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ABSTRACT 

Alzheimer‘s disease dementia (ADD) is the most diffuse neurodegenerative disorder 

belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is 

provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. 

Very recently, the first disease-modifying drug has been licensed with reserve (i.e., 

Aducanumab). Therefore, there is a need to identify and use biomarkers probing the 

neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of 

that drug.  In this regard, event-related electroencephalographic potentials (ERPs) and 

oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology 

Professional Interest Area of the Alzheimer‘s Association and Global Brain Consortium 

reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., 

Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at 

the group level. The most convincing results were found in ADD patients. In those patients, 

Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in 

oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize 

ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at 

the gamma (around 40 Hz) band. These results are of great interest and may motivate 

multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD 

patients for final cross-validation. 

ABBREVIATIONS 

Aβ42 Amyloid-beta 42 peptide 

ACh Acetylcholine 

AChEIs Acetylcholinesterase inhibitors 

ADD Alzheimer’s disease dementia 

ASSR Auditory steady-state responses 

CSF Cerebrospinal fluid 

EEG Electroencephalography 

ERPs Event-related potentials 

EROs Event-related oscillations 

fMRI Functional magnetic resonance imaging 

FDG-PET Fluorodeoxyglucose positron emission tomography 
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MCI Mild cognitive impairment 

MEG Magnetoencephalography 

ADMCI Mild cognitive impairment due to Alzheimer’s disease 

MRI Magnetic resonance imaging 

NMDA N-methyl-D-aspartate 

p-tau Phospho-tau protein 

 

Keywords 

EEG, ERPs, EROs, oscillations, P300, event-related, dementia, Alzheimer, biomarker, treatment, 

monitoring, mild cognitive impairment 
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1. INTRODUCTION 

 Increased expectancy of life leads to the growth of the aged population and the increase 

of cases of dementia, defined as severe cognitive deficits associated with loss of autonomy and 

disabilities in the activities of daily living. Around 50 million people suffer from dementia 

worldwide, and its cost reaches up to a trillion US dollars annually (WHO Guidelines, 2019; 

Alzheimer‘s Association, 2021).  

 Alzheimer‘s disease dementia (ADD) is a progressive neurodegenerative disease that 

represents the most common cause of age-related dementing illnesses (World Alzheimer Report, 

2020). Its pathological changes start as an abnormal accumulation of amyloid-β and tau proteins 

in the brain several years earlier than the first objective clinical manifestations (Insel et al., 

2021). Along the continuum of the clinical manifestations of ADD over time, mild cognitive 

impairment with preserved autonomy in the activities of daily living is considered a frequent 

clinical milestone among the clinical predementia stages (Albert et al., 2011).  

Scientific advance on AD has been revolutionized by biomarkers that have transformed 

treatment practices. Various biomarkers for indicating neurodegeneration and pathologies related 

to abnormal deposited peptides, namely amyloid-beta or tau, have been suggested as objective 

measures to reflect underlying pathophysiology (Jack et al., 2016; Ehrenberg et al., 2020; Jack et 

al., 2018; Dubois et al., 2016). 

Abnormal deposited peptides such as amyloid-beta and tau define the presence of 

insidiously developing dementia with core symptoms of episodic memory and/or impairment of 

other cognitive domains along with biomarkers with a classification so-called AT(N), derived 

from acronyms of two deposited peptides, Amyloid-beta and Tau, and Neurodegeneration (Jack 

et al., 2018). Amyloid-beta and tau peptides can be detected by ligand-based positron emission 

tomography techniques (Janelidze et al., 2017; La Joie et al., 2020) or by a lumbar puncture to 

detect their levels in the cerebrospinal fluid (CSF) (Blennow and Zetterberg, 2018). 

Neurodegeneration can be demonstrated by brain atrophy in structural magnetic resonance 

imaging (Barthélemy et al., 2020) or a low level of glucose uptake indicated by FDG-positron 

emission tomography (Leuzy et al., 2019). The usefulness of these valid biomarkers in routine 

clinical use is still arguable, not only because of their invasiveness and cost but also because of 

their limited specificity and sensitivity rates (Isaacs and Boenink, 2020). Very recently, plasma-
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based fluid markers have entered the scene, so now, amyloid-beta, p-tau, and NfL can be 

measured reliably in both CSF and blood (Ashton et al., 2021). Plasma-based measures of P-tau, 

either phospho-tau217 (Palmqvist et al., 2020) or phospho-tau181 (Janelidze et al., 2020), show 

promise reflecting levels of the pathological precipitations in the CSF or brain. They have been 

announced to provide diagnosis rates of 85% and 98%, respectively, and cross-validated by PET, 

genetic status, or CSF studies (Mielke et al., 2018; Leuzy et al., 2020; Karikari et al., 2020; 

Palmqvist et al. 2020). Currently, the use of the latest plasma biomarkers awaits confirmation in 

larger trials and their incorporation into guidelines, and all the above-mentioned methods relating 

to pathological features of ADD cannot be applied widely in clinical settings.  

Unfortunately, there are no treatment options able to cure the disease. Concerning the 

licensed symptomatic treatments for ADD, cholinesterase inhibitors, memantine, and a 

combination of a cholinesterase inhibitor and memantine have produced statistically significant 

but clinically small delays in various domains of cognitive and functional decline in patients with 

AD and MCI due to AD (Dubois et al., 2015; Schmidt et al., 2015; Matsunaga et al., 2019; 

Ismail et al., 2020). 

In June 2021, the Food and Drug Administration (FDA) suggested Aduhelm 

(aducanumab) for the treatment of ADD as the first disease-modifying drug (Knopman et al., 

2019). However, the European Medicines Agency has recommended the refusal of a marketing 

authorization for Aduhelm due to concerns about safety and efficacy (Mahase, 2021). Therefore, 

there is an urgent need to identify and use biomarkers probing the neurophysiological 

underpinnings of human cognitive functions to test the clinical efficacy of that drug at the group 

level. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations 

(EROs) are promising candidates, which are available worldwide, including in lower and 

middle-income countries (Babiloni et al., 2020a; Babiloni et al., 2020b; Rossini et al., 2020). It is 

widely used as a non-invasive, user-friendly, and low-cost technique, and it can also be 

implemented on almost any computer system. 

 Notably, the Steering Committee of the Electrophysiology Professional Interest Area 

(EPIA) of The Alzheimer's Association International Society to Advance Alzheimer's Research 

and Treatment (ISTAART; https://www.alz.org/) appointed expert panels for reviewing the 

scientific literature on ERP and ERO biomarkers in patients with ADD and related disorders to 
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test the hypothesis that those biomarkers may reflect the effects of ADD on cerebral cognitive 

systems. The outcome has been recently published (Babiloni et al., 2021; Güntekin et al., 2021) 

and is summarized in the following paragraphs. 

1.1. Event-Related Potentials (ERPs) 

Event-related EEG measures during oddball tasks may be helpful cognitive 

neurophysiological biomarkers for intervention clinical trials performed in individuals with AD 

(Güntekin et al., 2021). Previous studies confirm that validated neuroimaging and multimodal 

fluid AD biomarkers are significantly associated with event-related EEG responses during 

oddball tasks (Babiloni et al., 2020, Babiloni et al., 2020b, 2021). It is well known that ERPs 

allow for the study of EEG activity phase-locked to sensory stimuli or motor responses during 

cognitive tasks. Those potentials are typically computed by averaging artifact-free EEG activity 

recorded during sensory stimuli using the onset of the stimulus or motor response as a zero time. 

The most popular ERP paradigm used in MCI and ADD patients is the so-called ―active oddball 

task‖ (Donchin et al., 1973; Polich and Kok, 1995; O‘Connell et al., 2012; Quiroz et al., 2011; 

Jiang et al., 2021) in which frequent (70-80%) and rare (30-20%) auditory or visual stimuli are 

delivered, and experimental subjects must respond to the rare stimuli by pressing a button or 

counting the stimuli. 

A negative deflection, which is called the N100 component, is observed when an 

unexpected stimulus is presented. It is involved with the primary perceptual processing of 

incoming information and early attentional allocation to visual stimuli (Lijffijt et al., 2009). P100 

is a positive wave elicited by different types of visual stimuli only and is related to early visual 

processing (Heinze and Mangun, 1994). The recognition of facial expressions (Bentin et al., 

1996; Başar et al., 2006, 2007; Güntekin and Başar, 2007; Puce et al.,2013; Güntekin et al., 

2017, 2019; Fide et al., 2019; Güntekin and Başar, 2014) or ambiguous figures (Başar-Eroğlu et 

al., 1996; Mathes et al., 2006; Strüber et al., 2000; İşoğlu-Alkaç et al., 2000) are among the most 

complex functions in the visual cognitive processes. Previous studies in MCI and ADD patients 

showed mixed findings in P100 and N100 components, possibly due to their sensitivity to 

multiple information processes and disease status (Lijffijt et al., 2009). As compared to CU 

persons, MCI patients showed increased P100 amplitude for visual stimuli with familiar vs 

unfamiliar faces (Saavedra et al., 2012), while ADD patients had no difference in the P100 
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following familial vs. unfamiliar faces and scenes (Cheng and Pai, 2010). Other studies showed 

inconsistent results in ADD patients as increased P100 amplitude and latency in the recognition 

of emotional face expressions (Fide et al., 2019), or decreased P100 latency in a visual 

attentional task with low sensitivity (50% of the group) (Fernandez et al., 2007), or unchanged 

visual P100 and N100 latencies during facial discrimination and active auditory oddball demands 

(Kurita et al., 2010). Similar variability of the results was reported for N100. MCI patients 

showed decreased N100 amplitude during a task asking ―congruous/incongruous‖ statements on 

visual stimulus pairs (Olichney et al., 2006) whilst no difference in P100 or  N100 amplitude or 

latency between CU and MCI or ADD patients was observed in an active auditory oddball task 

at baseline and 1-year follow-up (Lai et al., 2010) as well as in visual tasks requiring detection of 

stimulus motion (Yamasaki et al., 2012), semantic priming of word pairs (Grieder et al., 2013), 

and working memory as 2-back or matching-to-sample demands (Deiber et al., 2015). 

The N200 component of ERPs typically peaks in amplitude during cognitive demands, 

especially active oddball tasks. It reflects selective attention and perceptual (stimulus 

discrimination) processes (Patel and Azzam, 2005; Bennys et al., 2007). In the oddball paradigm, 

N200 can be divided into N200a (i.e., mismatch negativity, MMN) and N200b components. 

N200a (MMN) and N200b are negative-going ERP components that reflect preattentive 

(automatic) and conscious brain responses to deviant stimuli during oddball tasks, respectively 

(Näätänen et al., 1978, 2005). In this paper we did not include the event-related responses 

elicited after passive tasks, therefore the N200b will be mentioned as N200 from now on. Using 

an active auditory oddball task, the N200 latency reliably predicted the progression from MCI to 

ADD status in relation to CSF amyloid-β levels (Papaliagkas et al., 2009), while the N200 

amplitude was progressively smaller at the follow-ups of about 1 and 2 years (Papaliagkas et al., 

2011). In a recent review paper, 22% of reviewed studies between MCI and CU groups reported 

a significant difference in N200 amplitude, whilst the rate was 18% between ADD and CU 

groups (Paitel et al., 2021). More specifically, some studies reported smaller N200 amplitude in 

both MCI and ADD groups over the CU groups (Fernandez et al., 2013; Wang et al., 2013; 

Bagattini et al., 2017), while some others stated no difference in N200 between MCI and CU 

groups (Cespón et al., 2015a; Mudar et al., 2016) or between CU and ADD groups (Bagattini et 

al., 2017). The above-mixed results might be due to the different variants of the oddball tasks 

used as the kind of stimuli, the inter-stimulus intervals, the task duration, the level of required 

attention to the stimuli and experimental conditions, and the kind of subject‘s responses required 
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during ERP recordings (Morrison et al., 2019). Other sources of variability are the procedures for 

the enrollment of patients and diagnosis of ADD and clinical severity of the disease. In most of 

the studies, the diagnosis of ADD did not use in-vivo measures of abnormal levels of amyloid-

beta and tau in patients‘ brains. In those studies, MCI patients showed different domains of 

cognitive functions affected, namely significant factors influencing N200 in MCI patients 

(Cespón et al., 2013, 2015a, b). 

