the other particle in one of the
two bound states of the left QD, i.e., an approximation which may
hold in the limit of large QD separations.

Hence, we separate the motion of both electrons and describe
the dynamics of the outgoing electron on two coupled effective
potential energy surfaces (built by adding the contribution of the
local interaction with the two states of the left QD and the confine-
ment potential).

Since the two effective potentials are energetically separated by
their respective orbital energies, the initially populated one-level QD
bound state on the excited state surface lies within the continuum
states of the lower surface; see Figs. 1(e) and 1(f). ICD as a Coulomb-
mediated process is then invoked by considering the coupling of the
two surfaces via the local transition Coulomb matrix elements. We
therefore employ an effective single active electron (SAE) model in
which an autoionization (ICD) process is described via the calcula-
tion of the energy dependence of the ICD width [Γ(E)] in the frame-
work of the highly efficient time-dependent wavepacket approach to
the Fermi golden rule.40

We further critically compare the inter-QD distance depen-
dence of the decay rate Γ obtained within the present approxima-
tion to accurate two-electron dynamics results obtained with the
previously reported methodology.22,24,26 We show that the present
approximation yields reliable rates for well-separated quantum
dots. Close analysis of the inter-QD distance dependence of Γ(E)
reveals the presence of an irregular structure with peaks and val-
leys responsible for the oscillatory behavior of the resonant ICD
rate with the inter-QD distance. To improve the behavior of the
model at short inter-QD distances, we explore the use of effec-
tive Coulomb potentials derived from an optimized Jastrow-Slater
wavefunction.

The paper is organized as follows. In Sec. II we, describe the
model system and the underlying theory. The details of the numer-
ical calculations are given in Sec. III. In Sec. IV, we present and
analyze the results. Finally a summary and outlook is given in
Sec. V.
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II. THEORY
We consider a two-electron PQD model system, where the con-

duction band electronic motion is one-dimensional, representing
singly charged QDs in a GaAs nanowire22,23,35,36 [see Fig. 1(a)] and
described within the single-band EMA.22–26,35,36 Within the EMA,
only few electrons are treated explicitly. The electronic structure of
the bulk material is accounted by the effective electronic mass m∗

and by the relative static permittivity ϵr which screens the Coulomb
interaction between the explicitly treated electrons. Throughout, we
employ the following parameters specific to GaAs, m∗ = 0.063 me,
and ϵr = 12.9.41

The two-electron Hamiltonian is given by

Ĥ(z1, z2) = ĥ(z1) + ĥ(z2) + VCoul.(z12), (1)

where the one-electron Hamiltonians,

ĥ(zi) = −
h̵2

2m∗
∂2

∂z2
i

+ VQD(zi), (2)

contain the spatial confinement potential VQD(z), VCoul.(z12)
denotes the Coulomb interaction (further described below), zi and
z12 = |z1 − z2| denote the spatial coordinates of the electrons and the
interelectronic distance, respectively.

The spatial electronic confinement within the conduction band
is described by the potential,

VQD(z) = −DLe−bL(z+R/2)2

−DRe−bR(z−R/2)
2

, (3)

with inter-QD distance R, well depths DL and DR, and width param-
eters bL,R = 4 ln(2)w−2

L,R, where wL,R denote the full widths at half
maximum. To facilitate comparisons, we use the same confinement
parameters as in Refs. 22, i.e., DL = 10.30 meV, DR = 8.24 meV and
wL = 36 nm, wR = 18 nm.

Solving the time-independent Schrödinger equation (TISE) for
the Hamiltonian given in Eq. (2) yields three one-electron bound
states, namely, ϕL0 and ϕL1 located in the left QD and ϕR0 in the right
QD, and their respective energies EL0, EL1, and ER0, as depicted in
Fig. 2. Neglecting the Coulomb interaction at this point, the system

FIG. 2. The PQDs confinement potential VQD, depicted for R = 108 nm, supports
the three superimposed one-electron bound states, ϕL0, ϕR0, and ϕL1.

setup supports ICD (upon resonant excitation of the state ϕL1) by
fulfilling the energy criterion |EL1 − EL0| ≥ |ER0|.

A. Coulomb interaction
The form of the Coulomb-interaction ∼1/z12 may pose prob-

lems in numerical calculations, owing both to the singularity at the
origin and its long-range nature. The first of these issues is usu-
ally tackled by introducing some kind of regularization. Here, we
employ two different regularized Coulomb interactions, in each case
the regularization is designed to meet specific purposes.

In the first case, we use the effective Coulomb operator for the
quasi one-dimensional confinement given by Bednarek et al.,42

VLA
Coul.(z12) = κ(

π
2
)

1/2 1
l

erfcx( z12

21/2l
), (4)

with κ = e2/4πϵ0ϵr , erfcx(x) = exp(x2)erfc(x), and length
l = (h̵/m∗ω)1/2. The potential VLA

Coul.(z12) includes as a parame-
ter the frequency ω of an additional laterally confining harmonic
potential VLA(x, y) = 0.5ω2(x2 + y2) and assumes that the electrons
occupy the ground state of the latter at all times. Throughout, h̵ω
= 10.30 meV is chosen as in Refs. 22, and 24–26 which ensures
that no lateral excitations interfere with the ICD process along the
z-direction. Equation (4) already incorporates the x and y contribu-
tions of the Coulombic interaction between the electrons. Hence, we
refer to Eq. (4) as the lateral averaged (LA) Coulomb interaction.

