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INTERPLANETARY MAGNETIC TAYLOR MICROSCALE AND IMPLICATIONS FOR PLASMA DISSIPATION
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ABSTRACT

The Taylor microscale, a measure of mean square spatial derivatives, is evaluated for interplanetary magnetic
field fluctuations from single- and multiple-point data using Cluster and ACE spacecraft data. The Taylor scale
is compared to the measured inner scale, which for hydrodynamics would correspond to the Kolmogorov scale.
The results are not consistent with dissipation of the hydrodynamic type, and indicate that solar wind dissipation
involves kinetic plasma physics at both proton and electron scales.

Subject headings: interplanetary medium — magnetic fields — methods: data analysis — plasmas —
solar wind — turbulence

In seeking a balance between relaxation and response to
stresses, magnetohydrodynamic (MHD) turbulence evolution
(Jokipii & Coleman 1968; Jokipii 1973; Montgomery et al.
1980; Tu & Marsch 1995; Goldstein et al. 1995) cascades to-
ward smaller scales, thus amplifying spatial gradients (Monin
& Yaglom 1971-1975). At small scales growth of gradients is
arrested, and for a low-collisionality plasma, MHD gives way
to kinetic plasma physics, which in some incompletely under-
stood way causes dissipation of MHD fluctuations and plasma
heating (see e.g., (Barnes 1979; Leamon et al. 1999; Cranmer
2000; Gary & Borovsky 2004). Identification of dissipation
mechanisms is fundamental in understanding the corona and
solar wind, and is of great relevance to astrophysical plasmas
in general. Here we examine the small-scale structure of in-
terplanetary magnetic field fluctuations using ACE and Cluster
spacecraft data, and study the relationship between two critical
length scales—the inner scale which terminates the inertial
range at high wavenumber (in viscous hydrodynamics this is
the dissipation scale), and the Taylor microscale, related to
mean square gradients as described below. The observed re-
lationship between these scales indicates the likely involvement
of both proton and electron dynamics in dissipation, and dis-
tinguishes the plasma case in an essential way from hydro-
dynamic dissipation.

In a typical turbulence scenario (Batchelor 1970; Monin &
Yaglom 1971-1975) a power-law inertial range is bounded at
long wavelengths by a correlation (outer or energy-containing)
scale, and at small scales by a spectral break at the inner scale
(Kolmogorov dissipation scale). A third scale, the Taylor mi-
croscale, is related to the mean square gradients of velocity or
magnetic field, and in hydrodynamics at high Reynolds number
(Hinze 1975; Smith et al. 1993; Belmabrouk & Michard 1998)
lies between the inner and outer scales (Monin & Yaglom 1971-
1975). Less is known about the Taylor scale in low-density
astrophysical and space plasmas, and we have neither a the-
oretical expectation nor, until recently (Matthaeus et al. 2005;
Weygand et al. 2007), any observational constraints. The pic-
ture is further complicated for a low-density plasma, as kinetic
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scales such as the ion inertial scale (Leamon et al. 1999; Gary
& Borovsky 2004) become influential.

In strong MHD turbulence at high Reynolds numbers the
magnetic field and velocity field enter on nearly equal footing.
Manifestations of this include the ideal invariance of the cross
helicity and the symmetric form taken by the equations in
Elsässer representation, and the tendency for near equipartition
in the turbulence inertial range (the Alfvén effect) (Kraichnan
1965). Here we focus on solar wind magnetic field fluctuations,
mainly because the available spacecraft instrumentation pro-
vides higher time resolution magnetic data.

For interplanetary MHD turbulence at 1 AU (Earth orbit)
the correlation scale of magnetic field fluctuations (Tu &
Marsch 1995; Goldstein et al. 1995) is found to be l ≈c

cm (1/100 to 1/50 AU) from single-spacecraft11(1–3) # 10
data (using the frozen-in flow approximation, for solar wind
speed , characteristic MHD speed u). Multiple-spacecraftU k u
estimation (Matthaeus et al. 2005) gives cm,11l ≈ 1.3 # 10c

or 0.008 AU. The magnetic inertial range power-law terminates
with subsequent steepening at frequencies near 0.5 Hz at 1 AU.
At nominal speed km s�1 this corresponds toU ∼ 300–500
spatial scales of 600–1000 km, a few times the ion inertial
scale (Leamon et al. 1998b). This inner scale is oftenc/qpi

described as a “dissipation scale,” in analogy with hydrody-
namic terminology. However the kinetic effects that terminate
the solar wind inertial range (Barnes 1979; Tu & Marsch 1995;
Gary & Borovsky 2004) need not be dissipative and include,
e.g., dispersive effects as well. To avoid confusion, we refer
below to the length associated with the spectral break point as
the inner scale without bias as to where in the spectrum dis-
sipation actually occurs.