The P200 response constitutes another component of the ERPs. It is associated with early 

attentional allocation to visual stimuli and is involved with the primary perceptual processing of 

incoming information (Omoto et al., 2010). Earlier studies in MCI and ADD patients showed 

mixed findings as well. Zunini et al. (2016) compared individuals with MCI and CU persons via 

an n-back working memory task with baseline (0-back), low load (1-back), and high load (2-

back) working memory conditions revealing delayed P200 latencies in MCI relative to control 

participants in all conditions Similarly, Missonnier et al. (2007) reported that progressive MCI 

and ADD groups had longer P200 latencies than stable MCI and CU persons during the 2-back 

task at one-year follow-up. In ADD patients, visual P200 amplitude was also found to be 

decreased during visual tasks requiring detection of stimulus motion (Yamasaki et al., 2012a). 

On the other hand, two studies are reporting contrary findings. P200 latencies did not differ 

between CU persons and patients with ADD during facial discrimination and active auditory 

oddball tasks (Kurita et al., 2010), and between CU individuals and MCI patients during 

medium-term memory retrieval of faces with emotional expressions (Schefter et al., 2013). 

ERPs following the target stimuli show a parietal ample positivity (P) reflecting focused 

attention, decision making, and working memory (Donchin et al., 1973, Polich and Kok, 1995; 

O‘Connell et al., 2012). The P300 is one of the most studied ERP components investigating 

cognitive functions. P3a and P3b constitute the subcomponents of P300. P3a is generated when 

stimuli are processed if sufficient attentional focus is engaged. P3b occurs when subsequent 

attentional resource activations promote memory functions in temporal-parietal areas (Polich, 

2007). In this paper we did not include the P300 responses elicited after passive tasks, therefore 

the P300b will be mentioned as P300 from now on. In the literature, reduced P300 amplitudes 

and longer P300 latency of memory target-related ERPs in an active oddball task were reported 

in MCI and ADD patients compared with cognitively unimpaired (CU) subjects. Sufficient 

evidence exists to suggest that the amplitude and latency of the P300 change in AD (Polich, 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

10 

 

 

1989; Pokryszko-Dragan et al., 2003; Katada et al., 2004; Polich and Corey-Bloom, 2005; Ally 

et al., 2006; Muscoso et al., 2006; Caravaglios et al., 2008; Bonanni et al., 2010; Lai et al., 2010; 

Pedroso et al, 2012; Babiloni et al., 2020). Furthermore, characteristics of the P300 are also 

altered in individuals with MCI (Frodl et al., 2002; Golob et al., 2002; Bennys et al., 2007; van 

Deursen et al., 2008; Lai et al., 2010; Parra et al, 2012; Cid-Fernandez et al., 2019; Babiloni et 

al., 2020). Other studies suggest that features of the P300 wave might provide evidence for the 

conversion of MCI into AD (Golob et al., 2002, 2009; Papaliagkas et al., 2008; van Deursen et 

al., 2008; Babiloni et al., 2020). Although prolongation of latency occurs as a function of time in 

physiological aging (Papaliagkas et al., 2011a), the P300 wave has been demonstrated to be 

sensitive to ADD neuropathology (Morgan and Murphy, 2002; Papaliagkas et al., 2009; 

Fernandez et al., 2007) as either P300 latencies correlate with Ab42 levels in MCI patients, or 

with baseline levels in a longitudinal study (Papaliagkas et al., 2009, 2011b), or in genetically 

PSEN mutation carriers that lead to familial AD, altered P300 parameters have been identified 

10 years before the disease onset (Golob et al., 2009; Quiroz et al., 2011). Taken together these 

results suggest that the P300 could contribute to the assessment of AD. 

There were also alterations in patients with ADD and CU individuals regarding ERP 

components after linguistic semantic stimuli and repeated words. CU persons had larger N400 

amplitude over parietotemporal regions in response to semantically incongruous stimuli (Kutas 

and Federmeier, 2011). Linking this effect to semantic memory, semantic incongruity caused 

reduced responses in physiological aging, and they were further reduced or abolished in N400 in 

ADD (Olichney et al., 2006). The late positive component (LPC or P600) is elicited during the 

memory encoding and retrieval processes of words. In CU subjects, P600 displays a significant 

word repetition effect as attenuation of their amplitude, while the attenuation of the N400 or 

P600 after repeated words was lower in MCI and predictive of ADD development (Olichney et 

al., 2002a, Olichney et al., 2006). The ERP components, their functions, and possible generators 

are summarized in Table 1. 

1.2. Event-Related Oscillations (EROs) 

The ongoing EEG activity recorded during cognitive tasks can also be analyzed linearly 

to explore event-related alterations in power or phase characteristics related to the ongoing 

oscillatory responses or the event-related synchronization/desynchronization (ERS/ERD) at 

delta, theta, alpha, beta, and gamma frequency bands (Lopes da Silva, 1990). Cognitive ERPs 
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can be decomposed to unveil the phase-locked EEG delta, theta, alpha, beta, and gamma 

oscillations named EROs (Başar-Eroğlu & Başar, 1991; Herrmann and Knight, 2001; Lejko et 

al., 2020). EROs that were elicited after digital filtering or other transformation methods were 

repeatedly investigated in oddball tasks. Previous EEG studies from independent research teams 

have consistently demonstrated reduced EROs at delta and theta frequencies in MCI and ADD 

patients over CU seniors during oddball tasks (Karrasch et al., 2006; Güntekin et al., 2008, 2019; 

Cummins et al., 2008; Yener et al., 2008, 2012; Caravaglios et al., 2008; Başar et al., 2010; 

Michalopoulos et al., 2012; Deiber et al., 2015; Tülay et al., 2020). Patients with MCI had lower 

theta and beta EROs than individuals with stable MCI (Hedges et al., 2016, Jiang et al., 2015, 

Missonnier et al., 2007). More detailed information on event-related oscillations can be found in 

the fourth section. 

The pioneering work on oscillatory dynamics in animals was reported by Freeman 

(1975), Başar et al. (1975a, 1975b, 1975c), and Başar (1980), showing the distributed oscillatory 

responses in all parts of the brain. According to Başar et al. (2001), event-related potentials 

constitute the superposition of oscillations in certain frequency bands by applying time-

frequency (TF) analyses to ERPs activity (Başar-Eroğlu et al., 1992, 2001; Başar et al., 2001; 

Demiralp et al., 2001; Karakaş et al., 2000; Yordanova et al., 2002; Makeig et al., 2002; Gilmore 

et al., 2010). 

Although the averaged ERPs are useful and commonly used methods, their further 

computation yields information about the brain's intrinsic activity and dynamic changes even 

more. As mentioned previously, the brain oscillatory activities after an ―event‖ display almost 

inverse dynamics to those during the resting condition (Başar, 1980; Başar-Eroğlu et al., 1991; 

Babiloni et al., 2020). In the case of evoked potentials elicited by an ―event‖ or stimuli are 

enhanced in amplitude when preceded by low-amplitude pre-stimulus alpha or theta rhythms 

(Başar et al., 1984; Jasiukaitis and Hakerem, 1988; Başar-Eroğlu et al., 1992; Babiloni et al., 

2008). In these studies, delta and theta EROs responsiveness in frontal lobes was interpreted as 

an indication of the well-functioning of the hippocampo–fronto–parietal system during cognitive 

processes. For this reason, the role of oscillatory activities in certain frequency bands will be 

listed and explained below. 
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1.2.1. Delta frequency band (<4 Hz) 

The shape of the P300 complex is formed basically by the superimposition of delta 

response oscillating at 2 Hz (Başar-Eroğlu, Başar, 1991; Başar-Eroğlu et al., 1992; Schürmann et 

al., 2001), along with prolonged theta and alpha oscillatory responses (Kolev et al., 1997), but 

activity changes in faster frequency bands also contribute (Karakaş et al., 2000; Sakowitz et al., 

2001; Spencer and Polich, 1999). A study of 2068 participants (Bernat et al., 2007) confirmed 

that the major operating rhythms of the P300 were delta and theta oscillations. Not only the 

oddball paradigm but also others including error-related negativity, feedback negativity, N2/P3 

of go/no-go tasks involved delta and theta oscillatory responses (Bernat et al., 2012; Harper et 

al., 2014; Schmiedt-Fehr and Başar-Eroğlu et al., 2011). 

Long-lasting depolarization of cortical pyramidal cells produces delta oscillations 

(Steriade and McCarley, 1990). Other than this, thalamocortical cells (Steriade et al., 1993), 

neuronal cells in the nucleus accumbens (Leung and Yim, 1993), in the ventral tegmental area, in 

the ventral pallidum (Lavin and Grace, 1996), and glial cells also yield delta rhythms (Amzica 

and Steriade, 2000). The delta EROs were elicited as a negative peak at +200 ms post-stimulus 

and continued with a positive peak around +400-600 ms post-stimulus. During this wave, 

superimposed theta responses either enhance or dampen the signal, whilst alpha prolongation 

implies the achievement of a cognitive goal (Güntekin and Başar, 2016). The prestimulus delta 

state affects the post-stimulus responses as an inverse relation between them, as suggested for the 

first time by Başar et al. (1984) and Başar and Stampfer (1985) as they reported when a stimulus 

was applied in certain interstimulus intervals, a phase reordering occurred in delta and alpha 

bands after the stimulus. Regarding the task‘s difficulty, stimulus with greater cognitive load 

elicited larger P300 and single-trial delta response amplitude (Mathes et al., 2012). Delta EROs 

(Başar and Stampfer, 1985; Stampfer and Başar, 1985) behave as a general electrophysiological 

marker in cognition (Güntekin and Başar, 2016), and they are involved in cognitive processes 

related to decision making and attention processes (Knyazev, 2012). Regarding connectivity, 

delta synchronization is observed between frontocentral and parietal (Qassim et al., 2013) 

regions during attention and memory updating in a MEG (Ishii et al., 2009) and EEG study 

(Güntekin and Başar, 2010). In various studies, an unspecified decrease of delta ERO power 

decrement is encountered in ADD, MCI, schizophrenia, Parkinson‘s disease (PD), or bipolar 

disorder (Başar et al., 2013). In ADD, an increment in rsEEG delta band power is reported, 
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suggesting a similarity to those in the prestimulus era (Babiloni et al., 2015, 2018a, 2018b, 

2019a; Jelic et al., 2000; Caravaglios et al., 2008) and a diminished delta EROs after an event 

(Caravaglios et al., 2008; Yener et al., 2008, 2012), supposing an increased delta response would 

not be produced in such a busy network (Rahn and Başar, 1993). A delay in peak delta EROs 

and a gradual decrease in the amplitude of delta EROs in the aging of CU individuals (Emek-

Savaş et al., 2016), or across the AD spectrum have been noted (Başar et al., 2016b). Frontal 

delta EROs (visual and auditory) have been attenuated in MCI (Kurt et al., 2014; Yener et al., 

2013) or ADD patients compared with CU persons (Yener et al., 2009, 2012). EROs were also 

sensitive to ADD progression over time (Yener and Başar, 2013). However, the delta or theta 

EROs power decrease cannot be considered as specific to ADD, as patients with Parkinson‘s 

disease dementia (PDD) (Güntekin et al., 2019) or PD-MCI also display lower ERP 

amplitudes/delta or theta EROs measurements (Yener et al., 2019; Güntekin et al., 2018, 2020; 

Hünerli et al., 2019). 