As an alternative, the expression

Vcusp
Coul.(z12) = κ

⎡⎢⎢⎢⎢⎣
( du
dz12
)

2

+
d2u
dz2

12
+

4 du
dz12

+ 1

z12

⎤⎥⎥⎥⎥⎦
, (5)

with u(z12) = z12
4(1+αz12) , can be used. The functional form of Eq. (5)

follows from the choice of the two-body wavefunction as the prod-
uct of the antisymmetrized combination of single-particle orbitals
and the Jastrow factor e−u; see Refs. 43–45. This choice allows us to
impose the proper asymptotic behavior of the energy and the wave-
function as the two particles approach each other (i.e., the cusp con-
ditions46). The specific form of the Jastrow exponent u(z12) depends
on whether the two-body wavefunction represents a singlet or a
triplet state; hence, Eq. (5) provides a route to partially account for
exchange symmetry effects in otherwise mean-field calculations. It
is worth to notice that the last term in Eq. (5) is exact only for short
separations between the two electrons. However, since the deriva-
tives of u(z12) are rapidly decaying functions of z12, we used expres-
sion (5) for the whole range of interparticle distances. We limit
our investigation to triplet wavefunctions; thus, Eq. (5) explicitly
reads

Vcusp
Coul.(z12) = κ[ −

1
16(1 + αz12)4 +

α
2(1 + αz12)3

+
α

(1 + αz12)2 +
α

(1 + αz12)
]. (6)

In quantum Monte Carlo calculations, it is customary to obtain
the values of the variational parameters entering in the definition
of the Jastrow factor via the optimization of the expectation value
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FIG. 3. Size parameter α(R) entering in the definition of the Jastrow factor as a
function of the distance R between the quantum dots.

of the ground state energy.43,47 Here, we follow a different route
because the parameter α is required to mimic the role of two-
body correlations in dynamical phenomena such as the decay rate.
Notably, the value of α is chosen by imposing that the size of the
“exchange hole” in the resulting pair correlation function matches
the one calculated within the Hartree-Fock approximation for spin-
parallel electrons in one dimension.43 It can be seen that this proce-
dure results in a function α(R) which is only weakly dependent on
the separation R between the quantum dots (variations are lower
than 1%, cf. Fig. 3). It suggests that a single value of α suffices
to capture the effect of both short-range and long-range electron
correlations in this problem.

Depictions of Coulomb potentialsVCoul.(z12) are given in Fig. 4.
Both regularization schemes lead to a sizable attenuation of the
Coulomb interaction at short distances, which is more pronounced
in the case of cusp compared to LA regularization, respectively.

B. ICD rate from two-electron dynamics
Within this investigation, we employ the exact numerical

electron-dynamics treatment, given in Refs. 22, 24, and 26, to

FIG. 4. Regularized Coulomb potentials Vreg.
Coul.(z12) obtained by taking into

account either lateral confinement (LA, dashed line) or by obeying the cusp con-
dition (cusp, dotted line, α = 0.037 62 nm−1). The latter yields a less repulsive
effective potential although both choices of Vreg.

Coul. approach the nonregularized
Coulomb potential (full line) as z12 increases.

calculate the reference ICD rates. We numerically solve the time-
dependent Schrödinger equation

ih̵
∂

∂t
Ψ(z1, z2, t) = Ĥ(z1, z2)Ψ(z1, z2, t), (7)

where the antisymmetrization of the spatial two-electron spin-
triplet wavefunction, Ψ(z1, z2, t) = −Ψ(z2, z1, t), is imposed.
To determine the ICD rate, the initial two-electron L1R0
state, i.e., with the electron configuration Ψ(z1, z2, t = 0)
= [ϕL1(z1)ϕR0(z2) − ϕL1(z2)ϕR0(z1)], is propagated. Although
L1R0 can be obtained from a bound state calculation (within an
L2 basis), it is actually a metastable state, that is, it energetically
degenerates with a state of the configuration L0C, where C denotes
a continuum state. During the propagation, Ψ(z1, z2, t = 0) there-
fore decays toward L0C and the respective decay width Γ is obtained
from an exponential fit to the absolute squared autocorrelation
function,

∣⟨Ψ(z1, z2, t = 0)∣Ψ(z1, z2, t)⟩∣2 ∝ e−Γt . (8)

Equivalently, the decay process can be characterized by the lifetime
τ = h̵/Γ. In the case of the two-electron calculations, we employ the
LA Coulomb interaction VLA

Coul.(z12) [Eq. (4)].