The hydrodynamic relationships between the scales of in-
terest form an important point of reference. For a typical speed

, fluid velocity v, enstrophy , and2 1/2 2u p (AFvF S) Q p AF� � vF S
vorticity , let us define the Taylor microscale lT as-�q p Q
sociated with the velocity field by the relation

2u2q p . (1)2lT

Here we opt for a simplified definition and therefore we differ
by an order-one numerical factor from the standard definitions
(Batchelor 1970; Hinze 1975). In the cases discussed below in
which the turbulence field of interest is the magnetic field fluc-
tuation b the Taylor scale is analogously defined as l pT

. We refer to outer scale (energy containing2 2 1/2(AFbF S/AF� � bF S)
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Fig. 1.—Estimates of magnetic autocorrelation function from ClusterR(r)
data. Results of extrapolation method and robust fit procedure are shown as
lines. Symbols are average correlation values in bins. See Weygand et al.
(2007) for details.

Fig. 2.—Comparison of estimates of the Taylor microscale from single-
spacecraft data and from two-spacecraft measurements, using Cluster data.
The same intervals are used for each type of determination.

scale) L, dissipation rate e, and for the viscous case, large-scale
Reynolds number , with viscosity n. By dimensionalR { uL/n
analysis the inner scale , here a true dissipation scale,l p 1/kd d

and its associated wavenumber are determined byk k pd d

. The physical interpretation of3 1/4 3/41/l p (e/n ) r k L p Rd d

can be made more clear by an alternative derivation. Notekd

that the viscous decay time at wavenumber k is .2t p 1/(nk )d

Define the nonlinear time at wavenumber k as t (k) pnl

where is the speed at k. Then assume a steady Kol-1/(ku ) uk k

mogorov spectrum of energy , and notice that2/3 �5/3E(k) p e k
. It follows that the dissipation wavenumber as1/2u p [kE(k)]k

defined above solves the equation . That is, thet (k ) p t (k )d d nl d

dissipation scale is that scale at which dissipation and nonlinear
times are equal. In this sense the fluctuations at are criticallykd

damped.
The hydrodynamical Taylor scale is also related to dissi-

pation. The viscous energy dissipation rate, from the Navier-
Stokes equation, can be expressed as

2 3u u
e p nQ p n p . (2)2l LT

The third term suggests a simple interpretation for lT: con-
centrating the energy at a single wavenumber, ,k p 1/lT T

would not change the instantaneous e, so lT may be interpreted
as the “single-wavenumber equivalent dissipation scale” (Hinze
1975). The final relation above is the von Kármán3e ∼ u /L
energy decay estimate for strong turbulence. It follows readily
from dimensional analysis as by selecting the time-2e p u /t
scale . More elegantly, it follows from the assumptiont p L/u
of “self-preservation” of the nondimensional correlation func-
tions (von Kármán & Howarth 1938). Using this, uL/n p

, or, , and we arrive at2 �(L/l ) L/l p RT T

1/4k l p R , (3)d T

so that for strong hydrodynamic turbulence.l ! l R k 1d T

The Taylor scale also enters in the expansion of the second-
order structure function for′ 2 2ˆS (r) p AFu � u F S p u S (r)2 2

small spatial separations r. When is regular at the origin,S2

for small . This is our basis for mea-2 2Ŝ (r) ≈ 1 � r /l r K l2 T d

surement of the Taylor scale.
Single- and multiple-spacecraft measurements.—Average

interplanetary Taylor and correlation scales can be established
using simultaneous two-point measurements. Cluster data
(2004 January 19–February 2) with separations on the order
of 100–200 km indicate (Matthaeus et al. 2005) that l pT

km. Restricting the determination to data with2478 � 702
smaller r in principle gives improved results, but with less
available data, statistical uncertainty grows. Richardson ex-
trapolation provides a refined estimate (Weygand et al. 2007),

km, as illustrated in Figure 1. Here we dem-l p 2400 � 100T

onstrate the relationship between the Taylor scale and the inner
scale in the interplanetary plasma, employing individual single-
spacecraft samples, and the frozen-in flow assumption, con-
verting time separations to space separations .Dt Dr p UDt