1.2.2. Theta frequency band (4-7 Hz) 

During elicitation of an ERP response, oscillatory responses in theta ranges (4-7 Hz) 

form the early components of the P300 complex and later parts by delta response (Başar-Eroğlu 

et al.,1992; Kolev et al., 1997; Karakaş et al., 2000). The relation between theta oscillatory 

activity and working memory under physiological conditions has been implicated by many 

studies (Klimesch et al., 1997; Jensen and Tesche, 2002; Pavlov and Kotchoubey, 2017; 

Zakrzewska and Brzezicka, 2014; Borhani et al., 2021), and in ADD (Klimesch et al., 2005). 

Experimental studies indicate that synchrony in the theta oscillatory activity represents one of the 

most studied neuronal activities in the mammalian hippocampus, and it is associated with the 

top-down control of cognitive processes (Vertes, 2005). The hippocampal formation and the 

medial septum generate theta oscillations, and they act as a pacemaker for generating theta 

oscillatory rhythm in prefrontal cortical networks (Thierry et al., 2000). This strong connection 

generated by theta rhythm synchronizes medial prefrontal cortex neurons to spatially distributed 

cortical areas, consequently strengthening synaptic links, and facilitates the transfer of 

hippocampal information to the neocortex during learning and memory (Ahnaou et al., 2014; 

Buzsaki, 2002; Paz et al., 2008). During active cognitive or motor tasks, enhanced EEG theta 

coherence has been observed between the hippocampus, prefrontal, and posterior association 

cortices (Womelsdorf and Fries, 2006; Seemüller et al., 2012; Schmidt et al., 2013). 
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In experimental studies, it has been shown that oscillations from each frequency band are 

considered to subserve a different function and to have a different underlying mechanism. 

Synchronous oscillatory rhythms in the slow theta frequencies (i.e. theta coupling) represent the 

main mechanism for coordinating disparate brain networks temporally during cognitive tasks, 

including attention and working memory (Lisman and Buzsaki, 2008; Singer, 1999; Ahnaou et 

al., 2014). Several studies with a focus on the generators of theta rhythm indicated specific 

hippocampal and other brain regions (Buzsáki and Watson, 2012). Theta oscillatory activity is 

considered to coordinate the information flow and establish temporal regulations to propagate 

across selectively distributed neuronal networks in the entorhinal cortex and the subregions of 

the hippocampus (Cappaert et al., 2009). 

Event-related spectral perturbation evaluates the dynamic alterations in power at 

frequency ranges as a function of time relative to a pre-stimulus baseline (Makeig, 1993), while 

it also allows measuring increases and decreases in power spectrum with the use of event-related 

synchronization (ERS) and desynchronization (ERD). A decrease in the early induced theta ERS 

indicates a rapid cognitive decline among the individuals with MCI, and similar values of theta 

ERS to that of the HC group may imply a stable MCI. Even though MCI patients were 

successful in achieving the behavioral tests, the frontal theta (in the range of 4-6 Hz) EROs 

discriminated progressive MCI from both the stable MCI and the HC group and were suggested 

as an early electrophysiological marker of cognitive decline (Hedges et al., 2016; Jiang et al., 

2015; Missonnier et al., 2007; Deiber et al., 2009). This finding can be explained based on the 

recruitment of additional cortical networks that make the individuals achieve the behavioral tasks 

and maintain a high-performance level, with an impaired prefrontal activity detected by 

electrophysiology. 

Theta ERD responses are found higher in the MCI group than ADD group (Fraga et al., 

2018), and the theta EROs power is decreased in both MCI and more profoundly in PD-MCI 

groups (Yener et al., 2019), in addition to phase-locking impairment in the theta band. MCI 

patients display reduced levels in both total delta (Tülay et al., 2020) and theta EROs power 

(Deiber et al., 2009; Nguyen et al., 2017; Tülay et al., 2020) in the early courses of disease, 

whereas reduction of evoked delta power starts in the MCI stage but becomes distinctive later in 

the phase of dementia of ADD (Caravaglios et al., 2010; Tülay et al., 2020). The distinctive 

pattern of total and evoked the power of slow waves in the temporal evolution of ADD may 
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reflect the neurodegenerative spreading pattern that involves subcortical limbic and association 

cortices at the beginning and later involvement of lower-level cortical areas or thalamocortical 

circuits. Also, theta connectivity is prominently affected in ADD (Yener and Başar 2013; 

Güntekin et al., 2008), and theta gamma coupling showed a gradual decrease along with the HC, 

MCI, and ADD (Goodman et al., 2018). Similar to delta band activity, theta EROs are not 

specifically reduced in ADD, but in other cognitive impairments such as PD (Yener et al., 2019; 

Güntekin et al., 2018, 2019, 2020). 

1.2.3. Alpha frequency band (8-12 Hz) 

Alpha EROs in ADD patients display a more complex picture than other slow-wave 

EEG-EROs responses. They have been shown to relate to memory-related cognitive processes 

(Klimesch et al., 1997, 2006, 2007; Maltseva et al., 2000; Doppelmayr et al., 2005; Sauseng et 

al., 2005; Wang et al., 2017). However, there are controversies on the direction of alpha 

responses and memory processes. Some researchers found alpha ERD responses during semantic 

memory processes as a functional correlate of brain activation (Klimesch et al., 1997, 2007). On 

the other hand, some other groups demonstrated increased cognitive function and attentional 

processes about the increased alpha responses (Jensen et al., 2002; Palva and Palva, 2007; 

Tuladhar et al., 2007; Scheeringa et al., 2009), and some reported post-stimulus event-related 

alpha synchronization in relatiaboutquality at the time point of stimulus onset‖ including the 

amplitude of or phase-angle of the pre-stimulus alpha activity (Başar, 2012; Başar and Güntekin, 

2012). The variety of findings on alpha EROs responses may be based on their having multiple 

roles in sensory, cognitive, emotional, and motor-related processes; and the inverse relationship 

between pre-stimulus EEG and post-stimulus alpha power may influence the consequent 

behavioral performance (Ergenoğlu et al., 2004; Busch et al., 2009; Babiloni et al., 2000, 2008; 

Samaha and Postle, 2015). 

In line with these views under physiological conditions, several ERD/ERS studies 

reported contradictory results spanning from post-stimulus alpha ERD decreases in ADD and 

MCI patients (Fraga et al., 2017), to finding decreased alpha ERS in ADD (Babiloni et al., 2000) 

and MCI (Karrasch et al., 2006); or decreased ERD over the anterior regions during the pre-

event era, while an increased ERS over the posterior regions during the post-stimulus era in MCI 

patients (Caravaglios et al., 2015). A further study on the multidomain MCI group had a more 
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profound alpha ERS decrease than single domain MCI (Deiber et al., 2010). Also, power or 

phase-locking measurements of alpha EROs were diminished (Deiber et al., 2010) in progressive 

MCI compared to CU individuals (Michalopoulos et al., 2012). In several intra-hemispheric 

alpha EROs coherence studies indicating brain functional connectivity, ADD patients showed 

decreased memory-related connectivity (Başar et al., 2010; Hogan et al., 2003). On the other 

hand, the inter-hemispheric EEG coherence was higher in MCI patients when memory demand 

increased (Zheng et al., 2007). A compensating rsEEG hyperconnectivity in the early stages of 

ADD has been emphasized in recent studies (Bonanni et al., 2021). Yet, other explanations can 

be made for these contradictory findings. Prodromal ADD patients show abnormal 

thalamocortical interactions, possibly due to impairment of the cortical gray matter, especially in 

posterior regions (Babiloni et al., 2014). This abnormality of wakefulness cortical alpha sources 

can be based on a progressive alteration in the interplay of thalamocortical high threshold 

GABA-ergic interneurons, thalamocortical relay-mode, and cortical pyramidal neurons (Hughes 

and Crunelli, 2007; Crunelli and Hughes, 2010). During wakefulness, under physiological 

conditions, glutamatergic and cholinergic signaling to this complex network augments the 

generation of cortical and thalamocortical alpha rhythms, resulting in cycles of excitation and 

inhibition within a time frame of approximately 70-100 milliseconds (Hughes and Crunelli, 

2007; Crunelli and Hughes, 2010; Jovicich et al., 2019). In order to understand these 

complicated responses in alpha frequency ranges, further studies are needed to explore the 

dynamic alpha changes during the task in ADD patients, especially taking both prestimulus era, 

and post-stimulus era alpha changes into consideration. 

1.2.4. Beta frequency band (13-30 Hz) 

The increased beta responses have been reported as related to attention, emotion 

recognition, primary sensory processing, and movement (Engel and Fries, 2010). In CU persons, 

increased ERO power or phase-locking of beta responses upon presentation of target stimuli in 

healthy subjects imply that beta EROs oscillations could shift the system to an attention state 

which serves as one of the bases of cognitive functions (Wróbel et al., 2000; Güntekin and Başar 

2007). Another role of beta responses was reported in emotional processes, especially during the 

perception of negative emotional stimuli (Miskovic and Schmidt, 2010; Woodruff et al., 2011; 

Güntekin and Başar, 2014). These results placed beta ERO responses among one of the widely 

used frequency bands in the EEG based emotion recognition algorithms (Zhang et al., 2016; 
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Mohammadi et al., 2017; Munoz et al., 2018) and in movement-related cognitive functions; 

(Cacace and McFarland, 2003; Mazaheri and Picton, 2005; Ishii et al., 2009), or in cognitive 

paradigms (Tallon-Baudry et al., 1998; Peterson and Thaut, 2002; Onton et al., 2005; Ravizza et 

al., 2005; Güntekin et al., 2013). In a review article, Engel and Fries (2010) discussed that beta 

EROs may occur because of sensory processes, such as increased beta responses were elicited 

over the occipital cortex by visual stimuli (Senkowski et al., 2006) and over central and temporal 

locations by auditory stimulation (Haenschel et al., 2000; Sakowitz et al., 2005; Senkowski et al., 

2006). Also, multisensory stimuli enhanced higher beta responses than single sensory stimuli 

(Sakowitz et al., 2005; Senkowski et al., 2006). In the pathological conditions, MCI patients 

show lower beta EROs (Güntekin et al., 2014; Caravaglios et al., 2018), with a gradual decrease 

in progressive MCI patients in comparison to stable MCI patients (Hedges et al., 2016; Jiang et 

al., 2015; Missonnier et al., 2007). 

1.2.5. Gamma Frequency Band (30-45 Hz) 

The significance of the evoked gamma-band activity, especially 40 Hz, has been 

emphasized in the central nervous system of a variety of animals including snails, vertebrates, 

and humans, as an important element in processing sensory and cognitive information in neural 

networks (Freeman, 1975; Başar et al., 1987; Başar-Eroğlu and Başar, 1991; Eckhorn et al., 

1988; Gray and Singer, 1987; Lenz et al., 2008; Traikapi and Konstantinou, 2021). Gamma 

frequency band is more likely to relate to attention, or attentional selection (Fries et al., 2001; 

Bichot et al., 2005; Womelsdorf and Fries, 2006, 2007) as heightened connectivity at gamma 

frequencies (30 –100 Hz) has been elicited during states of cue detection (Howe et al., 2017). 

