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ABSTRACT  14 

In vitro embryo production has grown in recent decades due to its great potential for cattle 15 

production. However, the quality of in vitro-produced embryos is lower compared with those 16 

produced in vivo. The postfertilization culture environment has a major influence on bovine 17 

embryo quality. We hypothesize that the inclusion of the inclusion of alpha-lipoic acid (ALA) 18 

in the in vitro culture (IVC) medium during the first 24 h would have positive effects on embryo 19 

development in vitro and cryotolerance. The aims of this study were to evaluate the antioxidant 20 

effect of ALA in IVC medium for 24h on bovine zygotes (21 h post in vitro fertilization, IVF), 21 

day 2 cleaved embryos (46 h post-IVF), and to assess embryo quality, developmental 22 

competence, and cryotolerance after vitrification. In all experiments, IVC medium was the 23 

Control, and 2.5 μM ALA was the treatment implemented. Viability and reactive oxygen 24 

species (ROS) levels in zygotes and day 2 embryos did not differ from the Control (P > 0.05). 25 

Supplementation with ALA increased total blastocyst and hatching rates (P < 0.05). It also 26 

improved embryo quality, evidenced by the increased blastocyst total cell number and the 27 

percentage of excellent-quality embryos observed (P < 0.05). In embryos cultured with ALA 28 

and then vitrified, ALA reduced intracellular ROS levels in warmed blastocysts (P < 0.05). In 29 

conclusion, ALA supplementation to IVC medium during 24 h is a new advantage in improving 30 

embryo quality for assisted bovine reproduction. 31 

 32 

Keywords: antioxidant; vitrification; cattle; embryo development; in vitro culture; embryo 33 

quality 34 
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1. Introduction 36 

 37 

In spite of recent progress in embryo culture protocols, the quality of in vitro-produced 38 

embryos is lower compared with those produced in vivo [1]. The postfertilization culture 39 

environment has a great impact on bovine embryo quality [2]. In in vitro embryo culture (IVC), 40 

the media composition and the embryo’s needs are asynchronous. The changing demands of 41 

the developing embryo are not fulfilled, which is manifested by various embryonic features, 42 

particularly ultrastructural alterations [3], limited compaction at the morula stage [4], and lower 43 

cryotolerance [5]. 44 

There has been a substantial increase in the use of in vitro production (IVP) of bovine 45 

embryos worldwide. Since it is an effective and efficient technology, methods for embryo 46 

cryopreservation are gaining increasing practical relevance [6]. In parallel with improvements 47 

in vitrification protocols, higher quality in vitro-derived bovine embryos must be obtained by 48 

improving laboratory culture techniques and medium [7]. It has been demonstrated that 49 

vitrification has negative effects on oocytes and embryos by disturbing the reduction-oxidation 50 

status, reducing glutathione content (GSH), and increasing reactive oxygen species (ROS) 51 

levels [8, 9, 10]. Moreover, repairing the cryo-induced damage to the cell structure and function 52 

involves the generation of energy, leading to increased ROS production [11, 12]. Also, it has 53 

been shown that vitrification induces alterations in mitochondrial function and distribution and 54 

decreases the membrane potential of oocytes and embryos [13, 14, 15]. Therefore, the higher 55 

the quality of the embryo, the better it will withstand the adverse effects of vitrification [16]. In 56 

mammalian embryos, individual antioxidants are effective to ameliorate oxidative stress [11]. 57 

Alpha-lipoic acid (ALA), which is synthesized from octanoic acid and sulfur sources through 58 

the action of lipoic synthetase acid [17], is a coenzyme in mitochondrial multienzyme complex 59 

reactions in charge of recycling other cellular antioxidants – such as GSH [18] – and regulating 60 

mitochondrial function. It also assists in ATP production for energy provision [19]. The 61 
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antioxidant properties of ALA have been previously described, showing that it protects mouse 62 

embryos against oxidative stress by stimulating the expression of antioxidant genes [20, 21]. 63 

Additionally, the beneficial effect of ALA in assisted reproductive technologies in different 64 

species has been reported. The maturation rate of cloned goat embryos was improved by 65 

supplementing ALA to in vitro maturation (IVM) medium [22]. Furthermore, the resulting 66 

enhanced developmental competence in this species was mediated through the reduction of 67 

cellular apoptosis by inhibiting apoptotic activator genes [22]. In mouse embryo production, in 68 

vitro fertilization (IVF) and IVC media supplemented with ALA improved subsequent embryo 69 

development (by decreasing oxidative stress) and increased embryo viability [23, 24]. Besides, 70 

ALA concentration is a crucial factor for obtaining beneficial or detrimental effects on bovine 71 

blastocysts [25].  It was demonstrated that 2.5 µM ALA supplemented at the beginning of IVC 72 

and maintained during the embryo development increased blastocyst total cell number, while 73 

