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Universal fault-tolerant quantum computers require millions of qubits with low error rates. Since this tech-
nology is years ahead, noisy intermediate-scale quantum (NISQ) computation is receiving tremendous interest.
In this setup, quantum reservoir computing is a relevant machine learning algorithm. Its simplicity of training
and implementation allows to perform challenging computations on today’s available machines. In this Letter,
we provide a criterion to select optimal quantum reservoirs, requiring few and simple gates. Our findings
demonstrate that they render better results than other commonly used models with significantly less gates and
also provide insight on the theoretical gap between quantum reservoir computing and the theory of quantum
states’ complexity.
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Introduction. Pursuing the early idea of Manin [1] and
Feynman [2] of constructing quantum computers that can
solve numerical problems exponentially faster than the clas-
sical ones, some years ago Google and NASA claimed [3],
not without controversy [4,5], having achieved this quan-
tum supremacy. Although a universal fault-tolerant quantum
computer [6] or efficient real-time error correction [7] could
potentially solve hard benchmark challenging problems, such
as integer factorization (the Shor algorithm [8]) or unstruc-
tured search (Grover’s search [9]), and open new perspectives
in the applications in many fields [10], such as quantum
chemistry [11] or material science [12], such devices are still
decades away from being realized. Interestingly enough, this
fragility has not decreased the interest in quantum computing,
but triggered a tremendous activity in the alternative called
the noisy intermediate-scale quantum (NISQ) era [13], where
quantum algorithms are developed to reach quantum advan-
tage using the (small) quantum computers available today
[14].

A highly relevant NISQ algorithm is quantum reservoir
computing (QRC) [15,16] because of its suitability for imple-
mentation on NISQ devices. QRC has been demonstrated to
excel not only in classical, but also quantum machine learning
(QML) tasks. It exploits the quantum properties of physical
systems and provides an easy training strategy, achieving ex-
cellent results [17]. QRC has most often been used in time
predictions [18,19], using the memory of the reservoir for
the task, but quantum reservoirs (QR) have also been used
for nontemporal tasks, and then the terms QRC [20], quan-
tum reservoir processing [16], and quantum extreme learning
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machines [17] are used to describe the QML algorithm. In
this work, we will use the term QRC to refer to QML models
which use QR, regardless of the QML task. Nevertheless, our
approach can be extended for memory-requiring tasks and we
defer this study to a future work. In gate-based quantum com-
putation, QRC consists of a random quantum circuit applied
to an initial state, which encodes the input data and the goal is
to extract valuable information from the input state, so that the
measurements of simple local operators are useful features to
predict the output. These features are then fed to a classical
machine learning algorithm, typically a linear model. The
quantum reservoir must be a complex quantum circuit, so that
the extracted features contain enough information for learning
the output. Accordingly, the design of the QR is crucial for the
performance of the model, so that selecting optimal QRs is of
vital importance. In this respect, the majorization principle
[21] has proven to be a superb indicator of the complexity of
random quantum circuits [22]. Compared to other complexity
criteria, such as the entanglement spectrum, evaluating the
majorization in a quantum circuit requires significantly less
operations. This makes the majorization principle a criterion
especially suitable for the NISQ era, where quantum compu-
tation has to be performed with limited quantum resources.
These limited resources include constraints not only in the size
but also regarding the architecture of state-of-the-art quantum
processors. In particular, the performance of a quantum algo-
rithm is highly influenced by the quality of the quantum gates
and the presence of noise. Our criterion also directly applies
to these qualitatively different technological challenges given
that it relies on a global statistical measure rather than on
circuit-specific proofs. The great relevance of introducing this
measure of complexity in the QRC realm is not limited to
providing an extremely efficient way of selecting the optimal
QR, but it also bridges the theoretical gap between QRC
and the theory of the quantum states’ complexity [23]. As a

2470-0045/2022/106(4)/L043301(7) L043301-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3535-3538
https://orcid.org/0000-0003-3094-8911
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.L043301&domain=pdf&date_stamp=2022-10-13
https://doi.org/10.1103/PhysRevE.106.L043301


L. DOMINGO, G. CARLO, AND F. BORONDO PHYSICAL REVIEW E 106, L043301 (2022)

matter of fact, here we introduce a quantitative classification
of these algorithms with the growth of the quantum circuits’
complexity that can be interpreted as the unitaries accessible
dimension.