The relationship between memory and gamma responses has been shown in many reports (Başar, 

2013; Başar-Eroğlu et al.,1996; Herrmann et al., 2004; Jokisch and Jensen, 2007; Singer, 1999; 

Tallon-Baudry and Bertrand, 1999). Inhibitory GABAergic interneurons have a direct 

modulatory effect on gamma oscillations (Gray and McCormick, 1996; Herrmann and Demiralp, 

2005), and combinations of various transmitters play a role in even the simplest cognitive 

responses. In previous studies, GABA, GABA/glutamate, and dopamine have been reported as 

the neurotransmitters that influence the gamma frequency (Whittington et al., 1995; Gray and 

McCormick, 1996; Muthukumaraswamy et al., 2009; Kömek et al., 2012) which may modulate 

glutamatergic pyramidal cell activity via inhibitory GABA network (Carlen et al., 2012; Fell et 

al., 2001; Sederberg et al., 2003; Tallon-Baudry et al., 2005). Gamma oscillatory activity seems 
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to establish synchronization not only in short-distance local cortical networks (Buzsaki, 2006) 

but also plays a role in long-range connectivity (Cuesta et al., 2015, Maestú et al., 2008; Jiang et 

al., 2008). 

The abnormalities of gamma connectivity and activity can be seen both during event-

related activity in ADD and MCI. Counterintuitively, both the power and connectivity of the 

EROs gamma-band seem to increase in ADD (Di Lazzaro et al., 2004; Osipova et al., 2006; van 

Deursen et al., 2011; Ferreri and Rossini, 2013; Başar et al., 2016a; Başar et al., 2017). The 

uniqueness of gamma frequency band activity in that sense could be explained by an inhibitory 

interneuron impairment in ADD patients with a subsequent increase in gamma activity (Verret et 

al., 2012; Palop and Mucke, 2016). Decreased GABAergic inhibition was demonstrated in a 

mice model of ADD (Busche et al., 2008), and suggested as related to increased gamma 

responses in ADD patients (Stam et al., 2006; Rossini et al., 2006; Osipova et al., 2006; van 

Deursen et al., 2008, 2011; Başar et al., 2016a, 2017). 

During the cognitive tasks, ADD patients respond with a 25% larger gamma response 

and a delay about 100 ms later in the higher frequency gamma subband (40-48 Hz) (Başar et al., 

2016a) without obvious fluctuations (Başar et al., 2016a; Deiber et al., 2010). Therefore, the 

gamma EROs display increased power in ADD in contrast to other frequency bands. The delay 

in cognitive gamma responses in this patient group may be related to lagged connections 

between cortical, thalamic, and limbic areas because of neurodegeneration during fine-tuning of 

fast top-down and bottom-up processes related to memory, and other related cognitive functions 

(Canuet et al., 2015). Furthermore, larger amplitudes in gamma EROs activity may be an index 

of cortex hyperexcitability that has been reported repeatedly in ADD (Stam et al., 2006; Rossini 

et al., 2006; Osipova et al., 2006; van Deursen et al., 2008, 2011; Başar et al., 2016a, 2017; 

Palop and Mucke, 2016). 

In the current article, a multidisciplinary panel of experts aimed to review the literature 

about the effects of medications or interventions on ERO/ERP EEG oscillations during cognitive 

tasks. As there are two fundamental types of medication for the treatment of ADD, (i.e. AChEI 

and memantine, a NMDA antagonist), the pharmacological effects of these agents will be 

emphasized throughout the article. 
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2. AIMS AND METHODOLOGY 

The EPIA Steering Committee formed an expert panel to review the literature and 

provide recommendations on candidate ERP and ERO measures for characterizing the effects of 

pharmacological treatments on neurophysiological oscillatory mechanisms in MCI and ADD. 

The Expert Panel included expert neurologists, psychiatrists, and neurophysiologists from EPIA, 

Global Brain Consortium (https://globalbrainconsortium.org), and The PDWAVES Consortium 

(wwwpdwaves.eu). A specific question was addressed: What is the ERP and ERO measure that 

most consistently reveal the effects of those treatments in ADD patients? To answer, a 

comprehensive literature search was completed on ERPs and EROs in MCI and ADD. 

The literature search was performed on PubMed and Scopus using the keywords given in 

the below keywords list. Titles and abstracts were searched from these databases. The last search 

was conducted on February 7, 2021. Duplicated studies were eliminated as a result of two 

different database searches. 

The keywords for the ADD patients were as follows: ―Event-Related Potential‖ AND 

Treatment AND Alzheimer; ―Event-Related Potential‖ AND Medication AND Alzheimer; P300 

AND Medication AND Alzheimer; ―Alzheimer‘s Disease OR Alzheimer‖ AND ―Event-Related 

Oscillation‖ AND ―Treatment OR Drug OR Medication‖; ―Alzheimer‘s Disease OR Alzheimer‖ 

AND ―Evoked Oscillation‖ AND ―Treatment OR Drug OR Medication‖; ―Alzheimer‘s Disease 

OR Alzheimer‖ AND ―Event-Related Desynchronization OR Event-Related Synchronization‖ 

AND ―Treatment OR Drug OR Medication.‖ 

The keywords for the MCI patients were as follows: ―Event-Related Potential‖ AND 

Treatment AND Mild Cognitive Impairment; ―Event-Related Potential‖ AND Medication AND 

Mild Cognitive Impairment; ―Mild Cognitive Impairment OR MCI‖ AND ―Event-Related 

Oscillation‖ AND ―Treatment OR Drug OR Medication‖; ―Mild Cognitive Impairment OR 

MCI‖ AND ―Evoked Oscillation‖ AND ―Treatment OR Drug OR Medication‖; ―Mild Cognitive 

Impairment OR MCI‖ AND ―Event-Related Desynchronization OR Event-Related 

Synchronization‖ AND ―Treatment OR Drug OR Medication‖. 

Authors (GY, DHG, and EY) independently reviewed the articles to decide on related 

articles for inclusion. In case of indecision, the reviewers discussed and decided on the articles in 

doubt. After careful revision of the searched articles, only related articles were included in the 
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study. Namely, articles that did not include the treatment-related EEG research on ADD and/or 

MCI were described as irrelevant articles and not included in the current review. The reference 

lists of the articles included according to database searches were checked. In the reference lists, 

if there were studies that did not appear in the database searches but met the related article 

criteria, they were also included in the study. 

The above Authors excluded resting-state EEG studies, EEG-oddball studies using other 

than active oddball tasks, and studies that did not include the treatment-related EEG research on 

ADD and/or MCI. Afterward, the mentioned co-Authors produced a first draft of the manuscript 

circulated to all Panel members. After some rounds of revisions, the Panel reached a unanimous 

consensus about the findings and recommendations. The manuscript was finalized in December 

2021. 

The terms and methodological procedures of the reviewed studies do not derive from 

daily medical practice and were not used for diagnostic, prognostic, or monitoring purposes. 

Furthermore, the opinions and recommendations of the expert panel do not represent guidelines 

for the clinical applications to the monitoring of treatments for AD. Indeed, the present 

methodology did not follow standard procedures typically adopted by international biomedical 

societies for the review of the medical intervention and practice (e.g., "GRADE", 

https://gdt.gradepro.org/app/handbook/handbook.html). 

In the review of the ERP and ERO studies, we decided to accept those using clinical 

diagnostic criteria for AD not excluding AD patients with moderate cerebrovascular, non-AD 

hippocampal impairment (TDP-43), and Lewy body co-pathology. We also used the term MCI 

to denote patients with MCI even without a diagnosis based on in-vivo biomarkers of AD. It 

should be also noted that ERP and ERO studies reviewed in the present paper used 

heterogeneous procedures for the detection of artifacts in preliminary EEG data analysis. The 

flow chart to summarize the criteria of included and rejected studies for the current paper is 

demonstrated in Figure 1. 

 

Figure 1. Flow diagram of the literature search. * Exclusion criteria: 1. resting-state EEG 

studies, 2. EEG-oddball studies using other than active oddball tasks, 3. Studies that did not 
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include the treatment-related EEG research on ADD and/or MCI, 4. Studies with non-

pharmacological interventions (cognitive training, TACS, TMS, TDCS) to assess ERPs/EROs on 

ADD and/or MCI. 

 

To our knowledge, this is the first international initiative designed to reach consensus 

recommendations on the optimal ERP and ERO measures to be used in clinical trials testing 

treatments for ADD patients. We hypothesized that those measures may be sensitive in the 

detection of the treatment effects at the group level and the outcome may promote the use of 

them surrogate neural endpoints for monitoring the neurophysiological effects of drugs for ADD 

on brain cognitive systems. Notably, there are many ongoing phases 2-3 clinical trials targeting 

amyloid-beta in symptomatic or asymptomatic familial ADD mutation carriers (Cummings et al., 

2021). To the best of our knowledge, none of them use ERPs or EROs in monitorization or even 

in the development of these pharmacological agents to deliver their earliest reflections on 

neuronal activity. So far, no review has investigated treatment effects on ERPs/EROs observed 

in MCI/ADD patient groups. In the following section, the pharmacological effects related to each 

component of ERPs were presented separately. 

3. TREATMENT EFFECTS ON EVENT-RELATED POTENTIALS (ERPs) 

3.1. The Early Component of ERPs and Treatment Effects 

3.1.1. P100, N100, P200 

Only five studies were found to investigate treatment effects on the N100 component. 

The studies on AChEIs did not show any effect on N100. In a small group of ADD, the 

physostigmine treatment resulted in no alterations in N100 amplitude or latency in an auditory 

oddball task (Neshige et al., 1988). In the same line, a large group of ADD patients showed no 

effect of about 2 years of donepezil treatment on N100 amplitude or latency in an auditory 

oddball task (Chang et al., 2014). Furthermore, nicotine administration did not change P100 and 

N100 amplitude or latency in auditory and visual oddball tasks between tacrine-treated and non-

treated ADD groups (Knott et al., 2002). 

 Concerning other treatments, a nootropic drug possibly acting on AMPA glutamate and 

cholinergic receptors (piracetam) mitigated the reduction in N100 latency of auditory and visual 
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oddball ERPs in ADD patients as compared to CU persons (Dabic-Jeftic and Mikula, 1993). 

Furthermore, intravenous sodium-lactate (vasodilator, electrolyte replenisher, and an energetic 

material for neurons) produced just a trend for enhancing P100 and N100 during a visual 

semantic categorization task (Kálmán et al., 2005). The only P100 study investigating AChEI 

effects belongs to Irimajiri et al. (2007). A simple checkerboard stimulation reversal was used in 

the study and no differences were detected in P100 amplitude or latency values between MCI 

patients receiving vs. not receiving an AChEI treatment (Irimajiri et al., 2007). 

There are several studies investigating the pharmacological effects of the P200 

component in ADD patients, most of them with negative results. In those patients, no effect on 

P200 amplitude or latency was observed in auditory oddball tasks about physostigmine, an 

AChEI, (Neshige et al., 1988) and donepezil, an AChEI (Lai et al., 2010; Chang et al., 2014). In 

contrast, intravenous sodium-lactate infusion increased P200 amplitude in ADD patients during a 

visual semantic categorization task (Kálmán et al., 2005). Given these inconsistent findings and 

lack of significant effect in some studies, further data are needed covering P100, N100, and P200 

components. 