C. ICD rate from the single active electron
time-dependent Fermi golden rule (TDFGR)
approach

In the remainder of this section, we describe the time-
dependent framework for the approximate evaluation of the decay
rates for ICD electron dynamics in PQDs. Within the approxi-
mation, we compare results obtained for the two regularization
approaches for the Coulomb interaction in the PQDs system:

(a) the electrons are only weakly correlated and thus the exchange
correlation can be neglected completely. Hence, we employ
VLA

Coul.(z12), and
(b) the partial inclusion of the effects of the exchange symme-

try within a mean field description using Jastrow functions
through Vcusp

Coul.(z12).
By comparing the results of the simulations carried out using

these two approaches, we may assess the validity of assumption (a),
which may hold as long as the separation of the QDs is sufficiently
large and also for the target final ICD states (the final two-electron
wavefunctions are simple products of the relevant one-electron
wavefunctions).

The time-dependent single active electron approximation
(SAE) to ICD in PQDs is based on the integration of the two-particle
wavefunction over the coordinate of the electron that remains
bound. Hence, the probability density distribution of the outgoing
electron is given by ρ(z2, t) = ∫dz1|Ψ(z1, z2, t)|2. Analogously, we
define effective Hamiltonians for the initial and final channels of the
ionization dynamics of the single active electron as

Ĥλψ(z2, t) = ∫ dz1
Ψ∗(z1, z2, t)ĤΨ(z1, z2, t)

[ψ(z2, t)]∗
, (9)

where ψ(z2, t) is the wavefunction describing the state of the emitted
electron and λ = L0, L1.
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In Eq. (9), the two-electron wavefunction is modeled either
as a factorized product of single-particle functions (SPFs),
ϕλ(z1, t)ψ(z2, t), or an antisymmetrized linear combination of these
single-particle orbitals times the Jastrow factor (i.e., Ψ(z1, z2, t)
= 1√

2
[ϕλ(z1, t)ψ(z2, t) − ϕλ(z2, t)ψ(z1, t)]e−u). These two cases cor-

respond, respectively, to approximations (a) and (b), as introduced
at the beginning of this Sec. II C.

The integration of Eq. (1) over the ground and excited states of
the left QD, ϕL1(z1) and ϕL0(z1), yields

ĤL1 = ⟨ϕL1(z1)∣Ĥ∣ϕL1(z1)⟩ = −
h̵2

2m∗
∂2

∂z2
2

+ VL1(z2), (10)

and

ĤL0 = ⟨ϕL0(z1)∣Ĥ∣ϕL0(z1)⟩ = −
h̵2

2m∗
∂2

∂z2
2

+ VL0(z2), (11)

respectively.
This treatment allows us to describe effectively the dynamics of

the electron being emitted from the right QD, by being subjected to
the electrostatic potential of the other electron occupying the state
ϕL0 or ϕL1. Therefore, the time evolution of the single active electron
wavepacket takes place on two coupled effective potentials,VL0,VL1,
given by

VL0 = EL0 + VQD(z2) + ⟨ϕL0(z1)∣VCoul.(z12)∣ϕL0(z1)⟩ (12)

and

VL1 = EL1 + VQD(z2) + ⟨ϕL1(z1)∣VCoul.(z12)∣ϕL1(z1)⟩, (13)

where the last terms denote the averaged electrostatic potentials
weighted by the single particle bound states of the two-level QD.

Furthermore, within the SAE approximation, the ionization
is induced by the Coulomb matrix element Ŵ for the ϕL1 to ϕL0
transition given by

Ŵ = ⟨ϕL0(z1)∣VCoul.(∣z2 − z1∣)∣ϕL1(z1)⟩. (14)

The SAE approximation to ICD in PQDs thus describes the motion
of the outgoing electron on two effective potentials VL0 and VL1
which are coupled by Ŵ and include the static Coulomb barriers
of the L0 and L1 states of the electron in the left QD.

Depictions of the effective potentials and of the matrix elements
Ŵ for a typical paired QD setup are given in Fig. 5. In Fig. 5, it is
worth to note that the more attenuated cusp regularized Coulomb
interaction results in lower Coulomb barriers and deeper wells com-
pared to the regularization via lateral averaging. These features will
be further reflected on the behavior of the corresponding decay
rates.

The SAE ICD rates Γ̃ can be calculated using the Fermi golden
rule,

Γ̃ = 2π
h̵
∣⟨ϕVL0R (z2)∣Ŵ∣ϕC(z2)⟩∣2, (15)

where the integration is carried out over the coordinate of the out-
going electron. The initial state ψ(z, t = 0) = ϕVL0R (z2) is determined

FIG. 5. (a) The SAE, with resonance energy EL1R0, moves on coupled effective
potentials. Initially bound within the right-hand side of VL1, it decays to the con-
tinuum states of VL0 coupled by the L1 → L0 transition electrostatic potential Ŵ
shown in panel (b). The more attenuated cusp regularized Coulomb interaction
(dotted lines) results in lower Coulomb barriers and deeper wells, compared to the
regularization via LA (full lines).

by solving the TISE for Eq. (11), i.e., with respect to the effective
potential VL0(z2), and choosing the bound state which is localized
in the right well. The final continuum state ϕC(z2) depends on the
energy EL1R0 of the excited ICD resonance. The photoexcitation is
assumed to be instantaneous; hence, the wavepacket promoted onto
the excited potential energy surface is the exact copy of the ground
state of the right QD.