In this Letter, we use the majorization criterion to de-
sign the optimal QR in terms of performance for QML. The
resulting quantum circuits are easily realized in NISQ [14]
computers and present a significant advantage over the com-
monly used Ising model. The performance of QRC is assessed
using different families of quantum circuits, which have dif-
ferent complexity according to the majorization principle.
Also, we study the number of gates needed for each family
to obtain optimal performance. In NISQ devices, this number
should be as small as possible to minimize error propagation
due to large error rates and short coherence times [14]. The
results of our work show that the optimal quantum circuits
provided in this work require significantly less quantum gates
than the Ising model, which has been widely used as a QR
[15,16,19,20]. The optimality of the QR is illustrated by solv-
ing a quantum chemistry problem. In this context, the data
used to train the QRC model is already a quantum state.
Therefore, it is natural to use a QML algorithm to infer the
properties of the system. Moreover, to represent a quantum
system with d degrees of freedom (d qubits), one would need
a classical vector of size 2d . In an actual quantum device, only
d physical qubits are needed to encode the system state. NISQ
devices can currently work with around 100 qubits, which
classically would require using vectors of a size of the order
of 2100 (given that not all of the Hilbert space can be used in
NISQ devices), which are totally intractable. In this case, the
machine learning task is to predict the energy of the excited
states of a molecule, given its ground state, as presented in
Ref. [20]. Such a ground state can be obtained as an output
of another NISQ quantum algorithm, such as the variational
quantum eigensolver (VQE) [24]. This task is relevant since
computing the excited states of a Hamiltonian is a much more
difficult task than computing its ground state.

Method. The majorization method can be summarized as
follows. Let x, y ∈ Rn be probability vectors, i.e., real vectors
of nonnegative components and normalized to unity. We say
that y majorizes x (x ≺ y) if for all k < N

k∑

i=1

x↓
i <

k∑

i=1

y↓
i ,

N∑

i=1

x↓
i =

N∑

i=1

y↓
i , (1)

where x↓ indicates that the vector was arranged in a non-
increasing order. The partial sums are called cumulants. In
Ref. [22], the authors created random circuits and evaluated
the final state in the computational basis, obtaining the asso-
ciated probabilities xM , where M is the number of gates of
the circuit. This calculation was repeated for an increasing
number of gates M and the cumulants calculated for each xM .
The results showed that the fluctuations (standard deviation)
of all the cumulants for a given family of random circuits are a
measure of the complexity of a quantum circuit. In this work,
we consider seven families of quantum circuits, which have
different complexity according to the majorization principle
[22]. For a given family, the quantum circuit is done by
adding random quantum gates from such a family. We perform
400 simulations for each type of quantum circuit. The seven

families considered are the following. The first three circuits
are constructed from a few generators: G1 = {CNOT, H, X },
G2 = {CNOT, H, S}, and G3 = {CNOT, H, T }, where CNOT is
the controlled-NOT gate, H stands for Hadamard, and S and
T are π/4 and π/8 phase gates, respectively. The circuits
constructed from G2 generate the Clifford group [25] and
G1 generate a subgroup of Clifford [26]. Therefore, both G1
and G2 are nonuniversal and classically simulatable. On the
other hand, G3 is universal and thus approximates the full
unitary group U (N ) to arbitrary precision. The fourth family
is composed of matchgates (MG), which are two-qubit gates
formed from two one-qubit gates, A and B, with the same
determinant. A acts on the subspace spanned by |00〉 and |11〉,
while B acts on the subspace spanned by |01〉 and |10〉. A
and B are randomly sampled from the unitary group U(2).
Matchgates circuits are also universal (except when acting on
nearest-neighbor lines only) [27,28]. The last families of gates
are diagonal in the computational basis. As diagonal gates
commute, they can be applied simultaneously. We separate
the diagonal gates into three families: D2, D3, and Dn. Here,
D2 gates are applied to pairs of qubits, D3 gates are applied
to three qubits, and Dn gates are applied to all the qubits.
The diagonal D2, D3, and Dn families contain

(n
2

)
,
(n

3

)
, and 1

gates, respectively. Diagonal circuits cannot perform universal
computation, but they are not always classically simulatable
[29].