7.5 µM ALA decreased the hatching rate in bovine [25]. Therefore, the multifactorial effects of 74 

ALA make it one potential candidate substance to improve embryo quality, contributing to 75 

reducing oxidative stress in bovine blastocysts [11]. 76 

The largest drop in IVP efficiency takes place between the 2-cell and blastocyst stages, 77 

indicating that the culture stage after fertilization is fundamental in the process [26, 27]. Several 78 

main developmental events occur between the zygote and blastocyst formation: i) the first 79 

cleavage division [28]; ii) the activation of the embryonic genome at the 8 to 16 cell stage [29]; 80 

iii) compaction of the morula on day 5 [30]; iv) the formation of blastocyst on day 6-7 [31]. 81 

Thus, any modifications of the culture condition during the 6-day window of post-fertilization, 82 

which could affect any or all of these processes could have a major influence on the embryo 83 

quality.  In vitro embryos show a peak of ROS production at 2- to 4-cell stages [32]. In addition, 84 

a lower amount of antioxidants is generated in this window [33]. For this reason, the aim of this 85 

study was to evaluate the antioxidant effect of ALA during the first 24 h of IVC on bovine 86 

embryo quality, developmental competence, and cryotolerance after vitrification. Considering 87 
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the economic relevance of the livestock industry, the improvement of assisted reproductive 88 

technologies becomes increasingly important. 89 

 90 

2. Materials and methods 91 

2.1. Reagents and media  92 

All reagents for media preparation were purchased from Sigma Chemical Co. (St. Louis, 93 

MO, USA). Follicle-stimulating hormone (FSH) was purchased from Bioniche (Belleville, 94 

Ontario, Canada). (±)-α-lipoic acid (ALA) (CAS 1077-28-7), 2′,7′-dichlorofluorescein 95 

diacetate (H2DCFDA) (CAS 4091-99-0) and fluorescein diacetate (FDA) (CAS 596-09-8) 96 

were purchased from Sigma Chemical Co. (St. Louis).  Hoechst 33342 (CAS 875756-97-1) was 97 

obtained from Life Technologies (Carlsbad, CA, USA). Ethanol (CAS 64-17-5) was purchased 98 

from Merck KGaA (Darmstadt, Germany).  99 

2.2. Experimental design  100 

The study included three experiments (Fig. 1). The treatments implemented were 0 µM ALA 101 

(Control) and 2.5 µM ALA in IVC medium. The chosen concentration was based on our 102 

previous studies [25]. ALA was diluted in ethanol 0.1 % whose toxicity had been previously 103 

verified [34, 35]. 104 

Experiment 1: Effect of ALA on viability and ROS production in putative zygotes (21 h post-105 

IVF) and day 2 cleaved embryos (46 h post-IVF) 106 

The effect of ALA as an antioxidant compound on early embryo development was 107 

investigated by supplementing the IVC medium with ALA to measure viability and acute 108 

production of ROS in putative zygotes at 3 h of treatment [36] and in day 2 cleaved embryos at 109 

24 h of treatment [37]. After IVF, putative zygotes were denuded by gentle pipetting and culture 110 

in IVC medium supplemented with ALA for 3 h, immediately half of the random samples were 111 

used to evaluate viability and ROS production. The remaining zygotes were kept in culture with 112 

ALA (24 h) to evaluate day 2 cleaved embryos in the same form.   The levels of ROS were 113 
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evaluated using H2DCFDA stain and viability was determined with the FDA technique. The 114 

combination of two assays was performed following the criteria proposed by Lane et al. [38]. 115 

A total of 30-40 COCs were matured per treatment per replicate per assay. Three replicates 116 

were performed for each assay. 117 

Experiment 2: Effect of ALA on embryo developmental competence and quality 118 

The effect of ALA supplemented during the first 24 h in IVC medium on embryo kinetics 119 

and quality was evaluated with the IVP technique. The rates of cleavage on day 2 (48 h post-120 

IVF), blastocysts on days 7 (B7) and 8 (B8), total blastocysts (BT), and hatching on days 8 and 121 

9 were recorded. Also, the total cell number per blastocyst on day 8 was measured with Hoechst 122 

33342 following the criteria chosen by Fabra et al. [25]. A total of 95-100 COCs were matured 123 

per treatment per replicate. Treatments were repeated in six replicates.  124 

Experiment 3: Effect of ALA on embryo cryotolerance 125 

 To measure this effect, ALA was supplemented during the first 24 h in IVC medium. The 126 

quality grades of B7 and B8 were verified and then only grade 1 blastocysts were vitrified. 127 

After warming, re-expansion at 3 h and hatching rate at 24, 48, and 72 h were evaluated. The 128 

production of ROS in warmed embryos was also assessed. A total of 323-341 COCs were 129 

matured per treatment per replicate. Treatments were repeated in two to five replicates. 130 