Within the SAE model, this procedure formally translates into
placing ϕVL0R (z2) on the effective potential VL1(z2) of the excited
state L1, whereas EL1R0 is approximated by the energy EVL1

R of the
bound state ϕVL1R (z2) of the effective potential VL1(z2).

Upon definitions of the Hamiltonians of the initial and final
states [Eqs. (10) and (11), respectively] and the transition electro-
static potential [Eq. (14)], the ICD process can be monitored by
following the time evolution of the wavefunction of the single active
electron. The initial electronic wavepacket ϕVL0R on VL1 is coupled
via Ŵ to the continuum states of VL0. Therefore, we calculate Γ̃
for the SAE model using the time-dependent wavepacket version of
the Fermi golden rule40 (TDFGR) via the propagation of the initial
state Φ0 = ŴϕVL0R on the final dissociative surface (that is, solving
the time-dependent Schrödinger equation using the Hamiltonian
ĤL0). Although, in general, Φ0 lacks a direct physical meaning, for
the specific case of ICD in paired QDs, this effective wavepacket
resembles the time evolution of the reduced single particle density
ρ(z2, t) within a mean field approximation. This feature is fur-
ther elaborated in Sec. IV. The decay rates evaluated within the
wavepacket approach were found to be in very close agreement with
those obtained using the time-independent version of the Fermi
golden rule [Eq. (15)].

As shown in Refs. 40, the decay width Γ̃ can be computed
either

J. Chem. Phys. 151, 244111 (2019); doi: 10.1063/1.5131849 151, 244111-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

● from the autocorrelation function of the wavepacket
⟨Φ0∣Φ(t)⟩ with Φ(t) = e−iĤL0t/h̵Φ0 [see Eq. (6) in Ref. 40],
or

● from the autocorrelation function of the projection Φc(t0)
of the wavepacket Φ0 onto the continuum eigenstates of the
Hamiltonian ĤL0, ⟨Φc(t0)∣Φc(t)⟩, e.g.,

Γ̃(E) = 1
2h̵ ∫

∞

−∞
dteiEt/h̵⟨Φc(0)∣Φc(t)⟩. (16)

For dynamical processes taking place in the time scale of picosec-
onds or longer, such as ICD in PQDs, the second choice is preferred
due to the faster decay of the autocorrelation function of Φc(t), and
it is the method employed to compute the ICD rates presented in
Sec. IV. In practice, Φc(t) is calculated by subtraction of all bound
state fractions from the initial wavepacket Φ0,

Φc(t) = Φ0 −∑
β
cβϕβ, (17)

where β labels the left and right potential wells and cβ = ⟨Φc∣ϕVL0β ⟩.
It should be noted that Eq. (16) yields the spectrum of decay rates
Γ̃(E), where the actual decay rate has to be evaluated at the resonance
energy E = EVL1

R .

III. COMPUTATIONAL DETAILS
A. Two-electron calculations

For two-electron dynamics, the variational multiconfiguration
time-dependent Hartree (MCTDH) method,48,49 as implemented in
the MCTDH package of programs,50,51 is employed. MCTDH wave-
functions are represented as sums of products of single-particle
functions (SPFs). Two-electron wavefunctions are

Ψ(z1, z2, t) =∑
i
∑
j
Aij(t)φi(z1, t)φj(z2, t), (18)

where φi and φj denote time-dependent SPFs and Aij are time-
dependent coefficients. Spatial antisymmetry of the spin triplet two-
electron wavefunctions is enforced by constricting the coefficients
to Aij = −Aij. The respective MCTDH equations of motions for the
coefficients Aij and the single particle functions φi follow from the
Dirac-Frenkel variational principle.

Wavefunctions and operators are represented on grids of 140
equally spaced points between −541.5 nm and 541.5 nm in the
sine discrete variable representation (DVR).52 For the explicit two-
electron calculations, the Coulomb potential was expanded into
product form using the POTFIT algorithm.52 Time-independent
solutions are obtained by improved-block relaxation to the lowest
52 two-electron states which were expressed by 48 SPFs per elec-
tron. In propagations, 8 SPFs per electron coordinate were used.
The employed grids and numbers of SPFs per electron lead to well
converged dynamics as was shown in Ref. 24. In the case of prop-
agations of ICD dynamics, complex absorbing potentials (CAPs) of
order four with a strength parameter of 10−5 at positions ± 324.9 nm
were added to the Hamiltonian, in order to remove the continuum
electron density from the system. Reference decay widths from two-
electron dynamics were obtained by exponential fits of the abso-
lute square of the autocorrelation function beginning from times

of 16 ps. In this way, initial faster decays due to spurious con-
tinuum parts present in the initial wavefunction [see the reduced
two-particle density distribution at t = 0 ps in Fig. 8(b)] are filtered
out.

B. Single active electron TDFGR calculations
Single active electron (SAE) dynamics in the framework of the

TDFGR have been performed for the LA and cusp Coulomb interac-
tions using the MCTDH package employing one SPF represented on
a regular sine-DVR grid of 1000 points from −1083 nm to 1083 nm.
As absorbing boundaries, CAPs placed at ± 866.4 nm with the
same parameters as in the two-electron case (see above) have been
used.