With these seven families of gates, quantum circuits suit-
able as QRs can be designed. Apart from the type of gates
used, circuits are also characterized by a different number of
gates. For the G1, G2, G3, and MG families, we construct
circuits of 20, 50, 100, 150, and 200 gates and assess the
influence of the number of gates in the final performance
of the model. For the G3 family, we also construct circuits
with up to 1000 gates, and with the matchgates we construct
circuits with 5, 10, and 15 gates. The diagonal circuits have
a fixed number of gates, so we only consider that number of
gates for these circuits. Additionally, we compare the studied
families with the Ising model. In this case, the quantum circuit
performs the time evolution of a quantum state under the
random transverse-field Ising Hamiltonian

HIsing =
N−1∑

i, j=0

Ji jZiZ j +
N−1∑

i

hiXi, (2)

where Xi and Zj are Pauli operators acting on the site i, jth
qubit, and the coefficients hi and Ji j are sampled from the
Gaussian distributions N (1, 0.1) and N (0.75, 0.1), respec-
tively. All time evolutions will be performed for a lapse of
time T = 10. The parameters are chosen in the same way as
in Ref. [20] for better comparison. In addition, we evaluated a
different set of parameters according to Ref. [30], which pro-
vide a state-of-the-art method to select optimal parameters of
the Ising model for QRC. In this case, Ji j are sampled from the
uniform distribution U (−Js/2, Js/2) and hi = h are constant.
The optimal parameters in Ref. [30] fulfill h/Js = 0.1. As an
illustration, we choose to study the electronic ground and first
excited states of two molecules, LiH and H2O in the configu-
ration ranges: RLiH ∈ [0.5, 3.5] a.u., ROH ∈ [0.5, 1.5] a.u., and
φHOH = 104.45◦. The corresponding electronic Hamiltonian
and wave functions are denoted as H ( �R), ψ0( �R), and ψ1( �R),
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FIG. 1. Pipeline used to train the quantum reservoir computing model. First, the electronic Hamiltonian of the molecule is mapped to the
qubit space and its ground state is calculated by direct diagonalization. Such a ground state is fed to the quantum reservoir, which is a random
quantum system sampled from one of the seven families studied in this work. Local Pauli operators are then measured and fed to the classical
machine learning algorithm, which predicts the excited energy of the molecule. The choice of the quantum reservoir is optimized according to
the majorization principle introduced in Ref. [22].

respectively. The first step is to obtain the ground state of
H ( �R) in the qubit space. To do so, we calculate the second
quantization Hamiltonian using the standard STO-3G basis
for the Hartree-Fock optimization [11,31]. To use as few
qubits as possible, we remove from the basis set the spin
orbitals which are very likely to be either occupied or virtual
in all Slater determinants in the wave function. In particular,
the spin orbitals with a natural orbital occupation number
close to 0 or 1 are assumed empty or occupied, respectively
[11]. The second-quantized Hamiltonian is then mapped to the
qubit space by using the Jordan-Wigner transformation [32].
More details about this process are given in the Supplemental
Material (SM) [33]. Once the qubit Hamiltonian has been
calculated, the corresponding ground state |ψ0〉 �R is calculated
by (numerical) exact diagonalization. Then, we predict, using
the QML algorithm, the target function

�E ( �R) = E1( �R) − E0( �R), (3)

where E0( �R) and E1( �R) are the ground state and first excited
energies, respectively. In this way, we obtain an eight-qubit
ground state for LiH and a ten-qubit ground state for H2O. We
use different configurations of the molecules (i.e., different
bond lengths and angles �R) to train the QML, which aims to
predict the corresponding relative excited energy �E ( �R) for
a given configuration �R. Then, we ask the QML algorithm to
predict �E ( �R) for new values of �R. For the numerical simula-
tion we split the data set {|ψ0〉 �R ,�E ( �R)}R in training and test
sets. The test sets contain 30% of the data, RLiH ∈ [1.1, 2.0]
a.u. and ROH ∈ [1.05, 1.35] a.u. and it are chosen so that the
reservoir has to extrapolate to unseen data.

Once we generate the training and test data, we design the
pipeline of the QRC model, which is schematically shown
in Fig. 1. The input of the QR, which is a quantum cir-
cuit with gates sampled randomly from one of the seven
gate families described above, is |ψ0〉 �R. For each experiment
the random quantum circuit is the same for all values of
ROH or RLiH. After applying the random circuit to the initial
state, we measure the expectation values of the local Pauli
operators {X0,Y0, Z0, . . . , Xn,Yn, Zn}, where Xi,Yi, Zi are the
Pauli operators X,Y, Z applied to the ith qubit. Notice that

since the Pauli operators X1, . . . , Xn (similarly for Y1, . . . ,Yn

and Z1, . . . , Zn) commute with one another, the associated
observables can be simultaneously measured. Therefore, the
number of experiments needed to obtain all the observed
values does not scale with the number of qubits. The measure-
ments provide a classical vector X ( �R) containing the extracted
information from the ground state