2.3. Procedures 131 

2.3.1. Embryo IVP  132 

Embryo IVP was carried out as described in our previous study [25, 39]. Briefly, ovaries 133 

came from an abattoir. Within 3 h of slaughter, they were sent to the laboratory in a sterile 134 

solution of NaCl (0.9% w/v) with streptomycin (100 mg/L) and penicillin (59 mg/L) at 37 °C. 135 

The ovaries were pooled irrespective of the estrous cycle stage of donors. Cumulus-oocyte 136 

complexes (COCs) were aspirated from 3-8 mm follicles with an 18-G needle connected to a 137 

sterile test tube and vacuum line (50 mm Hg). Only cumulus-intact oocytes with an evenly 138 
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granulated cytoplasm were selected using a low-power (20-30 x) stereomicroscope (Diaphot, 139 

Nikon, Tokyo, Japan). The IVM medium was bicarbonate-buffered tissue culture medium 140 

(TCM-199) with 10% v/v fetal bovine serum (FBS), 0.2 mM sodium pyruvate, 1 mM 141 

glutamine, 1 μg/ml FSH, and 1 μg/ml 17β-estradiol. The COCs were washed in TCM-199 142 

buffered with 15 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and twice 143 

with IVM medium. Then, groups of 20-25 COCs were transferred into 100 µL of IVM medium 144 

under mineral oil and matured for 24 h. Fertilization medium consisted of Tyrode's albumin 145 

lactate pyruvate (TALP) medium [40] supplemented with 2% (v/v) minimal essential medium-146 

essential amino acids (MEM-EAA), 1% (v/v) MEM-nonessential amino acids (MEM-NEAA), 147 

6 mg/mL bovine serum albumin fatty acid-free (BSA-FAF), 20 μM penicillamine, 10 μM 148 

hypotaurine, and 10 mg/mL heparin sulfate. After IVM, expanded COCs were washed twice in 149 

HEPES-TALP supplemented with 3 mg/ml BSA-FAF and twice in 100 µL IVF medium. In all 150 

experiments, frozen semen from the same bull and batch with proven fertility was used. 151 

Spermatozoa were washed in a discontinuous Percoll gradient prepared by depositing 2 mL of 152 

90% Percoll under 2 mL of 45% Percoll in a 15 mL centrifuge tube. Semen samples were 153 

deposited on the top of the Percoll gradient and centrifuged at 500 g for 20 min. The pellet was 154 

removed and resuspended in 300 mL HEPES-TALP solution and centrifuged at 300 g for 10 155 

min. After removal of the supernatant, spermatozoa were resuspended in IVF medium and 156 

counted in a hemocytometer chamber. Each drop of 80 µL of IVF medium with 20-25 COCs 157 

was inseminated with 20 µL at a final concentration of 2 x 106 sperm/mL. Gametes were co-158 

incubated for 18 h. The IVC medium consisted of synthetic oviduct fluid (SOF) [41] 159 

supplemented with 1 mM glutamine, 2% (v/v) MEM-EAA, 1% (v/v) MEM-NEAA, and 8 160 

mg/ml BSA-FAF (274–276 mOsm/kg) [42]. All embryos were first cultured with IVC medium 161 

supplemented with ALA during 3 h (Experiment 1) or 24 h (Experiment 1, Experiments 2 and 162 

3).  A total of 20-25 COCs were cultured in a drop of 80 µL under mineral oil. At the end of 163 

the ALA treatment, a new culture dish was used in both treatments with IVC medium in the 164 
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presence of 1.5 mM glucose under mineral oil. Then, half of the culture medium, of each 165 

treatment, was renewed through a feeding procedure with IVC medium fresh every 48 h of 166 

culture. This procedure was performed two times. At the end of incubation (days 7-8), the 167 

morphological stage of embryo development was evaluated with low power (20-30 X) 168 

stereomicroscope (Diaphot, Nikon, Tokyo, Japan). Both IVM and IVF were carried out at 39 169 

°C with 5% CO2 in air and humidity at saturation. The IVC was carried out in an atmosphere 170 

of 7% O2, 5% CO2, and 88% N2 at 39 °C with saturated humidity.  To study embryo kinetics, 171 

cleavage rates (48 h post-IVF) were evaluated as embryos with 2-4 cells or embryos with > 4 172 

cells, and blastocyst rates were determined as blastocysts appear on days 7 and 8 of 173 

development. The rates of cleavage, B7 and B8 were calculated from the total COC matured. 174 

Then, the blastocysts obtained were homogeneously divided into two groups. In group one, 175 

hatching from the total blastocyst on days 8 and 9 was determined. In group two, at least 20-30 176 

blastocysts on day 8 per treatment were fixed and evaluated with Hoechst 33342. 177 