IV. RESULTS
Before we describe in detail the results on the ICD rates deter-

mined with the SAE approximation via the TDFGR, we focus on
the time-independent properties of the effective potentials under-
ling the SAE for ICD in PQDs. The resulting effective potentials VL0
and VL1 for an inter-QD separation of R = 108 nm are depicted in
Fig. 5. Focusing on the left side of the potentials, we note that the
Coulomb barrier due to the L0 and L1 states significantly reduces
the well depth of the left QD. However, the confinement potential of
the right QD is only marginally affected. The Coulombic distortion
of the right QD confinement reduces when the inter-QD separa-
tion is increased as the well is located in the tail of the Coulomb
barrier.

This behavior is reflected in the inter-QD distance dependence
of the SAE bound state energies of both potentials, which are shown
in Fig. 6(a). To allow a better comparison, the energies of the L0
and L1 states have been subtracted from the respective SAE bound
state energies. With the increase in the inter-QD separation, the
energies of the SAE states EVL0

R , EVL1
R , localized at the right QD,

decrease due to the aforementioned reduction in the Coulomb dis-
tortion. Furthermore, differences in EVL0

R , EVL1
R besides the constant

energy shifts EL0 and EL1 vanish in the limit of large inter-QD sep-
aration, which begins at about R = 150 nm. The Coulomb barriers
in the present setup are not high enough to hinder the occurrence
of SAE bound-states located over the left well. This is especially true
for the excited state surface VL1 and all surfaces derived from the
cusp-regularized Coulomb interaction. Since we consider a triplet
two-electron system, these states should be considered as unwanted
artifacts within the SAE model and are manifestation of the neglect
of proper exchange interactions. The energies EVL0

L , EVL1
L of these

states vary only for very short (R < 75 nm) inter-QD distances
due to the modulation of the underlying one-electron L1 and L0
bound states by the confinement potential of the right QD. Dif-
ferences in the bound state energies that arise due to the choice
of regularization of the Coulomb interaction, i.e., LA or cusp, are
negligible for states bound in the right well, EVL0

R and EVL1
R , and

large for those bound in the left well, due to the stronger atten-
uation resulting from cusp regularization in comparison to LA
regularization.

Within the SEA, the energy EVL1
R approximates the energy of

the ICD resonance EL1R0. In Fig. 6(b), the variation of EL1R0 with
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FIG. 6. (a) Inter-QD distance dependence of the one-electron bound and localized
state energies of the SAE effective potentials, derived from the Coulomb potentials
via LA (full lines) and cusp condition (dashed lines) regularization. (b) Inter-QD
distance dependence of the two-electron energy of the ICD resonance state L1R0
within the two-electron and SAE approximation.

the inter-QD distance, determined by the SEA approximations and
the two-electron reference calculations, is presented. For short inter-
QD separations R < 100 nm, the SEA resonance energy deviates up
to +0.5 meV from the exact value. At larger inter-QD separation
R > 100 nm, SEA results coincide with the exact results, thereby
pointing to the validity of the SEA in the limit of sufficiently sep-
arated QDs. It should be noted that SEA results obtained with
the cusp regularized Coulomb interaction reduce the error of the
resonance energies at short inter-QD distances.

We initially focus on the decay calculated within the single
active electron TDFGR approach for a PQD system with an inter-
QD separation of R = 108 nm. The initial wavefunction of the active
electron ϕVL0R , the effective wavepacket Φ0 = ŴϕVL0R , and the pro-
jection Φc(t0) of the later on the continuum states are shown in
Fig. 7, panels (a), (b), and (c), respectively. In the case of the effective
wavepacket Φ0, the action of the transition Coulomb matrix element
Ŵ only leads to a small distortion of the shape of the SAE bound

FIG. 7. Initial SAE TDFGR continuum wavepacket Φc(t0) (c), for an inter dot sep-
aration of R = 108 nm. Panel (a) shows the bound state ϕVL0

R that is localized on
the right well of the effective potential VL0. Panel (b) shows the wavepacket Φ0
created by the action of Ŵ on ϕVL0

R . Panel (c) shows the continuum part Φc of the
wavepacket in (b).

state ϕVL0R . Consequently, a large overlap exists with the latter bound
state. In spite of the fact that the action of the operator Ŵ on the
wavefunction ϕVL0R does not modify significantly the spatial depen-
dence of the latter, it is worth stressing that the overall magnitude
of Φ0 is two orders of magnitude smaller. This is indicative of the
rate at which population is transferred from the initial into the final
channel.

Although being conceived originally as a numerical recipe for
computing the resonance width, the latter properties provide the
wavepacket Φ(t) = e−iHL0 t/h̵Φ0 propagated in the present framework
with physical meaning. Since Φ0 has a significantly large projection
on the state ϕVL0R , the time-dependent wavefunction Φ(t) is indica-
tive of the time evolution of the actual wavepacket of the outgoing
electron (within a mean field description).