3.2. Mid-To Late ERPs and Treatment Effects 

3.2.1. N200 

 Regarding ERP studies investigating pharmacological effects on the N200 component in 

ADD patients, studies reported no effect of AChEI, physostigmine, or donepezil on N200 

amplitude or latency in ADD over CU persons (Neshige et al., 1988; Lai et al., 2010; Chang et 

al., 2014; Vaitkevičius et al., 2015) or ADD over MCI patients (Lai et al., 2010). Other than 

cholinergic mechanisms, there is only one study on lactate treatment. Kálmán et al. (2005) used a 

semantic categorization paradigm in patients with ADD before and after intravenous saline or 

sodium-lactate infusion. The first ADD group received normal saline, while the second ADD 

group took sodium lactate. The changes in N200 amplitude were not significant yet 

demonstrated clear tendencies. The mean amplitude became more negative for the N200 for non-

animal responses, with no changes after normal saline infusion. Contrary to its anticipated 

beneficial effects, these findings may suggest that sodium-lactate fails to significantly improve 

semantic categorization processes in ADD and this enhancement can be detected by recording 

ERPs. 
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Overall, the available pharmacological studies suggest that N200 does not have the 

required reliability for use in clinical trials due to the limited evidence. Therefore, further studies 

are necessary to assess treatment effects in the N200 component. 

 

3.2.2. P300 

Studies on the treatment effects of cholinergic drugs in ADD on the P300 wave showed 

decreased latency for a limited period of up to 3 to 6 months in general (Pedroso et al, 2012; 

Babiloni et al., 2020). Earlier AChEI reports on the effects of physostigmine were noted as 

increased P300 amplitudes (Dierks et al., 1994) or decreased P300 latency over the short term 

(Neshige et al, 1988; Katada et al., 2004) in ADD. After the approval of AChEIs in routine ADD 

treatment, studies on the most commonly used medication donepezil displayed beneficial effects 

as evidenced by a reduction of P300 latency in ADD during auditory (Reeves et al., 1999; 

Thomas et al., 2001; Onofrj et al., 2002; Chang et al., 2014), and visual oddball paradigm 

(Reeves et al., 1999) and rivastigmine reduced P300 latency that was associated with better 

cognitive performances in mild to moderate probable ADD  (Thomas et al., 2001).  

Longitudinal P300 studies on the effects of donepezil revealed the latency of the P300 

wave is more reliable than the amplitudes (Werber et al., 2003; Parra et al, 2012; Pedroso et al, 

2012; Babiloni et al., 2020). Among the five longitudinal P300 studies studying the effects of 

donepezil or rivastigmine (Thomas et al.,2001; Katada et al., 2003; Lai et al., 2010, Fruehwirt et 

al., 2019, Vaitkevičius et al., 2015), only one reported unchanged P300 latency or 

neuropsychological test scores between drug-naive and donepezil-treated ADD groups after 

monitoring for three months (Vaitkevičius et al., 2015). The effect of AChEIs on the P300 wave 

improvement in ADD patients was reported as the latency decrease in the first 3 to 6 months of 

treatment (Thomas et al.,2001; Katada et al.,2003; Lai et al., 2010) or an increase in P300 

amplitude (Knott et al., 2002). The progression rates of the P300 wave latency increase in ADD 

patients on AChEIs were not particularly different in 6 to 12 months (Onofrj et al., 2002; Lai et 

al., 2010; Fruehwirt et al., 2019) from the patients not using AChEIs (Ball et al., 1989). 

Similarly, the clinical outcome measures also indicate symptomatic effectiveness of AChEIs as 

an improvement until 3 to 6 months of treatment. After the improvement, the effectiveness 

begins to return to the pre-treatment status and continues to decline thereafter (Gauthier et al., 

2002; Arai et al., 2016). 
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Memantine is a commonly used symptomatic add-on medication to cholinergic drugs in 

ADD. It is an NMDA receptor antagonist and functions as a glutamatergic noncompetitive 

NMDA receptor antagonist that modulates calcium influx. It has a selective affinity for 

extrasynaptic NMDAR open channels and does not interfere with normal transmission (Xia et 

al., 2010). It helps to restore the signal-to-noise ratio in hyper-excited neurons (Chen et al., 1992) 

and exerts an improving effect on cognitive and sensorimotor functions of Alzheimer's patients 

(Schmidt et al., 2015). In a meta-analysis for clinical trials of ADD, memantine was found 

effective for cognition, behavioral disturbance, and activities of daily living (Matsunaga et al., 

2015). Regarding the effect of memantine on the P300, there are only two studies in the 

literature, possibly because memantine is not used alone but mostly given in combination with 

AChEIs in the treatment regime of ADD. The only ERP study investigating the effects of 

memantine monotherapy led to a shortening of P300 latency of about 20 ms in 42% of 

individuals with ADD with no significant change in P300 peak measures at the group level 

(Kubova et al., 2010). Another study on individuals with ADD with combination therapy of 

memantine and AChEI found an increase in the latency of P300 at the 12 months of treatment 

compared to the baseline, suggesting despite cholinergic and memantine treatment, the cognitive 

EEG parameters worsen in ADD in the long-term (Fruehwirt et al., 2019). 

Another study assessed the nicotine effect on P300 in two groups of ADD, and nicotine 

was administered to tacrine-treated and non-treated patients with ADD. Tacrine is the first 

approved AChEI medication in ADD treatment. Before nicotine administration, tacrine-treated 

patients displayed shorter auditory P300 latencies than non-treated patients. Acutely 

administered nicotine did not change auditory P300 but increased the amplitudes of visual P300s 

in both ADD patient groups. These electrophysiological findings reflected the effects of nicotinic 

cholinergic processes in ADD (Knott et al., 2002).  

Experimental studies indicate that AChEIs drugs increase P300 amplitude in a rat model 

of AD (Laursen et al., 2014), and decreased amplitudes of ERP components were described in an 

amyloid-β infused mice model (Kim et al., 2020) or in an animal model of tau overexpression 

mutations (Nouriziabari et al., 2018). Furthermore, both scopolamine (anticholinergic agent) and 

entorhinal tau overexpression caused the learning-related changes in the P200 component 

(Nouriziabari et al., 2018), implying the cholinergic role in the generation of ERPs. The term 

folate, also known as vitamin B9, refers to a group of water-soluble compounds that play a 
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fundamental role in a variety of physiologic processes such as regulation of gene expression, 

neurotransmitter synthesis, and maintenance and repair of the genome (Naderi and House, 2018). 

In a study assessing the effect of folate with vitamin B12 on P300 in patients with MCI 

complicated by hyperhomocysteinemia, the MCI group was divided into the intervention group, 

which was administered with folate, and the control group. After the 24th week, the intervention 

group had shorter P300 latency than their baseline and the control group. The findings suggest 

that a decrease in total homocysteine levels at the 24th week may lead to an improvement in the 

cognitive function of the MCI group revealed by shorter P300 latencies (Jiang et al., 2020). 

Other earlier reports exist in the literature studying the treatment effects of other agents 

including nicergoline and piracetam. Under nicergoline treatment, an ergot alkaloid derivative 

with a wide spectrum of action, including being a selective alpha-1A adrenergic receptor 

antagonist, enhancing cholinergic and catecholaminergic neurotransmitter function, and 

inhibiting platelet aggregation, ADD patients showed decreased P300 latency (Saletu et al., 

1995), suggesting an improved vigilance and information processing. On the other hand, 

piracetam, a nootropic agent with mild antiepileptic properties, plays a role as an AChEI, while 

also influencing NMDA glutamate receptors, showed no changes in the P300 responses in 

individuals with ADD (Dabic-Jeftic and Mikula, 1993). Therefore, among the ERP components, 

the P300 latency might be particularly useful in reflecting cognitive decline and treatment effects 

in ADD (Lai et al. 2010, Parra et al., 2012; Babiloni et al., 2020). P300 measures may be 

promising candidates for investigating treatment effects in ADD. Yet, the paucity of studies and 

small size of participants in the previous P300 studies indicate the necessity of further studies. 

3.2.3. Other Late ERP Components 

There is only one study investigating the effects of combination therapy (AChEI and 

memantine) by early and late ERPs (C185, C250, C325, C415, C540) using a number-letter 

paradigm. In this study, after the baseline ERP data collection, each MCI subject was identified 

as either having converted to AD or having remained stable according to cognitive state at 

follow-up assessments. Of the 30 individuals with MCI, 15 patients subsequently progressed to 

AD and 15 remained cognitively stable. In the group of patients who progressed to AD, 8 of the 

15 individuals belonged to the treatment subgroup and seven belonged to the denovo subgroup. 

Likewise, eight of the 15 patients in the Stable MCI group belonged to the treatment subgroup 
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and seven belonged to the denovo subgroup. The effects of combination therapy (AChEI and 

memantine) failed to show any differences in early and late ERPs between the groups (Chapman 

et al., 2013). 

Considering the limited findings in the literature, later ERP components seem not to have 

the potential to monitor treatment effects in ADD due to not displaying any significant change 

after interventions. However, further studies are needed to investigate pharmacological effects in 

memory-related late potentials. The summary of treatment effects on ERP components in patient 

groups was demonstrated in Table 2. 

4. TREATMENT EFFECTS ON EVENT-RELATED OSCILLATIONS (EROs) 

4.1. Delta frequency band (<4 Hz)  

Treatment effects on delta EROs elicited by visual or auditory oddball tasks in ADD 

patients demonstrated that delta EROs power is reduced in both AChEI-treated and untreated 

denovo ADD patients in comparison to CU persons (Yener et al., 2007, 2009). Furthermore, 

delta ERO long-range connectivity was diminished similarly in ADD patients with or without 

cholinergic medication (Başar et al., 2010). Therefore, delta EROs seem to be lacking in 

exhibiting the effect of cholinergic medication in ADD. 

4.2. Theta frequency band (4-7 Hz) 

Cognitive theta EROs power was similarly reduced in treated and untreated ADD (Yener 

et al., 2009), whilst ADD patients treated with AChEI medications had an increase in event-

related frontal theta phase-locking in comparison to the non-treated ADD group during an 

oddball task in a cross-sectional study (Yener et al., 2007; Figure 2). So far, there is no 

longitudinal or cross-sectional EROs study in the literature confirming these medication effects. 

 

Figure 2. The grand averaged waveforms represent reduced visual event-related theta phase-

locking in non-treated ADD. The thick black line shows the grand averages of each group to the 

target stimuli elicited by a classical visual oddball paradigm. The thin gray line demonstrates the 

average of single sweeps from a single subject (modified from Yener et al., 2007). 
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4.3. Alpha frequency band (8-12 Hz) 

There is only one alpha EROs study investigating treatment effects in patients with ADD. 

In that study, the alpha EROs coherence was found lower in ADD groups regardless of using 

AChEI medication. The CU group showed higher values of EROs coherence in the ―delta‖, 

―theta‖ and ―alpha‖ frequency bands between left frontoparietal electrode pairs in comparison to 

both the AChEI-treated ADD and the untreated ADD groups (Başar et al., 2010), implying no 

effect of cholinergic medication on alpha EROs connectivity. 

All these above findings imply that EROs in slow-wave frequency bands, possibly except 

from theta, are far from showing treatment effects in ADD. 

4.4. Beta frequency band (13-30 Hz) 

No study reported the results of treatment effects on beta EROs in the ADD so far. 