2.3.2.  Quantification of intracellular ROS  178 

Intracellular ROS levels in presumptive zygotes, day 2 cleaved embryos, and warmed 179 

blastocysts were quantified using the fluorescent probe H2DCFDA. Only warmed blastocysts 180 

were cultured for 3 h in IVC medium until ROS levels were evaluated. The H2DCFDA probe 181 

is oxidized directly by H2O2, its derivatives, and 182 

 other peroxides, and is also oxidized indirectly by the superoxide anion, thus providing a 183 

reliable tool to assess intracellular ROS production. A stock solution of H2DCFDA dissolved 184 

in dimethyl sulfoxide (DMSO) was diluted in PBS to a working concentration of 5 µM. Samples 185 

were washed twice in PBS and immediately incubated with 5 µM H2DCFDA in a dark, 186 

humidified 5% CO2 atmosphere at 38.5 °C for 5 min (day 2 cleaved embryos or warmed 187 

blastocysts) and 20 min (presumptive zygotes). Then, they were washed twice with fresh PBS 188 

and imaged immediately using an epifluorescence microscope equipped with UV filters (460 189 
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nm) to quantify embryo area and fluorescence intensity (pixels) in fluorescence arbitrary units 190 

(FAU). Fluorescence intensities were analyzed using ImageJ software (version 1.46r; National 191 

Institutes of Health, Bethesda, MD, USA). Data were expressed as mean H2DCFDA intensity 192 

in FAU ± standard deviation (SD). 193 

2.3.3. Viability 194 

After IVC, presumptive zygotes and day 2 cleaved embryos were incubated for 10 min at 37 195 

°C in PBS medium containing 2.5 µg/L FDA. The samples were observed using an 196 

epifluorescence microscope (Olympus BX40) equipped with a 420 nm excitation filter. For 197 

evaluation, each sample was photographed and analyzed with Image J software 1.48v (Wayne 198 

Rasband, National Institutes of Health, USA). For this purpose, the intensity of each pixel was 199 

divided by the number of pixels of each cell. Data were expressed as mean FDA intensity (FAU 200 

± SD) [43]. 201 

2.3.4. Blastocyst total cell number analysis 202 

The total cell number of blastocysts on day 8 was measured using Hoechst 33342. First, the 203 

embryos were fixed in 4% formaldehyde. Then, they were washed three times in PBS with 5% 204 

FBS and incubated in 1 mg/mL Hoechst 33342 for 10 min at 37 °C. After that, the embryos 205 

were washed and mounted in a glass slide in a 20 µL glycerol drop and examined under an 206 

epifluorescence microscope (Olympus BX40) with an appropriate combination of filters (460 207 

nm) at 200x magnification by one blind researcher to determine the total number of cells.  208 

2.3.5. Embryo vitrification and warming  209 

 The quality grades of B7 and B8 were verified according to the classification of the 210 

International Embryo Transfer Society [44]. Only grade 1 blastocysts were vitrified. Embryo 211 

vitrification was performed according to the technique described previously [45, 46]. The 212 

medium and reagent used for vitrification were a basic maintenance medium (MM) (TCM 199-213 
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HEPES + 20% FBS) and a sucrose medium (SM) (0.5 M sucrose and TCM 199-HEPES). 214 

Briefly, embryos were handled in MM. Then, the blastocysts selected for vitrification were 215 

exposed to 850 μL MM with 7.5% ethylene glycol (EG) + 7.5% DMSO (Vitrification Solution 216 

1; VS1) for 3 min and then moved into a well containing 670 SM μL with 16.5% EG + 16.5% 217 

DMSO (Vitrification Solution 2; VS2). The blastocysts were vitrified with the surface device 218 

Cryotech® (ex Cryotop®). Then, the straws were plunged into liquid nitrogen. The time spent 219 

by blastocysts in VS2 (including loading) was 20–25 seg.  220 

The medium and reagent used for warming were a solution consisting of 800 μL MM + 400 221 

μL SM (0.25 M) (MS1) and another solution consisting of 800 μL MM + 200 μL SM (0.15 M) 222 

(MS2). Warming was conducted by immersing the pulled end of the straws directly in 1.2 mL 223 

in MS1 for 5 min. Then, straws were transferred to the MS2 for another 5 min and subsequently 224 

transferred to MM for 5 min. Finally, blastocysts were washed in SOF + 5% FBS and placed 225 

into the culture microdroplet. All procedures were performed in a warm room (30 °C) on a 226 

heated surface (41 °C). Blastocysts were cultured in an incubator with an atmosphere of 7% O2, 227 