As a preliminary step we demonstrate that correlation esti-
mates from single-spacecraft data are consistent with two-
spacecraft measurements. The procedure is straightforward. For
two-spacecraft values we compute correlation between the sig-
nal measured at each spacecraft (Matthaeus et al. 2005), and
associate this with the actual spacecraft separation. Next, for
the same time period, and for each spacecraft separately, a
lagged time-correlation function is computed using frozen-in
flow. We then pick out the value that corresponds to the in-
terspacecraft separation, allowing comparison of the two meth-
ods. Figure 2 shows that the two methods give very similar
results. The data are divided into samples with separations less
than or greater than 7000 km. Larger separations show greater
discrepancy between single- and multiple-spacecraft correla-
tions. This can be attributed to anisotropy, and to temporal
decorrelation during the plasma convection past the spacecraft
in the single-spacecraft case. We defer for now a more detailed
examination of these issues, and instead make use of this dem-
onstration to bolster our confidence that lT can be obtained
from spacecraft data with a 10%–20% error relative to the more
precise two-point multispacecraft determination.

lT versus .—We now compare estimates of lT and theld

inner scale obtained from single-spacecraft intervals. Cal-ld

culation of the inner scale proceeds by computing, for each
interval, power-law fits to the spectrum in the inertial range
and in the steepened higher wavenumber range (Leamon et al.
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Fig. 3.—Scatter plot of Taylor scale values (from single-spacecraft mea-
surements) and dissipation scale values (defined by the break point at the upper
end of the inertial range), from ACE magnetic field data. Red points are
magnetic cloud data; black points are other solar wind intervals. The line
denotes .l p lT d

1998a; Smith et al. 2006). The intersection between the fitted
curves (straight lines in a log-log representation) defines the
spectral “break point,” at wavenumber , and the inner scalekd

.l p 1/kd d

Having obtained values of , we can improve our methodkd

for estimating lT. We use magnetic field data at 3 vectors per
second. At a nominal km s�1 this corresponds to aU p 400
minimum separation km. This resolvesDr p UDt ≈ 125min min

the spectral break, usually around 0.5 Hz. However there is
systematic error in estimating lT due to unresolved power,
which varies with the steepness of the high-frequency spectrum.
To address this, for each interval we compute a power-law fit
to the high-wavenumber spectrum, assumed to behave as
∼ for . We further assume that this power-law extends�ak kl 1 1d

to the reciprocal electron inertial scale. This means essentially
that any energy not dissipated prior to reaching electron scales
will dissipate at the electron scales. Numerical tests show that
with minimum separation as above, an accurate value ofDrmin

lT is obtained by Richardson extrapolation of for casesS (r)2

in which .a 1 3
In the range , the error in estimation of lT increases3 1 a 1 2

in a calculable fashion. In fact, for every value of a, we can
estimate a correction factor to the value of lT ob-g(a, Dt )min

tained by Richardson extrapolation. Details of this analysis will
be given at a later time. Here, for each interval we have a fixed

and an estimate for a, so we can compute a correctedDtmin

Taylor scale . These values are reported below.′l p glT T

Figure 3 presents results of simultaneous estimation of the
inner scale and the corrected Taylor scale for 513 intervals′l ld T

of ACE magnetic field data. The reference line indicates
, which can be viewed as the marginal condition that′l p lT d

separates hydrodynamic ordering, , and nonhydrodyn-l 1 lT d

amic ordering, . In hydrodynamic turbulence, all the datal ! lT d

would lie below this line (cf. eq. [3] with ). Figure 3 in-R 1 1
cludes 147 magnetic cloud intervals (Smith et al. 2006) and
366 noncloud wind intervals. Interplanetary magnetic clouds
(Burlaga et al. 1990) are low plasma beta (pressure/magnetic
pressure) intervals that also have lower turbulence levels. They
are frequently associated with large structures that may mag-
netically connect back to the Sun. From Figure 3 we see that
most cloud intervals have . A few noncloud intervalsl ! lT d

also lie in this region. In this nonhydrodynamic ordering, the
mean square gradient is at scales smaller than the spectral break
point scale, and one is led to the conclusion that the plasma
dissipation function, whatever its origin, is dissimilar to the
familiar viscous-resistive Laplacian form. Now consider the
intervals that lie on the hydrodynamic side of the equality.
With an estimate (Matthaeus et al. 2005), oneR p 230,000
expects , but this does not correspond well to thel ≈ 20lT d

observed distribution. We conclude that even when the samples
are hydrodynamically ordered, the relationship expected in high
Reynolds number viscous hydrodynamics is not realized.