This aspect is further explored in Fig. 8, where the time evo-
lution of the electron density obtained from the two-electron cal-
culation [Figs. 8(a) and 8(b)] is displayed along with the short time
evolution of the SAE density [up to 10 ps, Fig. 8(c)] for the case of
PQDs lying R = 108 nm apart. To discuss the features of the two-
electron results, two different scales for the density are employed.
The evolution of the electron density in the region of the two QDs
for up to 500 ps [Fig. 8(a)] shows a continuous decrease in the den-
sity of the initial L1R0 resonance state. As discussed in Refs. 22, 25,
and 32, a simultaneous increase in population of an L0 state on the
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FIG. 8. Wavepacket dynamics of ICD for a PQD system with R = 108.3 nm com-
paring two-electron (a) and (b) and SAE TDFGR (c) results. (a) Evolution of the
reduced density obtained from the two-electron wavefunction up to t = 500 ps.
(b) Change of the scaling reveals the outgoing electron density within the contin-
uum. (c) Evolution of the continuum wavepacket prepared according to the SAE
TDFGR until t = 10 ps. In both cases (b) and (c), the ICD electron leaves the PQD
predominantly to the right-hand side.

left QD is not observed as the L0C bound/continuum two-electron
states are absorbed by the left and right CAPs. The evolution of the
electron density in the continuum within the first 100 ps is depicted
in Fig. 8(b). For t < 5 ps, a fast decay of spurious continuum parts
of the initial L1R0 state is observed. The latter is a numerical arti-
fact,22 which makes it necessary to discard the first 16 ps when eval-
uating the ICD rate form two-electron autocorrelation functions.

Outgoing electron density due to ICD is observed for t > 5 ps and
points to the existence of a preferred direction for the electron emis-
sion; more electron density leaves the system to the right-hand side
(z > 0).

The single active one-electron TDFGR dynamics yields a qual-
itatively similar picture of the ICD process. Indeed, the short-time
evolution of the projection on the continuum states of the reduced
probability density associated with the second electron (bottom
panel of Fig. 8) also indicates that the outgoing electron moves away
from the QD predominantly to the right-hand side. Noteworthily,
the expansion of ||Φc(z2, t)||2 occurs in a markedly shorter time scale
compared to the exact two-electron dynamics.

The evolution of the initial state Φ0 on VL0 gives rise to a
highly oscillatory autocorrelation function [see Fig. 9(a)], which
approaches a nonzero final value. Subtraction of this bound-state
population from Φ0 prior to propagation gives the pure continuum
part of the initial wavepacket Φc(t0), which decays rapidly on VL0.
The respective autocorrelation function is presented in panel (b) of
Fig. 9. As anticipated, the continuum dynamics within the TDFGR
approach is completed within 13 ps, i.e., within a fraction of the ICD
lifetime of τ = 400 ps determined by reference two-electron dynam-
ics calculations. In addition to the different timescales, the decay of
the autocorrelation function of the projection of the wavepacketΦ(t)
on the continuum states [i.e., ⟨Φc(t0)|Φc(t)⟩] is smoother, which
makes the latter easier to handle numerically.

Performing the Fourier transformation of the autocorrelation
function for the continuum dynamics [Eq. (16)] yields the spectrum
of decay widths Γ̃(E), shown in Fig. 10 aligned with the effective
potentials VL0. The results for the inter-QD distance R = 108 nm
are presented in Fig. 10(b). Evaluation of Γ̃(E) at the energy of the
bound state ϕVL1R , EVL1

R = −4.54 meV, finally gives the ICD width
obtained within the single active electron TDFGR approximation of
Γ̃(EVL1

R ) = 8.8 × 10−4 meV, which translates into an ICD lifetime of
τ̃ = 750 ps.

Comparing this result to the ICD width Γ = 1.7 × 10−3 meV
and the respective lifetime τ = 400 ps obtained from the exact two-
electron dynamics calculations shows that the single active electron
TDFGR approximation underestimates the ICD width by a factor of
two. While this difference seems significant at first, it is worth not-
ing that for the chosen separation between the QDs, the resonance

FIG. 9. Autocorrelation functions for wavepacket dynamics of the decaying initial
SAE state (top) and its respective continuum part (bottom) within the TDFGR on
the VL0 surface for an inter-QD separation of R = 108 nm.
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FIG. 10. Influence of the LA (dark blue) and cusp (light blue) regularized final
effective potential surfaces VL0 (left panels) on the respective energy resolved ICD
widths (right panels) obtained within the SAE TDFGR. The respective energies of
the ICD resonances EL1R0 are denoted by red lines (LA: full, cusp: dotted). The
rows (a)–(c) depict the results obtained for different inter-QD distances.

energy is very close to the height of the energy barriers in the vicin-
ity of the left QD for the final dissociative potential energy surface.
The transmission probability across this double barrier (and conse-
quently, the decay width) is very sensitive to small variations of the

effective potentials, thereby providing a stringent test for the sin-
gle active electron TDFGR approach. For example, the choice of the
cusp regularization condition results in slightly lower Coulomb bar-
riers, compared to LA regularization. This changes the interaction
of the ICD electron with the double barrier, yielding Γ̃(E) spectra
which are significantly modulated at energies close to the barrier
height, as depicted in Fig. 10 for three different inter-QD distances.
As it is shown in the following, the overall qualitative agreement
between the exact two-electron calculations and the single active
electron representation is quite satisfactory for varying distances
between the QDs.