5% CO2, and 88% N2 at 39 °C with saturated humidity. Warmed blastocysts were used to 228 

evaluate re-expansion at 3 h and then they were randomly divided into two groups: one was 229 

used to evaluate hatching at 24, 48, and 72 h [47], and the other to evaluate intracellular ROS 230 

levels.  231 

2.4. Statistical analysis 232 

Data were analyzed using the RStudio Software. We used a Bayesian approach with normal 233 

and non-informative prior distribution to calculate the 95% Bayesian Credible Intervals 234 

(95%BCIs). The Bayesian statistical approach is progressively being used in many fields of 235 

science as an alternative to analyzing data with small samples [48, 49, 50]. Cleavage, B7, B8, 236 

BT, hatching rates, and vitrification data were analyzed with Beta distribution for the 237 

comparison of two proportions. Blastocyst total cell number, viability, and ROS levels were 238 

analyzed using Bayesian comparison of two media adapted to the normal distribution 239 
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frequentist approach. P values < 0.05 were regarded as significant, and P‐values < 0.1 as a 240 

tendency.  241 

 242 

3. Results  243 

 244 

3.1. Effect of ALA on viability and ROS production in putative zygotes and day 2 cleaved 245 

embryos 246 

Table 1 shows viability data and intracellular ROS levels obtained after treating putative 247 

zygotes or day 2 cleaved embryos with ALA during IVC. No differences in viability and ROS 248 

production between Control and ALA in putative zygotes ((P = 0.22); (P = 0.15), respectively). 249 

Similarly, we did not detect differences in viability and ROS production between Control and 250 

ALA in day 2 cleaved embryos ((P = 0.17); (P = 0.30), respectively).  251 

3.2. Effect of ALA on embryo developmental competence and quality 252 

In Experiment II, there were no significant differences in the rates of total cleavage between 253 

treatments (P = 0.14). While the rates of cleaved 2-4 cells did not differ between the Control 254 

and ALA (P = 0.37), an increasing trend in the rate of > 4 cleaved cells was observed in the 255 

Control group (P = 0.10; Table 2). The results demonstrated that the rate of total blastocysts 256 

increased with ALA treatment (P = 0.01) due to an increase in the rate of B7 (P=0.002), while 257 

the B8 rate did not differ (P = 0.22; Table 2). The hatching rate and blastocyst total cell number 258 

were evaluated as quality parameters of embryos. Results of hatching are expressed as a 259 

percentage in respect of the total blastocysts observed (Table 2). We observed that the total 260 

hatching rate increased with ALA (P=0.02) (Table 2). In the same way, when evaluating total 261 

blastocyst cell number, this parameter was greater in ALA compared with the Control (P = 262 

0.05) (Table 2).   263 

3.3. Effect of ALA on embryo cryotolerance 264 
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The results of embryo quality demonstrated that grade 1 embryos were greater in ALA on 265 

day 7 (P = 0.001) and trend on day 8 (P = 0.06) (Table 3). No differences were observed 266 

between treatments when grade 2 embryos were evaluated on days 7 and 8 ((P = 0.42); (P = 267 

0.26), respectively) (Table 3).  268 

Table 4 shows the total embryos vitrified on days 7 and 8 of culture. We observed an increase 269 

in the total embryos vitrified in ALA as compared with the Control (P = 0.01) on day 7. Also 270 

shows the percentages of embryo re-expansion, hatching, and intracellular ROS levels after the 271 

vitrification–warming process of day 7 and 8 blastocysts. Re-expansion rates 3 h after warming 272 

did not differ on days 7 and 8 (P = 0.35 and P = 0.48, respectively). No differences in hatching 273 

rate were observed between ALA and Control at 24 h. However, the groups were different in 274 

hatching rate at 48 h on days 7 and 8 (P = 0.05; P = 0.03, respectively) and in hatching rate at 275 

72 h on day 8 (P = 0.05) increasing this parameter in the Control group. Regarding intracellular 276 

ROS levels, they were reduced in the ALA group on day 7 (P = 0.05).  277 

 278 

4. Discussion 279 

 280 

In the present study, the effect of 2.5 µM ALA supplementation at the beginning of bovine 281 

IVC (first 24 h) was analyzed. We studied intracellular ROS level and viability of zygotes and 282 

day 2 cleaved embryos. Additionally, early embryo development, blastocyst quality, and 283 

cryotolerance after vitrification were evaluated. 284 

The current results indicate that the inclusion of ALA did not modify viability and ROS 285 

levels evaluated after an acute treatment (3 h) in zygotes, and at the end of 24 h of treatment in 286 

day 2 cleaved embryos. This would indicate that despite the effect of ALA was not quickly 287 

evidenced, it was key to embryonic development. Our results demonstrated that ALA increased 288 

the rate of the total blastocyst and that the number of ALA-treated embryos appearing on day 7 289 
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was higher than the control. We have previously reported that the percentage of embryos 290 

developing to the blastocyst stage was not modified after a long treatment (7 days) with 2.5 µM 291 