4.5. Gamma Frequency Band (30-45 Hz) 

Gamma EROs merit more attention regarding the alterations in both cholinergically 

treated and untreated (drug-naive) ADD groups indicating a connectivity increase in both ADD 

subgroups. Interestingly, patients on the cholinergic treatment had further coherence increases 

than both drug-naive ADD patients and CU persons (Başar et al., 2017). The increase in the 

long-range (frontoparietal, front-occipital) gamma EROs connectivity in treated and untreated 

ADD patients were observed in response to visual sensory stimulation, whilst decreased short 

distance (parieto-occipital) gamma ERO connectivity was noted in treated ADD patients in 

comparison to drug-naive ADD patients (Başar et al., 2017). This observed pattern consisting of 

augmented long-range connectivity and a suppressed short-range connectivity fits well with 

those previously reported on functions of acetylcholine on brain activity (Hasselmo and Sarter, 

2011). The mechanism related to increased gamma responses after cholinergic medication may 

be based on the coexpression of alpha7 nicotinic receptors in GABAergic interneurons 

(Voytenko et al., 2015) or the change in neuronal excitation/inhibition imbalance observed in 

AD (Maestu et al., 2021). In brief, gamma ERO connectivity measures seemed to be a promising 

tool to investigate AChEI treatment in ADD. The summary of treatment effects on EROs in 

ADD patients is presented in Table 3. 
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5. OTHER TREATMENT EFFECTS ON ERPs/EROs IN EXPERIMENTAL AND 

CLINICAL STUDIES 

Memantine is a commonly used symptomatic add-on medication to cholinergic drugs in 

ADD. It is an NMDA receptor antagonist that weakly binds to Mg++ and displays functions that 

modulate calcium influx. It has a selective affinity for extrasynaptic NMDAR open channels and 

does not interfere with the normal transmission (Xia et al., 2010), and it helps to restore the 

signal-to-noise ratio in hyperexcited neurons (Chen et al., 1992). Clinical ERP/ERO EEG studies 

are scarce on the treatment effects of memantine as it is used as an add-on therapy. 

The animal studies investigating the effects of memantine are not redundant in the 

literature. One of them exploring the effects of memantine using induced EEG elicited by 

electrical stimuli in anesthetized rats, demonstrated that low dose memantine increased theta and 

gamma-band activity however, high dose memantine decreased hippocampal theta oscillations 

(Guadagna et al., 2012). A study on freely moving mice by Ma et al. (2015) showed the LTP-

enhancing effect of memantine that was blocked by the injection of scopolamine, an 

anticholinergic drug, indicating an interplay between cholinergic and glutamatergic antagonists 

favoring cognitive improvement. Memantine significantly increased gamma oscillations in freely 

moving animals (Hiyoshi et al., 2014; Ahnaou et al., 2014; Ma et al., 2015). 

Other medications such as semagacestat, a gamma-secretase inhibitor that reduces the 

production of amyloid-β, cause decreased hippocampal theta oscillatory activity induced by 

electrical stimuli in anesthetized mice (Hajos et al., 2013). On the other hand, piracetam, a 

nootropic agent, increased hippocampal theta oscillations that are induced by electrical stimuli in 

anesthetized rats (Kinney et al., 1999). The treatment effects of animal studies for EEG-

ERP/EROs in AD models are presented in Table 4.  

In brief, experimental studies of induced EEG investigating the effects of AChEIs and 

memantine reported an increase in the power of theta and gamma bands (Ahnaou et al., 2014). A 

few clinical studies investigating the effects of AChEIs on EROs in medicated ADD patients 

compared to unmedicated ADD patients can be summarized as improvement of frontal theta 

phase-locking and altered gamma ERO connectivity. Yet, these results await to be confirmed by 

other clinical research groups. 
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General rules of oscillatory activity imply a potential for modulating brain waves by 

resetting the oscillatory hierarchy such as 1) amplitude periodicity of the faster waves matches 

with those of slower waves (Amzica and Steriade, 2000; Vanhatalo et al., 2004), 2) amplitude of 

gamma oscillation depends on theta oscillation phase (Buzsaki et al., 2003) and a variety of 

cross-frequency couplings occurs between frequency bands, such as those between beta-gamma 

or theta-alpha bands during working memory paradigms (Siebenhühner et al., 2016), and 3) 

ongoing cortical activity exerts an effect on the processing of a stimulus (Başar et al., 1980; 

Polich, 1997; Fries et al., 2001; Babiloni et al., 2006). 

Hence, a new avenue for ADD treatment is open to neuromodulation techniques 

including, transcranial alternating current stimulation (TACS), transcranial direct current 

stimulation (TDCS), transcranial magnetic stimulation (TMS), training to enhance oscillations in 

alpha and beta bands for higher memory performance and gamma-band for depression (Escolano 

et al., 2014) and neurofeedback in ADD (Luijmes et al., 2016; Sürmeli et al., 2016; Jiang et al., 

2017). TDCS is a technique to modulate brain oscillations by applying a direct electrical current 

to the scalp. In a study on individuals with ADD and CU persons using TDCS, the result favored 

beneficial effects of the intervention, such as increased amplitudes of P200 and P300 and 

increased frontal theta EROs within a 150-300 ms time window (Cespón et al., 2019). 

Brain stimulation techniques may help to reduce brain hyperexcitability reported in MCI 

or ADD (Adaikkan et al., 2019; for review, see Toniolo et al., 2020). Many studies performed on 

ADD/MCI patients using these techniques aimed to reduce hyperexcitability of the brain by 

transcranial magnetic stimulation (Koch et al 2018; Arendash et al., 2019; Sabbagh et al., 2019), 

or by tDCS (Khedr et al., 2019; Ferrucci et al., 2008; by tACS (Xing et al., 2020) or by 40 Hz 

sensory stimulation (Cimenser et al, 2021; Ismail et al., 2018) or photobiomodulation (Chao, 

2019). 

Recently, there has also been a focus on various types of exercise including aerobic, 

strengthening, and combined involvements as another non-pharmacological intervention that is 

associated with cognitive improvement. Using different cognitive tasks, it was suggested that 

involvement in physical or aerobic exercise appears to be related to increased amplitude and/or 

decreased latency of P300 in young and older active CU persons compared to individuals with a 

sedentary lifestyle (for a review, see Huang et al., 2016). In MCI patients, it was reported that 
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either aerobic dance routines demonstrated decreased P300 latency (Zhu et al., 2018), or MCI 

who participated in two different types of exercise programs displayed an increase in P300 

amplitudes (Tsai et al., 2018, 2019). Another longitudinal study showed that both physical 

exercise programs and social-gathering intervention resulted in an improvement in P300 

parameters (Pedroso et al., 2018). The findings above indicate that P300 measures are possible 

candidates to be used in non-pharmacological treatment studies. 

In the current paper, a literature review was not performed for this section; however, it is 

worth reminding that current brain stimulation studies in ADD as a non-pharmacological 

intervention may constitute an important avenue for investigating treatment effects on 

ERPs/EROs. 

6. DISCUSSION 

In the current article, a multidisciplinary panel of experts reviewed the literature about 

the effects of medications or interventions on ERO/ERP EEG oscillations during cognitive tasks.  

The literature on this subject seems to be too scarce to provide definitive answers. Among the 

most used symptomatic treatment of ADD, cholinergic drugs lead to a reduction in latency of 

P300 and an increase in amplitudes of late ERPs components (N200, P300) temporarily for up to 

a year. Effects of cholinergic medications on EROs can be summarized as an increase in theta 

phase-locking and gamma connectivity, yet further confirmation is needed. Effects of 

memantine, another licensed symptomatic medication acting as an NMDA receptor antagonist 

for the treatment of ADD, have not been well studied on ERPs/EROs in ADD, possibly due to its 

common use as an add-on medication to cholinesterase inhibitors. Animal studies confirmed that 

cholinesterase inhibitors cause increased amplitudes of P300 like ERPs and increased levels of 

induced theta and gamma oscillations. 

 Even though there have not been many new options of treatment in the past two decades, 

possibly disease-modifying drugs are becoming available for ADD. Many questions remain to be 

answered and cannot be covered by previous literature. The current paper studying ERP/ERO 

EEG studies revealed that P300 measures are the most promising ERP components, whilst theta 

and gamma ERO responses may bear a potential for monitoring treatment effects in drug trials or 

intervention studies in ADD. To our knowledge, there has been no data assessing treatment 

effects on N170, N230, VPP, LPP, N400, and P600 components of ERPs while the current 
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literature covers limited information on the delta, theta, alpha, and gamma EROs in patients with 

ADD or MCI. Therefore, further studies are needed to cover these components for the evaluation 

of medication effects. 

The medications which are used to enhance cognitive functions, both in patients with 

ADD and MCI and CU individuals, work through ACh neurotransmission. ACh is closely 

involved in synaptic transmission and the formation of memories and the performing of 

cognitive tasks. It was reported that donepezil, rivastigmine, or galantamine had good results in 

enhancing cognitive performance in patients with mild to moderate ADD when compared with 

placebo (Birks et al., 2006). However, diverse studies with CU individuals indicated that 

AChEIs slightly improve verbal memory after semantic processing of words, attention memory, 

information processing, executive function, and memory (Repantis et al., 2010). Secondly, 

memantine is an agent used to treat moderate to severe AD. It acts on the glutamatergic system 

by antagonizing N-methyl-d-aspartate (NMDA) receptors. This drug has been shown to slightly 

improve cognitive functions as monotherapy for ADD (Matsunaga et al., 2015). There are also 

few studies about the cognitive-enhancing capacity of memantine on CU individuals (Juarez-

Portilla et al., 2018). Considering these findings, it can be summarized that a great deal of the 

EEG potentials and oscillations demonstrated limited medication effect in the literature since the 

effects of currently registered medications on cognition are minor and short-lived. In the future, 

EEG related methodologies may help to uncover the changes in the brain activity in response to 

remedies such as newly developed anti-amyloid, anti-tau, or hybrid remedies (for reviews, see 

Cummings et al., 2021; Toniolo et al., 2020; Zagórska and Jaromin, 2020). The concurrent 

investigation of ERPs/EROs methodologies and other well-studied valid biomarkers in at-risk 

ADD patients may help validate the EEG methodologies to monitor the effects of treatment on 

brain functions. Furthermore, additional use of ERP/EROs to the rsEEG activity may offer an 

advantage for observing the treatment effects of ADD, as gathered from limited numbers of 

comparative electrophysiological studies with small numbers of participants in the literature 

(Olichney et al., 2002b; Van der Hiele et al., 2007; Deiber et al., 2009; Lopez et al., 2014; 

Jovicich et al. 2019). 

EEG methodologies assessing treatment effects can be useful for personalized medicine. 

Even though a wide range of variability in the accuracy rates of ERPS/EROs limits their use on 

an individual basis for diagnostic purposes in the ADD, the possibility is higher when the 
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treatment effect is considered, as each person can provide control of themselves before 

treatment. At that point, ERPs/EROs may offer advantages for monitoring intervention or 

treatment effects, because these electrophysiological methods provide almost an individualistic 

electrophysiological signature (Näpflin et al., 2008), and indicate an alteration about 10 to 30% 

to the baseline of the same individual which is much higher rate than any other neuroimaging 

marker elicits (Olichney and Hillert, 2004; Başar et al., 2013). 

Significant limitations of this article include (i) the restrictive criteria used for the review 

of literature; (ii) the inclusion of studies using various diagnostic criteria for AD in the era 

without current diagnostic research criteria, and (iii) the included patient groups may not exclude 

AD patients with vascular changes in brain, TDP-43 related hippocampal impairment, and Lewy 

body pathology; (iv) the use of the term MCI to describe amnestic MCI patients, thus 

considering possible prodromal ADMCI without in-vivo biomarkers of ADD that were not 

existent in earlier studies; (v) nonhomogeneous procedures for the artifact detection in EEG 

analyses. Moreover, a variety of analyses and paradigms limit the use of ERPs/EROs along with 

lower rates of compliance of patients during the recordings. The need for the participant- or user-

friendly paradigms is paramount, as well as the standardized and harmonized procedures for the 

acquisition and analyses of ERPs/EROs. 