The result in Figure 3 shows unambiguously that the kinetic
processes that terminate the inertial range in the solar wind do
not function in the same way as it would with a Laplacian
dissipation function and scalar transport coefficients. For vis-
cous hydrodynamics or simple Ohmic-resistive MHD, the inner
scale changes in response to the strength of the cascade, pro-
ducing smaller scale gradients in response to higher Reynolds
numbers (smaller n) or larger transfer/dissipation rate e. It has
long been recognized (D. C. Montgomery & M. L. Goldstein
1981, private communication) that this classical view of dis-
sipation lay on a collision course with the basic physics of the
solar wind and other low-density astrophysical plasmas—the

plasma mandates the relevance of certain kinetic length scales,
the proton gyroradius, proton inertial scale, etc. These will
control the onset of dissipation and dispersion, and the ter-
mination of the inertial range may therefore behave rather dif-
ferently than in hydrodynamics. Furthermore these length
scales are controlled by bulk plasma parameters, density, av-
erage magnetic field strength, and temperature, and are not
regulated in any direct way by the turbulence cascade. While
turbulence ultimately contributes to control of some of these
quantities, it seems certain that the simple Batchelor-Kolmo-
gorov perspective embodied in equation (3) cannot survive.
Recent evidence (Smith et al. 2006) supports the plasma dis-
sipation picture, as no clear relation is found between the spec-
tral break point ( ) and values of e estimated from inertial1/ld

range power levels.
Clues regarding what replaces the standard hydrodynamic

picture of dissipation are present in Figure 3 (see also Smith
et al. 2006). Evidently in magnetic clouds the gradients can
increase so much that the Taylor scale becomes smaller than
the spectral steepening scale ( ), and this occurs to a lesserld

extent in noncloud intervals of solar wind. Given that is ofld

the order of the ion inertial scale, one concludes that electron
dynamics becomes relatively more important in clouds. Many
possible electron processes would be candidates to explain this;
see, e.g., Dasso et al. (2003). This characterization also applies
to a minority of noncloud intervals. At present it is not entirely
clear how the plasma differentiates between cases in which the
small-scale gradients will be limited at (or longer than) proton
scales, or when saturation of gradients involves electron dy-
namics, possibly even at the scales as small as the electron
inertial scale. What is clear is that the growth of magnetic
gradients is sometimes arrested near the proton scales, and
sometimes at much smaller scales, perhaps as small as electron
scales. Figure 4 gives further insight concerning regulation of
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Fig. 4.—Scatter plot of the ratio of Taylor scale/dissipation scale vs. e p
estimate of the cascade rate in the inertial range. The data are binned and the
best power-law fit is for fit constant , since′ 0.193 0.579l /l p (e/e ) ∼ db e e ∼T d 0 0

. See Smith et al. (2006).3db

the small-scale gradients. There is a suggestion (see caption)
of a positive correlation between e and . This indicatesl /lT d

that a stronger cascade favors limitation of the magnetic gra-
dients near proton scales, while a weaker cascade favors gra-
dients at smaller scales. The former suggests greater involve-
ment of proton dynamics in stronger turbulence. For a weaker
cascade, the gradients move toward higher wavenumber until

limited by other processes, presumably due to electron
dynamics.

Conclusions.—At first the above results may seem counter-
intuitive—in the classical hydrodynamic picture a stronger cas-
cade generates smaller scale dissipation. However, in plasma
physics, many kinetic processes including instabilities are as-
sociated with characteristic scales (e.g., resonances) but may
not be triggered until some threshold condition is satisfied. The
above results are consistent with a picture in which steeper
gradients associated with stronger cascade activate additional
channels of dissipation at ion scales. Conversely with weaker
transfer rates, the protons see more gentle gradients and respond
less vigorously, dissipating less of the available flux of cascaded
energy. Consequently, for weaker cascade rates, more energy
appears in the scales between the proton and electron inertial
scales, where eventually additional (and electron-related) mech-
anisms provide dissipation. The above results highlight the non-
hydrodynamic nature of dissipation in the solar wind, adding
some new perspective on the relationship between mean square
gradients and dissipation in a turbulent low-collisionality
plasma. The role of spectral anisotropy and other factors, such
as proton and electron plasma beta, as well as details of the
kinetic processes involved remains to be determined in future
studies.
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