X ( �R) = (〈X0〉, 〈Y0〉, 〈Z0〉, . . . , 〈Xn〉, 〈Yn〉, 〈Zn〉)T , (4)

where n is the number of qubits and the expectation values are
taken over the output state of the circuit |ψ〉 �R. This classical
vector is then fed to a classical machine learning model. In this
work we use the ridge regression, a regularized linear model
which minimizes the mean squared error

MSER = 1

Ns

Ns∑

i=0

[W · X ( �Ri ) − �E ( �Ri )]
2 + α||W ||2, (5)

where Ns is the number of samples in the training set, W is the
matrix of the linear model, α is the regularization parameter,
and || · || is the L2 norm. Notice that, since the linear model
has to extrapolate to unseen data (unseen values of �R), it is
necessary to add regularization to the learning algorithm to
prevent overfitting the training data. In this work we choose
α = 10−7, a value that simultaneously prevents overfitting and
provides accurate predictions. Although it is true that any
other classical machine learning algorithm could have been
used instead of this linear model, at this point the QR is able
to extract valuable information from the quantum state. Thus,
a simple machine learning model, like the one we are using
here, is plenty enough to predict the excited properties of the
system.

Results. Figure 2 shows the performance of QRC for the
seven families of quantum circuits as a function of the number
of gates of the circuits. Solid lines correspond to the LiH
molecule and dashed lines to H2O. As can be seen, the per-
formance of the different circuits is qualitatively the same in
both cases. In Fig. 3 of Ref. [22], it is seen how the fluctua-
tions of the Lorentz curves differentiate the various families
of random circuits, with the families with lower fluctuations
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FIG. 2. Average mean squared error (MSE) of the seven families of quantum reservoirs as a function of the number of gates of the circuit.
Averages are made over 400 simulations. The solid and dashed lines represent the results for the LiH and H2O molecules, respectively. The plot
also displays, for comparison, the average performance of the Ising model. The inset contains the MSE of the G3 circuits for larger number of
gates. The pie charts represents the proportion of gates needed to obtain optimal performance for the G3 family and the Ising model.

closer to the Haar measure behavior corresponding to more
complex random quantum circuits. Our results in Fig. 2 agree
with the classification given in Ref. [22]. Circuits with higher
complexity have a better performance in the QML task. In
particular, the G1 and G2 families are the less complex fami-
lies according to the majorization indicator, and they also give
worse results in the QML task. On the other hand, the circuits
in the G3 family give the lowest error in the predictions, which
agrees with the G3 family having the highest complexity. The
matchgates’ circuits, on the other hand, have a slightly worse
performance than the G3 family, which also agrees with the
majorization criterion. Finally, the performances of the D3
and Dn circuits are very similar to each other, although the
performance of the D2 circuits is significantly worse. This
difference between the diagonal circuits is also seen when
using the majorization indicator. Figure 2 also shows how the
performance of the QML task changes with the number of
gates of the circuit. The G1 and G2 circuits give worse results
as the number of gates increase. On the contrary, the G3
circuits improve their performance with the number of gates,
and this performance stabilizes around 200 gates for LiH, and
around 250 for H2O. The matchgate circuits also improve its
performance with the number of gates, but in this case the
optimal performance is achieved with only 20 gates (LiH) or
50 gates (H2O), even though this optimal error is higher than
the optimal error of G3. Notice that the H2O system is larger

(ten qubits) than for the LiH system (eight qubits). Therefore,
predicting the excited energy E1( �R) for the H2O is a harder
task, and it is expected that the optimal circuit requires more
gates. The same analysis was performed to predict the second
excited energy E2( �R) for the two molecules under study. The
results are qualitatively the same and are provided in the SM
[33].

To further understand the difference in the performance of
the circuits, we inspect how each of the random circuits span
the space of operators. For simplicity and easier visualiza-
tion we create a toy model of two qubits and apply random
circuits from each of the families. Each of the circuits is a
unitary operator U , constructed by the successive application
of the gates of the circuit. This operator can be written as a
linear combination of the elements of the Pauli space {1 ⊗
1,1 ⊗ X,1 ⊗ Y,1 ⊗ Z, . . . , X ⊗ Z,Y ⊗ Z, Z ⊗ Z}. For each
family of gates, we design 4000 random circuits and see how
their unitaries fill the Pauli space, compared to the uniform
distribution. Since the Pauli space in the two-qubit system is
a 16-dimensional space, we use a dimensionality reduction
technique called UMAP [34–36] to visualize the distribution
in two dimensions. The details of this algorithm are provided
in the Supplemental Material [33]. The results are shown in
Fig. 3. We see that the G1 and G2 circuits only fill a subset
of the Pauli space. Moreover, when the number of gates is
small, the filling of the space is more sparse. As the number
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FIG. 3. Two-dimensional representation of the distribution of the families of quantum circuits in the Pauli space, compared to the uniform
distribution.