7. CONCLUSIONS 

The ERP components or event-related EEG oscillations for investigating treatment 

effects remain to be an unexplored field. The current diagnostic research criteria work-up for 

ADD described by the Working Group of the National Institute of Aging and Alzheimer‘s 

Association (NIA-AA) Research Framework (Jack et al., 2018) do not include EEG measures as 

those for DLB (McKeith et al., 2020). As earlier studies on event-related EEG measures 

consistently show association with atrophy in structural MRI or disease progression in AD, they 

can be considered as reflecting neurodegeneration occurring in the disease course. Furthermore, 

keeping in mind the low rates of accessibility to the currently validated AD biomarkers, the 

present Expert Panel posits not only introducing the event-related EEG measures as a 

physiological biomarker (i.e., ―P‖ biomarker) into A-T-N Research Framework (Jack et al., 

2018) but also using them to explore treatment effects in AD spectrum. These 

electrophysiological biomarkers may probe mechanisms of thalamocortical and subcortical 
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neural (de)synchronization about treatment effects. For the current study on treatment effects, the 

biomarkers of ERP/ERO EEG markers may be represented by the mentioned P300 component 

and theta and gamma ERO measures during oddball tasks. 
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Table 1. ERP waves, their functions, and possible generators  

EARLY (Sensory components) 

● N100 (N1) is involved with primary perceptual processing of incoming 

information and early attentional allocation to visual stimuli (Lijffijt et al., 2009). 

● P100 (P1) is a positive wave elicited by different types of visual stimuli only and 

considered to be related to early visual processing (Heinze and Mangun, 1994).  

● P200 (P2) is associated with early attentional allocation to visual stimuli and is 

involved with primary perceptual processing of incoming information (Omoto et al., 

2010). 

● N170 appears as a negative peak over parieto-occipital regions and is related to 

bottom-up perceptual processing of faces in the area of occipito-temporal cortex 

(Feuerriegel et al., 2015). 

MID or LATE (Cognitive components) 

● N200 is considered to reflect selective attention and conscious discrimination, so 

it is associated with information processing, but not necessarily with memory 

performance (Howe et al., 2014). Possible generators of the N200 include the reticular 

formation, frontal cortex, centro-parietal cortex thalamus and lemniscus, inferior 

colliculus, hippocampus, frontocentral cortical areas (Vaitkevičius et al., 2015).  

● VPP (vertex positive potential) is a positive peak over fronto-central regions 

within a similar N170 time frame. It is related to bottom-up perceptual processing of 

faces in the area of the occipito-temporal cortex; it was also reported to reflect an 

integration of top-down and bottom-up visual processing (Lu et al., 2017).  

● P300 (P3b) is related to discrimination between target and standard stimuli that 

engages focused attention and decision making, or working memory demanded by task 

(Polich, 1989, 1997; Posner and Petersen, 1990; Pardo et al., 1991; Başar-Eroğlu et al., 

1992; Posner, 1992; Huang et al., 2015). P3a and P3b constitute the subcomponents of 

P300. P3a is generated when stimuli are processed if sufficient attentional focus is 

engaged. P3b occurs when subsequent attentional resource activations promote 

memory functions in temporal-parietal areas (Polich, 2007). In brief, reverberating 

circuits between frontal-parietal and temporal cortical regions and possibly their 
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connections with limbic structures take a role in the generation of the P3 potential 

(Knight, 1990; Soltani and Knight, 2000; Rektor et al., 2004). 

● N400 refers to a negative component in the average ERP that reaches its peak 

amplitude approximately 400 ms after stimulus onset and is associated with linguistic 

and semantic processing (Olichney et al., 2006, 2008, 2011). N400 generators are 

bilaterally anterior fusiform and parahippocampal gyri (Olichney and Hillert, 2004). 

●  P600 (LPC) is a positive deflection with a centro-parietal peak at approximately 

600 ms. In language studies, the P600/LPC, also known as the ‘Syntactic Positive Shift’, 

has been linked to a wide range of disagreements in syntactic rules (Kuperberg, 2007). 

P600 generators are median temporal lobe and paralimbic cortical regions (Katada et 

al., 2004; Kimiskidis and Papaliagkas, 2012). 

(For further information related to ERP/EROs reviews please see, Paitel et al., 2021; 

Rossini et al., 2020; Tarawneh et al., 2020; Horvath et al., 2018; Morrison et al., 2019; 

Palop and Mucke, 2016; Seer et al., 2016; Feuerriegel et al., 2015; Hedges et al., 2016; 

Huang et al., 2015; Nimmrich et al., 2015; Güntekin and Başar, 2014; Howe et al., 2014; 

Howe, 2014; Tsolaki et al., 2014; Başar, 2012; Başar and Güntekin, 2008, 2012, 2013; 

Yener and Başar, 2010, 2013; Farwell et al., 2012; Kimiskidis and Papaliagkas, 2012; 

Rêgo et al., 2012; Yamasaki et al., 2012; Drago et al., 2011; Lizio et al., 2011; Vecchio 

and Määttä, 2011; Jackson and Snyder, 2008; Sauseng and Klimesch, 2008; Uhlhaas and 

Singer, 2008; Rossini et al.  2007; Prichep et al., 2005; Herrmann and Demiralp, 2005; 

Polich and Corey Bloom, 2005; Katada et al, 2004; Olichney and Hillert, 2004; Başar-

Eroğlu et al., 2001; Klimesch., 1999; Başar-Eroğlu and Demiralp, 1991; and for 

hypotheses and rules for EROs, the following articles have been recommended; Hebb et 

al 1949; Başar-Eroğlu et al., 1991, 1992, 2001; Schürmann et al., 1997; Sakowitz et al., 

2001). 
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Table 2. Treatment effects on ERP components in patient groups 

Reference 

Particip

ants 

Treat

ment 

Amplitud

e Change 

Latency 

Change 

P300 studies with Oddball task 

Jiang et al. 

(2020) 

MCI with 

hyperhomocystein

emia (n=92) 

-

Intervention 

group (N=46) 

 

Folate 

& Vit B12 (24 

weeks) 

    

Fruehwirt et al. 

(2019) 

Possible 

and probable ADD 

(n=63) 

Consta

nt vs. variable 

dose of 

medication 

(AChEI and 

memantine) 

(N=39) 

 

   in 

constant versus 

variable dementia 

medication. 

 

↑ in ADD at 

18 months. 

 

Vaitkevičius et 

al. (2015) 

Denovo-

ADD (ADD-N, 

n=22) 

 

Treated-

ADD (ADD-T 

group, n=22) 

 

Donep

ezil for 3 

months 

  ADD-

N=ADD-T 

 

 

  ADD-

N=ADD-T 
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CU (n=50) 

 

Chang et al. 

(2014) 

ADD (n=1

00) 

CU (n=20) 

 

Donep

ezil for 23 

weeks. 

  ADD 

after donepezil. 

  ADD 

after the treatment. 

Kubová et al. 

(2010) 

ADD 

(n=17) 

Mema

ntine 

(de 

novo to post-

treatment, 

6 

months follow-

up) 

   post-

treatment at group 

level. 

 

  about 20 

milliseconds in 

42% of patients. 

 

Lai et al. 

(2010) 

ADD 

(n=20) 

Denovo 

MCI(n=18) 

CU (n=14) 

 

Donep

ezil; 

- 

Baseline 

- 1 

year follow-up 

 

  in 

baseline and 

follow-up 

assessments 

among groups. 

↑ ADD > 

MCI > HC 

Werber et al. 

(2003) 

Patients 

with dementia 

(n=32) 

-ADD 

AChEIs 

(Tacrine, 

Donepezil, 

Rivastigmine) 

  after 

the treatment. 

 

  

  in 

dementia patients 

after the treatment. 
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(n=14) 

-PDD 

(n=10) 

-Vascular 

dementia (VD) 

(n=8) 

between subgroups 

of dementia. 

  

between subgroups 

of dementia. 

 

Katada et al. 

(2003) 

ADD 

(n=14) 

Donep

ezil 

   after 1 

month treatment. 

 

↑ at 6 

months compared 

with follow-up at 1 

month. 

 

Onofrj et al. 

(2002) 

Mild ADD 

(n=30) 

Moderate-

severe ADD 

(n=30) 

CU (n=40) 

 

 

Donep

ezil for 6 

months 

 

Vitami

n E for 6 

months; 

- 

Group I 

Donepezil with 

"mild" ADD 

(N=15) 

- 

Group I 

   reduced 

in both mild and 

moderate-to-severe 

ADD groups, after 

the treatment. 

 

↑ in both 

mild and moderate-

to-severe ADD 

groups, after 

Vitamin E 

treatment. 
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Vitamin E with 

"mild" ADD 

(N=15) 

 

- 

Group II 

Donepezil with 

"moderate-

severe" ADD 

(N=15) 

- 

Group II 

Vitamin E with 

"moderate-

severe" ADD 

(N=15) 

 

 

Thomas et al. 

(2001) 

ADD 

(n=60) 

CU (n=60) 

Throu

ghout 26 

weeks; 

 

-

Treated-ADD 

with donepezil 

(n=20) 

-

Treated-ADD 

with vitamin E 

 ↑  in the 

vitamin E-treated 

ADD patients. 

 

  in both 

donepezil-treated 

and Riv-treated 

patients. 
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(n=20) 

-

Treated-ADD 

with 

rivastigmine 

(Riv) (n=20) 

 

Reeves et al. 

(1999) 

ADD 

(n=12) 

 

Donep

ezil treatment 

for 1 month 

 

   

between baseline 

assessment and 

after 1-month 

treatment. 

 

  after the 

1-month donepezil 

treatment. 

Oishi et al. 

(1998) 

ADD 

(n=10) 

 

The 

traditional 

Chinese 

medicine for 3 

months 

 

(astrag

alus root, 

Prunella 

vulgaris, 

pueraria root, 

Lycii fructus, 

cnidium 

rhizome, 

rhubarb, 

   after the 

treatment. 
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alisma 

rhizome, peach 

kernel, ginseng, 

oyster shell) 

 

Saletu et al. 

(1995) 

Senile 

dementia of the 

AD type (n=56) 

-28 

treated with 

nicergolineADD/N

IC 

-28 

placebo-AD/PLAC 

 

Multi-

infarct dementia 

(MID) (n=56) 

-28 

treated with 

nicergoline-

MID/NIC 

-28 

placebo-

MID/PLAC 

 

The 

nicergoline 

(Sermion) for 8 

weeks 

   in both 

ADD/NIC and 

MID/NIC groups 

after the treatment. 

 

 

  

lengthened in both 

ADD/PLAC and 

MID/PLAC groups 

after the treatment. 

Dierks et al. 

(1994) 

Younger 

CU male (n=6) 

Physos

tigmine for the 

↑ 1 hour 

after application of 

  1 hour 

after application of 
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(treated with 

physostigmine and 

biperiden) 

 

Elderly CU 

(n=10) (treated 

with pyritinol) 

first day and 

biperiden for 

the second day  

 

Pyritin

ol 

physostigmine. 

 

  1 hour 

after application of 

biperiden. 

 

↑ after 

application of 

pyritinol. 

 

physostigmine. 

 

↑ 1 hour 

after application of 

biperiden. 