A. Inter-QD distance dependence of ICD in PQDs
To further explore the single active electron TDFGR approxi-

mation, we have calculated Γ̃(E;R) shown in Fig. 11, for a range of
inter-QD distances R from 54 nm to 238 nm. Here, it is explicitly
shown that the decay width depends parametrically on the inter-
QD separation. Note that the actual ICD widths Γ̃(EVL1

R (R);R) are
also highlighted in Fig. 11. As it was shown in Ref. 22, the R depen-
dence of Γ is a highly nonlinear function, strongly oscillating around
an overall ∼R−6 behavior. The present results show that Γ̃(E) gen-
erally decreases for larger R, in agreement with the decrease in the
Coulomb interaction between the electrons and likewise the decay
inducing potential Ŵ. In addition, the overall shape of Γ̃(E) is sig-
nificantly modulated with increasing R. While one broad maximum
is present in the relevant energy range for R = 54 nm to R = 87 nm,
additional minima and maxima arise for R ≥ 98 nm. Correlating the
energy EVL1

R (R) of the ICD electron with the shape of Γ̃(E) reveals
that Γ̃(EVL1

R (R);R) not necessary coincides with extrema for a given
R. However, when it does so (at least approximately), the oscilla-
tory behavior of Γ̃(EVL1

R (R);R), similar to the results of Ref. 22, is
revealed.

While evaluating Γ̃(E;R) at the resonance energy EVL1
R for a

specific separation R yields a single number (the decay rate), the
power spectrum Γ̃(E;R) exhibits the properties of a probability dis-
tribution function. On the one hand, from a mathematical point
of view, it is a positive-definite, bounded function, and it can be

FIG. 11. Inter-QD distance dependence of the energy resolved ICD widths
obtained from SAE TDFGR dynamics on the VL0 effective potential including the
LA regularized Coulomb interaction, where the red filled circles mark the widths
at the respective ICD resonance energies EVL1

R (R) ≈ EL1R0(R). The projections
of the function Γ(EVL1

R (R);R) on the planes Γ − R and Γ − E, respectively, are
represented by dashed orange lines.
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decomposed in a continuous and a discrete part.53 On the other
hand this spectral density contains information on the microscopic
dynamics. As the Fourier transform of the autocorrelation func-
tion, Γ̃(E;R) provides a measure on the importance of memory
effects, that is, how long it takes the system to evolve from the ini-
tial state to the orthonormal final state. In the case of ICD in PQDs,
for short inter-QD separations, the power spectrum spreads over
the entire range of energies represented in Fig. 11, which trans-
lates in short correlation times (i.e., short memory) and a faster
decay of the resonance state. Conversely, for larger inter-QD dis-
tances, the energy range over which Γ̃(E;R) is nonzero gets nar-
rower. This is a fingerprint of a slowly decaying initial state (i.e., long
memory).

As the distance between the QDs becomes larger, the resonance
energy lies below the height of the Coulomb barrier [see Fig. 10(c)];
therefore, the lifetime of the resonance state increases. This trend
gives rise to the following scenario. The projection on the continuum
states of the active electron wavepacket, initially located around the
right-hand well, spreads in both directions. While Φc(t) propagates
freely to the right, the portion of the density distribution moving
leftwards impinges on the energy barrier around the left QD, and it
is partially scattered back to the region of the right QD [see Fig. 8(c)].
This motion results in fractional revivals of Φc(t) and consequently
in a more structured power spectrum Γ̃(E;R) (notably, the peaks and
valleys displayed in Fig. 11).

In Fig. 12, we show variations of the decay widths with respect
to the inter-QD distance R, computed using the exact two-electron
dynamics and the SAE TDFGR model with effective potentials
obtained from the LA regularized [Eq. (4); see also Fig. 11] and
from the cusp regularized Coulomb interaction [Eq. (5)], respec-
tively. The other parameters of the confining potential are cho-
sen as stated before and held constant. Compared to the exact
results, the use of effective potentials yields a faster decay in the
small-R regime (R < 87 nm). Additionally, the results of the one-
electron approximations do not show the maximum in the decay

FIG. 12. Dependence of ICD widths on the inter-QD distance. Here, we compare
widths obtained from the exact two-electron calculation (solid squares) and from
the SAE TDFGR (solid circles). Both are derived with respect to the LA regularized
Coulomb interaction. SAE TDFGR results based on the cusp regularized Coulomb
interaction are depicted by solid triangles. The SAE TDFGR widths are determined
from the functions Γ̃(E;R) at the respective approximated resonance energy for
a given R, i.e., Γ̃(EVL1

R (R);R) is shown, where EVL1
R (R) ≈ EL1R0(R).

width around R = 65 nm. For well-separated QDs (R ≥ 87 nm),
the agreement is remarkable between the decay rates obtained from
the exact two-electron wavepacket propagation and from the SEA
approach using the LA regularized Coulomb potential. The oscil-
lations of the ICD width with the increase in the spatial separa-
tion between the QDs are well captured by this effective potential
approach.