of circuit gates increases, the unitaries concentrate in a dense
region of the space. This fact justifies that QRs with more
gates produce worse results in the QML task for these two
families. On the other hand, the G3 family fills the Pauli space
uniformly. As the number of gates increase, the distribution
of the unitaries resembles more the uniform sampling. For
this reason, the performance of the QR improves with the
number of gates until it achieves its optimal value. The ob-
served threshold at around 100 gates is related to the amount
of them needed to start spanning the effective Pauli space of
the problem in a complete way. The number of gates at which
the MSE reaches an asymptotic low value can be associated
to the amount of gates at which no improvement in this
spanning can be achieved. Regarding the matchgate circuits,
they behave similarly to the G3 family, except that they do
not fill a small region of the Pauli space, thus leading to a
slightly worse performance in the QML algorithm. Finally, the
diagonal circuits (which in the two-qubit space coincide) also
fill the whole Pauli space. However, there are regions with
higher density than others. This also illustrates the slightly
higher error in the QRC model. The SM [33] contains a short
video complementing Fig. 3. In it, the number of gates of the
circuit change in time. After analyzing the performance of
the seven families of circuits, we can compare them with the
results of the Ising model, which has been extensively used
as QR [16,18–20]. Figure 2 shows that the MSE of the Ising
model (with the parameters from Ref. [30]) is slightly higher
than the MSE for the G3 family. The choice of parameters
from both Refs. [20] and [30] provide very similar results,
even though the parameters from Ref. [30] give a slightly
better performance. Apart from its performance, we can also
calculate the number of gates needed to implement the Ising
model in a gate-based quantum computer. The time evolution

operator e−iHIsingT can be approximated by first-order Trotter
decomposition [37]. This decomposition provides a quantum
circuit with gates from the set {H, CNOT, Rz(θi )}i, where Rz(θi )
is the rotation of an angle θi around the Z axis. Unfortunately,
it is impossible to implement rotations with perfect accuracy
in the current quantum computers. Fault-tolerant quantum
computers typically perform these rotations using multiple
applications of gates H and T . For this reason, we have de-
composed [38] the Ising time evolution operator to a quantum
circuit with gates from the set {H , CNOT, T }, which is the G3
family. We ran 400 simulations with the different parameters
in the Ising Hamiltonian. For the LiH molecule, constructing
the Ising quantum circuit required on average 11 381 gates,
and 17 335 for H2O. As shown in Fig. 2, the optimal perfor-
mance of the QR for the G3 family is achieved with only 200
gates (250 for H2O). Therefore, there is no need to use tens
of thousands of gates to achieve optimal performance in the
QR. It is worth mentioning that this comparison is only valid
for gate-based quantum computers. For quantum computing
based on physical systems [39] or quantum simulators [40]
the transverse-field Ising model is directly implemented and it
would have the complexity provided by the G3 family.

Conclusions. In this Letter we provide a criterion to design
optimal QRs for QML. This criterion is also easy to imple-
ment in NISQ devices since it requires using circuits with
only a few quantum gates. We demonstrated that the optimal
circuits obtained with the prescriptions in this work need
significantly less quantum gates and provide a similar, slightly
better performance than the commonly used Ising model. This
is of outmost importance for optimal implementations in cur-
rent NISQ devices since only circuits with a few and simple
gates can guarantee the required accuracy. The key point of
our work is the use of the majorization principle [22] as an
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indicator for the complexity of the quantum circuits. The QRs
with higher complexity according to the majorization criterion
provide better results in QML tasks. We also give an intuitive
explanation of how the studied families of quantum circuits
extract information from their initial state. We see that the
optimal family of quantum circuits uniformly fills the Pauli
space of operators, while the other families do not reproduce
all the operators in the Pauli space. A final important remark is
that the robustness of our results is expected to be ultimately
related to the fidelity reached within each family of circuits,
which will be also dependent on the kind of NISQ used. Hence
the majorization criterion will be of relevance in a given noise
strength window. The precise determination of it will be the
subject of future investigations.

The code and data that support the findings of this study
are openly available and can be found in Ref. [41].
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