ALA in IVC [25]. Agreeing with this result, Mokhtari et al. [51] found no difference in 292 

cleavage, morula compaction, and blastocyst rates in mice when IVC was supplemented with 293 

1 and 10 µM ALA for 5 days. This coincides with the fact that the mammalian preimplantation 294 

embryo is most sensitive to its environment during the cleavage stages [52, 53]. Hence, 295 

supplementation of antioxidants during this stage, as we did in our investigation, may be 296 

beneficial. During embryo development after fertilization, different critical events regulated by 297 

a harmonized expression of genes occur under ideal culture conditions [54]. For instance, the 298 

switch from using the maternal genome mRNA to that generated from embryonic genome 299 

activation (EGA). Researchers suggest that in bovine embryos, transcriptional activity starts 300 

between the zygote- and late 4-cell stages (minor GA) and the developmental block occurs at 301 

the 8-cell stage [54]. The timing of the ‘developmental block’ indicates that embryonic 302 

transcription is remarkably responsive to culture conditions. This process can be relieved by 303 

reducing glucose in the culture medium. Non-use of glucose would be due to the lack of activity 304 

of the enzyme phosphofructokinase [55]. So, the little glucose used in the embryonic first stages 305 

would be metabolized mainly through the pentose phosphate pathway. This pathway produces, 306 

among other things, reduced glutathione (GSH), which protects against peroxidation, and 307 

nucleotide precursors [56]. It has been reported that ALA plays a role in intracellular GSH 308 

recycling [57]. Supplementation of ALA during the first 24 h of IVC could participate in this 309 

process, increasing GSH synthesis and improving embryo development. In bovine embryos, 310 

GSH increased during IVM; such concentrations persisted during fertilization and were still 311 

present during the initiation of early embryo development [58]. An increased store of GSH 312 

probably protects blastomeres from oxidative stress during early embryo development, 313 

especially during the maternal-zygotic genome switch of the embryo [59, 60]. Future work is 314 

needed to verify our hypothesis.  315 
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Our results demonstrated that ALA improved blastocyst quality. We showed that blastocyst 316 

total cell number, the number of grade 1 blastocysts, and the hatching rate increased with ALA 317 

treatment. In line with these results, when we studied the effect of ALA during IVC, on day 8, 318 

the total cell number was greater in blastocyst cultured with 2.5 µM ALA [25]. In the same 319 

way, Truong et al. [24] described an increase in total cell number in mouse blastocyst culture 320 

with 5 µM ALA during 5 days and showed a significant increase in blastocyst total cell number 321 

of embryos grown in media with antioxidants (acetyl-L-carnitine, N-acetyl-L-cysteine, and 322 

ALA), supplemented only in the pre-compaction period. Hassan et al. [61] confirmed that 323 

adding 10 µM ALA during bovine IVM resulted in a significantly greater total cell number and 324 

higher inner cell mass ratio.  325 

Tolerance to cryopreservation has been used routinely as an embryo quality parameter. Slow 326 

freezing and vitrification are normally used to cryopreserve bovine embryos. Once blastocyst-327 

stage embryos overcome the embryonic block, a first selection has been made. Since these 328 

embryos have a greater nuclear-cytoplasmic ratio, they are more suitable for cryopreservation 329 

[16]. Several antioxidants have been effective in ameliorating oxidative stress in mammalian 330 

embryos during cryopreservation [38, 62, 63]. Different authors have used ALA as a 331 

cryopreservation strategy. The addition of ALA to the extender resulted in a higher percentage 332 

of post-thaw and motile boar spermatozoa and an improvement in the activities of superoxide 333 

dismutase, lactate dehydrogenase, glutamic-oxaloacetic transaminase and catalase [64]. Buffalo 334 

bull spermatozoa treated with ALA during cryopreservation revealed higher sperm survival 335 

function and time of sperm attributes [65]. Mouse pre-antral follicles cryopreserved with ALA 336 

also showed higher rates of survival, antrum formation, and metaphase II oocytes [66]. The 337 

combination of ALA with acetyl-L-carnitine and N-acetyl-L-cysteine supplemented in 338 

vitrification and/or warming solutions in mice led to significantly increased inner cell mass 339 

number and total cell number and increased outgrowth area, which correlated with the increased 340 

fetal weight, crown-rump length and limb development following the transfer, as compared 341 
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with embryos with no antioxidants [63]. The number of grade 1 - blastocysts vitrified increased 342 

and the level of ROS was lower in day 7 ALA vitrified-warmed blastocysts than in Control, 343 

however, we observed that the hatching rate post-vitrification did not improve in the ALA 344 

group. Recently, Truong and Gardner [63] suggested that antioxidants should be present during 345 

exposure to increase the oxidative stress associated with vitrification and that prior exposure 346 

was not enough to protect cells against cryo-induced injury. For this reason, the potential effects 347 

of ALA on vitrification solutions and whether ALA may ameliorate the oxidative stress caused 348 

by the vitrification–warming process should be assessed in future studies of bovine embryos. 349 