Likewise, the general trend of the ICD widths calculated in the
framework of the SAE TDFGR using the cusp regularized Coulomb
interaction [Eq. (5)] [that is, modeling the short-range electron
correlations approximately using the Jastrow parameter α(R)] is
roughly piece-wise linear, with different slopes for the intervals
54 nm ≤ R ≤ 108 nm and 108 nm ≤ R ≤ 238 nm. These ranges
closely match the regions of rapid variation of the function α(R)
and the plateau that follows the former. The disparate behavior for
short and large interdot separations is consistent with the rationale
that for small distances between the QDs, there is a non-negligible,
R-dependent overlap between the electron densities corresponding
to the bound states of each well, and different values of α are required
in order to reproduce the effect of pair correlations. However, for
well-separated QDs, the parameter α must account for two-body
effects when the outgoing electron approaches the left QD only, and
thus it is fairly independent of R.

Overall, the ICD widths predicted within this approach fol-
low the global R−6 trend of the two-electron benchmark, that is,
the spatial oscillations of Γ(R) are averaged out. The deviations
with respect to decay rates originate (a) from the different esti-
mations of the energy of the ICD resonance provided by the two
methods and (b) from the changes in the height of the effective
Coulomb barrier. For small and intermediate separations between
the centers of the potential wells (R < 150 nm), the SAE model
employing the effective potential derived using the Jastrow factor
[Eq. (5)] predicts resonance energies slightly closer to the two-
electron benchmark than the laterally averaged Coulomb potential
[Eq. (4)], whereas the two approaches yield similar results for the
ICD widths in this interval. At larger separations between the QDs
(R > 150 nm), the difference in the estimated resonance energies are
rather small. However, these small differences translate in the afore-
mentioned flattening of the Γ̃(EVL1

R (R);R) function computed using
the cusp regularization due to the small differences in the effec-
tive Coulomb barrier heights. This behavior can be summarized as
follows:

● At short distances between the QDs, the electron-electron
(short-range) pair correlations play a more prominent
role compared to the inclusion of the lateral degrees of
freedom.

● At intermediate and large separations, pair correlations
decay out and accounting for the lateral motion in the con-
fining potential becomes, respectively, as important or more
relevant than these correlations.

Intuitively, this picture is expected to remain valid for neighboring
cigar-shaped QDs with different structural parameters.

V. SUMMARY
We have presented a quantum-dynamics study of the inter-

particle Coulombic decay in paired quantum dots, where the decay
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widths (rates) of the emitted electron are evaluated using two differ-
ent effective single active electron models in the framework of the
time-dependent Fermi golden rule. The description focuses on the
outgoing particle since it is usually the state of the emitted electron
which is more amenable for experimental detection.

While quantum-dynamics simulations for multidimensional
systems continue to be a challenge, the use of the Fermi golden rule
enables a dimensionality reduction based on the integration of the
coordinate of the electron that remains bound. Even though the
approximate time evolution of the outgoing electron density may
be unrealistic for highly correlated electron dynamics, the present
analysis shows that the single active electron approach provides a
qualitatively correct assessment of the ICD rates for PQDs for a wide
range of inter-QD separations.

The proposed approximate methodologies predict decay
widths in the environs of the reference two-body calculations pro-
viding a suitable compromise between accuracy and efficiency. For
small and intermediate separations between the centers of the poten-
tial wells (R < 150 nm), the SAE model employing the effective
potential derived using the Jastrow factor performs better than
the laterally averaged Coulomb potential in the evaluation of the
energy of the ICD resonance, showing that the electron-electron
(short-range) pair correlations play a more prominent role com-
pared to the inclusion of the lateral degrees of freedom. Nev-
ertheless, at large separations, accounting for the lateral motion
in the confining potential becomes more relevant than the pair
correlations.

The use of an effective Coulomb interaction partially account-
ing for the exchange symmetry between the electrons (via the cusp
condition) is shown to average out the spatial oscillations in Γ(R)
as a function of the interdot separation R. Since these oscillations
are only present in one-dimensional systems, the decay rates pre-
dicted within this approach are expected to behave sensitively for
multidimensional systems.

A major advantage of the wavepacket Fermi golden rule treat-
ment is its applicability to a wider class of hybrid nanostruc-
tures, such as metal nanoparticle (MNP)—quantum dot systems.
Nowadays, the electronic structure of metal nanoparticles is rou-
tinely modeled using density functional techniques. Nevertheless,
the description of the ICD dynamics in MNP-QD systems within
the framework of density functional theory requires the use of
density-dependent potentials, which are not implemented at present
in the MCTDH program package. Therefore, the present method
can be applied to the simulation of the ICD dynamics in the tar-
get systems by integrating the states of the metal nanoparticle and
to extend the analysis to a metal nanoparticle in the vicinity of
more complex structures (e.g., an array of semiconductor quan-
tum dots). Further investigations along this direction are currently
underway.
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