 350 

5. Conclusions 351 

 352 

In conclusion, these results suggest that ALA added during early stages of culture increases 353 

grade 1- blastocysts rate. Moreover, ALA improves embryo quality, in terms of cell number 354 

per blastocyst as well as hatching rate. Also, ALA decreases ROS level in vitrified-warmed 355 

blastocysts. This supplementation may be useful to increase the efficacy of bovine in vitro 356 

embryo production. 357 
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Table 1. Effect of 2.5 µM Alpha-lipoic acid (ALA) supplementation during 3 and 24 h in  in vitro culture 

of bovine embryos on viability and intracellular reactive oxygen species (ROS) levels in putative zygotes 

and in day 2 cleaved embryos.  

  

Putative zygotes 

 

Day 2 embryos 
 

 

 

Treatment 

 

 

Viability 

% FAU (n) 

 

 

 

ROS level 

% FAU (n) 

 

 

ROS/FDA 

 

 

Viability 

% FAU (n) 

 

 

ROS level 

% FAU (n) 

 

 

ROS/FDA 

 

Control 

 

 

38.60 ± 3.24 (62)a 

 

23.88 ± 2.89 (81)a 

 

0.61a 

 

106.55 ± 12.64 (47)a 

 

21.22 ± 1.62 (53)a 

 

0.19a 

 

ALA 

 

 

35.27 ± 2.91 (51)a 

 

19.83 ± 2.64(83)a 

 

0.56a 

 

122.79 ± 12.28 (61)a 

 

20.08 ± 1.58 (79)a 

 

 

0.16a 

 

Results are expressed as % FAU ± SD (n); FAU: Fluorescence arbitrary units. n: number of putative zygotes 

or day 2 embryos analyzed. Viability was measured with the fluorescein diacetate (FDA) assay. ROS level 

was evaluated with the 2′,7′-dichlorofluorescein diacetate (H2DCFDA) assay. A total of 30-40 COCs were 

matured and fertilized per treatment per assay. All cleaved embryos and putative zygotes were analyzed 

except degenerate and non-fertilized oocytes. Treatments were repeated in three replicates for each assay. 

(a–b) Values with different superscripts within each column differ (P ≤ 0.05).  
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Table 2. Effect of 2.5 µM alpha-lipoic acid (ALA) supplementation during in vitro culture of bovine embryos on embryo development rate and total blastocyst 

cell number 

  

  

  

  % (n)  % (h/b)  % (n) 

Treatment Matured  

 Cleaved 2-4 cells   Cleaved > 4 cells 
  

   
  

      
  

   
 

Total cell 

number B7 B8 BT  Hatched  

  Oocyte (n) 
  

          

 

         

 

  

Control 567  49.41 a 

(281) 
mpd=-0.00   

34.14 a 

(189) 
mpd=-0.03   19.38 a 

(108) 
mpd=10.06    5.51 a 

(35) 
mpd= -0.01    24.90 a 

(143) 
mpd= 0.05  37.5a 

(12/32) 
mpd= 0.20 

 

54.54 ± 3.73a 

(30) 

   
 

IL= -0.05     IL=-0.08   
 

IL=0.02    IL= -0.03  
 

IL= 0.01   IL= 0.03 
  

ALA 546  49.65 a 

(276) 
P= 0.37   

30.86 a 

(163) 
P= 0.10  25.72 b 

(142) 
P=0.00  4.07 a 

(28) 
P= 0.22  29.79 b 

(170) 
P= 0.01  59.57b 

(28/47) 
P= 0.02 

 

64.39 ± 4.77b 

(20) 

                                            

 

Results of embryo development are expressed as a percentage with respect to matured oocytes (n). Mean posterior difference (mpd); inferior limit (IL). 

B: blastocyst; B7: blastocyst that appeared on day 7 of culture; B8: blastocyst that appeared on day 8 of culture. BT: total blastocyst. Results of hatching 

(h) rate are expressed as a percentage with respect to total blastocysts (b) (% (h/b)). Results of total cell number of blastocysts on day 8 were evaluated 

with Hoechst 33342 and expressed as % mean ± SD (n). A total of 95-100 COCs were matured per treatment per replicate. Treatments were repeated in 

six replicates. (a–b) Values with different superscripts within each column differ (P ≤ 0.05).  
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Table 3. Effect of 2.5 µM Alpha-lipoic acid (ALA) supplementation during in vitro culture of bovine embryos on the blastocyst quality at day 7 (D7) 

and day 8 (D8) of culture 

  Treatment   Blastocyst Quality % (n) 

 
 

     

 
 

 1   2   

D7 
Control  2.16 (32) mpd=0.04;  4.64 (70) mpd=0.003;  

ALA  7 (53) IL= 0.02; 4.98 (37) IL= -0.02; 

        P = 0.001   P = 0.42 

       

D8 
Control  1.5 (23) mpd=0.01;  8.66 (130) mpd=-0.01;  

ALA  3.51 (26) IL= -0.001; 7.33 (55) IL= -0.04; 

        P = 0.06   P = 0.26 

 

Results are expressed as % (n). D7: day 7 of embryo culture. D8: day 7 of embryo culture. The quality grade was classified as: 1) excellent, 2) good. 

A 323-341 COCs were matured per treatment per replicate. Treatments were repeated in two to five replicates.  (a–b) Values with different superscripts 

within each column differ (P ≤ 0.05). 
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Table 4. Effect of 2.5 µM alpha-lipoic acid (ALA) supplementation during in vitro culture of bovine embryos on re-expansion rates and intracellular reactive 

oxygen species (ROS) levels of vitrified/warmed blastocysts. 

 

 

Treatment 
 

Vitrified 

embryos 

(n) 

   

Expanded % (n) 
 Hatched % (n)  Intracellular ROS levels 

%FAU (n) 

  
      3h    Embryos 

(n) 
 24h    48h    72h     

D7 

Control 

 

 22 
mpd=0.05  

68.18 (15)a  
mpd=-0.04  

11 

 

18.18 (2)a  
mpd=0.08  

54.54 (6)a  
mpd=-0.26  

9.00 (1)a  
mpd=-0.06  137.35 ± 18.44 (9)a 

 LI= 0.01   IL=-0.247   IL=-0.15  IL=-0.53  IL=-0.24   

ALA   41 P= 0.01   62.85 (22)a P=0.35   21   30.00 (6)a  P=0.27   25.00 (5)b P=0.05   5.00 (1)a  P=0.28   100.45±14.18(10)b 

D8 

Control 
  

33 
mpd=0.00  

81.25 (26)a 
mpd=-0.00  

17 

 

29.41 (5)a  
mpd=0.11  

29.41 (5)a  
mpd=-0.22  

17.64 (3)a  
mpd=-0.16  121.90± 8.90(15)a 

 LI=-0.03  IL=-0.16   IL=-0.13  IL=-0.42  IL=-0.33   

ALA    37 P=0.39   80.55 (29)a P=0.48  19   42.10 (8)a  P=0.22  5.20 (1)b P=0.03  0.00 (0)b P=0.05   127.30±8.35(10)a 

 

Blastocyst were vitrified/warmed on day 7 (D7) and day 8 (D8) of development. Results of re- expanded blastocysts and hatching are expressed as percentages 

(n). Results of expanded and hatching are expressed with respect to the embryos evaluated. Mean posterior difference (mpd); inferior limit (IL). ROS level 

data are expressed as % mean ± SD (n) and expressed as fluorescence arbitrary units (FAU). (a–b) Values with different superscripts within each column differ 

(P ≤ 0.05).  
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Figure 1. Experimental design. Alpha-lipoic acid (ALA) was diluted in ethanol 0.1% and 

supplemented during bovine cultured in vitro (IVC). The IVC medium consisted of synthetic 

oviduct fluid (SOF).  The treatments were Control: media in the absence of ALA or ALA: 

presence of 2.5 µM ALA. Experiment 1: Reactive oxygen species (ROS) levels and viability 

were evaluated in presumptive zygotes and day 2 embryos (46 h post-in vitro fertilization) 

after 3 or 24 h ALA exposure, respectively. Experiment 2: Presumptive zygotes were cultured 

in the absence (Control) or presence of ALA for 24 h. Then, embryos were culture with SOF 

media until day 10 (D10). Cleavage, day 7 and 8 blastocysts and hatching rate were recorded 

and total cell number was evaluated in blastocysts. Experiment 3: Presumptive zygotes were 

cultured in the absence (Control) or presence of ALA for 24 h. Then, embryos were culture 

with SOF media until day 7-8. On days 7 and 8, blastocysts in each group were vitrified. 

Then, embryos were warmed and cultured for 3 h in IVC. Finally, re-expansion, hatching 

and ROS level were evaluated. D1: day 1 of IVC; D10: day 10 of IVC. The brackets indicate 

the embryonic stages analyzed in each experiment. 
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Highlights 

• Supplementation of IVC medium with ALA during 24 h improved embryo quality 

and blastocyst rate  

•  Supplementation of IVC with ALA during 24 h increased total cell number per 

blastocyst  

• Supplementation of IVC with ALA during 24 h decreased ROS level in vitrified-

warmed blastocysts 

• Supplementation of IVC with ALA increased the hatching rate 24 h post warmed 

embryos 
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