 

  after 

application of 

pyritinol. 

 

Dabic-Jeftic 

and Mikula (1993) 

ADD 

(n=7) 

Multi-

infarct dementia 

(MID) (n=15) 

CU 

 

Piracet

am for 3 

months 

  in 

patients with ADD 

and MID compared 

to CU individuals. 

 

↑ in 

patients with ADD 

and MID compared 

to CU individuals. 

 

 

Neshige et al. 

(1988) 

ADD 

(n=13) 

MID 

(n=14)  

CU (n=9) 

 

Physos

tigmine 

-

Treated-ADD 

(n=5) 

-

Treated-MID 

(n=5) 

   among 

groups. 

↑ in 

patients with ADD 

and MID compared 

to CU individuals. 

 

  in 6 

among 10 patients 

who received 

physostigmine. 

 

↑ in one 
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MID patient. 

 

P300 study with Continuous Performance task 

Knott et al. 

(2002) 

ADD 

(n=13)  

 

Acute 

nicotine 

treatment; 

- 

Treated with 

tacrine (n=6) 

- 

Denovo ADD 

(n=7) 

↑ in 

tacrine-treated 

group with visual 

paradigm with no 

difference detected 

with auditory 

paradigm at post-

nicotine 

administration. 

 

 

↑ in 

tacrine-treated 

group compared to 

non-treated group 

at pre-nicotine 

administration. 

P200 studies with Oddball task 

Chang et al. 

(2014) 

ADD (n=1

00) 

CU (n=20) 

 

Donep

ezil for for 23 

weeks. 

  ADD 

after the treatment. 

  ADD 

after the treatment. 

Lai et al. 

(2010) 

ADD 

(n=20) 

Denovo 

MCI(n=18) 

CU (n=14) 

 

Donep

ezil; 

- 

Baseline 

- 1 

year follow-up 

 

  at 

baseline and 

follow-up 

assessments. 

  at 

baseline and 

follow-up 

assessments. 

Neshige et al. 

(1988) 

ADD 

(n=13) 

Physos

tigmine 

  among 

groups. 
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MID 

(n=14)  

CU (n=9) 

 

-

treated-ADD 

(n=5) 

-

treated-MID 

(n=5) 

P200 study with Categorization task 

Kalman et al. 

(2005) 

Denovo 

ADD (n=13) 

Treated-

ADD (n=13) 

 

Intrave

nous sodium-

lactate 

↑ related to 

the positivity in the 

mean amplitudes 

after the lactate 

treatment. 

 

P100 study with Visual Checkerboard Stimulation 

Irimajiri et al. 

(2007) 

Treated-

MCI (n=8) 

Denovo 

MCI (n=7) 

CU (n=15) 

AChEIs

; 

(donep

ezil, 

rivastigmine, 

galantamine) 

  among 

groups. 

  among 

groups. 

N100 studies with Oddball task 

Chang et al. 

(2014) 

ADD (n=1

00) 

CU (n=20) 

 

Donep

ezil for for 23 

weeks. 

  after 

the treatment. 

  after 

the treatment. 

Lai et al. 

(2010) 

ADD 

(n=20) 

Denovo 

MCI(n=18) 

Donep

ezil; 

- 

Baseline 

  at 

baseline and 

follow-up 

assessments. 

  at 

baseline and 

follow-up 

assessments. 
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CU (n=14) 

 

- 1 

year follow-up 

 

Dabic-Jeftic 

and Mikula (1993) 

ADD 

(n=7) 

Multi-

infarct dementia 

(MID) (n=15) 

CU 

 

Piracet

am for 3 

months 

   in 

patients with ADD. 

 

Neshige et al. 

(1988) 

ADD 

(n=13) 

MID 

(n=14)  

CU (n=9) 

 

Physos

tigmine 

-

treated-ADD 

(n=5) 

-

treated-MID 

(n=5) 

  among 

groups. 

  among 

groups. 

N100 study with Categorization task 

Kalman et al. 

(2005) 

Treated-

ADD (n=13) 

Denovo 

ADD (n=13) 

 

Intrave

nous sodium-

lactate 

↑ related to 

the positivity in the 

mean amplitudes 

after the lactate 

treatment. 

 

N100 study with Continuous Performance task 

Knott et al. 

(2002) 

ADD 

(n=13)  

 

Acute 

nicotine 

treatment; 

  at pre- 

and post-nicotine 

administration. 

  at pre- 

and post-nicotine 

administration. 
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- ADD 

treated with 

tacrine (n=6) 

- Non-

treated  ADD 

(n=7) 

N200 studies with Oddball task 

Vaitkevičius et 

al. (2015) 

Treated-

ADD (ADD-T 

group) (n=22) 

 

Denovo 

ADD (ADD-N) 

(n=22) 

 

CU (n=50) 

 

Donep

ezil for 3 

months 

 

 

↑ ADD-

T>ADD-N 

 

 

Chang et al. 

(2014) 

ADD (n=1

00) 

CU (n=20) 

 

Donep

ezil for for 23 

weeks. 

  after 

the treatment. 

  after 

the treatment. 

Lai et al. 

(2010) 

ADD 

(n=20) 

Denovo 

MCI(n=18) 

CU (n=14) 

 

Donep

ezil; 

- 

Baseline 

- 1 

year follow-up 

 

  at 

baseline and 

follow-up 

assessments. 

  at 

baseline and 

follow-up 

assessments. 
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Neshige et al. 

(1988) 

ADD 

(n=13) 

MID 

(n=14)  

CU (n=9) 

 

Physos

tigmine 

-

treated-ADD 

(n=5) 

-

treated-MID 

(n=5) 

  after 

the treatment. 

  after 

the treatment. 

N200 study with Categorization task 

Kalman et al. 

(2005) 

Treated-

ADD (n=13) 

Denovo 

ADD (n=13) 

 

Intrave

nous sodium-

lactate 

↑ after the 

lactate treatment, 

the mean 

amplitude became 

more negative, 

however changes 

were not 

significant. 

 

  after 

normal saline 

infusion. 

 

 

 

Other late components (C185, C250, C325, C415, C540) 

Chapman et al. 

(2013) 

MCI 

(n=30)  

 

AChEIs 

and memantine 

  no 

difference in post-

treatment 

  no 

difference in post-

treatment 
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-MCI 

subjects converted 

to ADD (n=15) 

-Treated 

converted 

subgroup  (n=8) 

-Denovo 

converted 

subgroup (n=7) 

 

Stable 

MCI (n=15) 

-Treated 

stable subgroup 

(n=8) 

-Denovo 

stable subgroup 

(n=7) 

parameters during 

number-letter 

paradigm. 

 

parameters during 

number-letter 

paradigm. 
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Table 3. Treatment effects on EROs during simple light stimulation and oddball 

paradigm in patients with ADD 

Reference Participants Amplitude Change 

Event-Related Delta Oscillations 

Yener et al. (2012) Mild ADD(n=34); 

-Denovo ADD (n=17) 

-ADD treated with AChEIs (n=17) 

 

CU (n=17) 

 

  maximum peak-to-peak amplitudes 

of treated and denovo ADD groups 

compared to CU. 

 

Başar et al. (2010) 

 

Mild probable ADD (n=38); 

-Denovo ADD (n=19) 

-ADD treated with AChEIs (n=19) 

 

CU (n=19) 

 

  coherences in treated and denovo 

ADD compared to CU. 

 

  no treatment effects in coherence 

values between groups. 

 

Yener et al. (2009) 

 

ADD (n=22) 

-Denovo ADD (n=11)  

-ADD treated with AChEIs (n=11) 

 

CU (n=19) 

 

  no treatment effects during simple 

light stimulation. 

 

Güntekin et al. (2008)  Mild probable ADD (n=21); 

-Denovo ADD (n=10), 

-ADD treated with AChEIs (n=11) 

 

CU (n=19) 

 

  no treatment effect between groups. 

 

↑ coherence in CU individuals 

compared to treated and denovo ADD. 

 

Yener et al. (2008) 

 

Mild probable ADD (n=22);  

-Denovo (n=11) 

-ADD treated with AChEIs (n=11) 

 

CU (n=20) 

  no treatment effect between groups. 

 

  maximum peak-to-peak amplitudes 

of ADD regardless of AChEI 

treatment. 

 

Event-Related Theta Oscillations 

Başar et al. (2010) 

 

Mild probable ADD (n=38); 

-Denovo ADD (n=19) 

-ADD treated with AChEIs (n=19) 

 

CU (n=19) 

 

  coherences in treated and denovo 

ADD compared to CU. 

 

  no treatment effects in coherence 

values between groups. 

Yener et al. (2009) 

 

ADD (n=22) 

-Denovo ADD (n=11)  

-ADD treated with AChEIs (n=11) 

 

CU (n=19) 

 

↑ in denovo ADD during simple light 

stimulation compared to treated ADD 

and CU groups. 

Güntekin et al. (2008)  Mild probable ADD (n=21); 

-Denovo ADD (n=10), 

-ADD treated with AChEIs ADD 

(n=11) 

 

  no treatment effect between groups. 

 

  coherences in treated and denovo 

ADD groups compared to CU 

individuals. 
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CU (n=19)  

Yener et al. (2007) ADD (n=22); 

-Denovo ADD (n=11)  

-Treated ADD (n=11) 

CU (n=20) 

↑ phase-locking in treated ADD 

compared to denovo ADD. 

 

  phase-locking in denovo ADD 

compared to CU. 

 

  phase-locking  values between 

treated ADD and CU persons. 

 

Event-Related Alpha Oscillations 

Başar et al. (2010) 

 

Mild probable ADD (n=38); 

-Denovo ADD (n=19) 

-ADD treated with AChEIs (n=19) 

 

CU (n=19) 

 

  coherences in treated and denovo 

ADD compared to CU. 

 

  no treatment effects in coherence 

values between groups. 

 

Yener et al. (2009) 

 

ADD (n=22) 

-Denovo ADD (n=11)  

-ADD treated with AChEIs (n=11) 

 

CU (n=19) 

 

  no treatment effects during simple 

light stimulation. 

 

Güntekin et al. (2008)  Mild probable ADD (n=21); 

-Denovo ADD (n=10), 

-ADD treated with AChEIs (n=11) 

 

19 CU 

↑ coherences in treated ADD 

compared to denovo ADD group. 

 

↑ coherence values in CU persons 

compared to denovo ADD group. 

 

  between CU and treated ADD. 

 

 

Event-Related Beta Oscillations 

Başar et al. (2010) 

 

Mild probable ADD (n=38); 

-Denovo ADD (n=19) 

-ADD treated with AChEIs (n=19) 

 

CU (n=19) 

 

  no treatment effects in coherence 

values between groups. 

Event-Related Gamma Oscillations 

Başar et al. (2017) Mild probable ADD (n=39); 

-Denovo ADD (n=21) 

-ADD treated with AChEIs (n=18)  

 

CU (n=21) 

 

During both simple light stimulation 

and oddball paradigm; 

 

↑ coherences at fronto-parietal areas in 

treated ADD compared to denovo 

patients. 

 

↑ coherences over occipital-parietal 

electrodes in denovo  compared to 

treated ADD patients. 
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Başar et al. (2010) 

 

Mild probable ADD (n=38); 

-Denovo ADD (n=19) 

-ADD treated with AChEIs (n=19) 

 

CU (n=19) 

 

  no treatment effects in coherence 

values between groups. 

Yener et al. (2009) 

 

ADD (n=22) 

-Denovo ADD (n=11)  

-ADD treated with AChEIs (n=11) 

 

CU (n=19) 

 

  no treatment effects during simple 

light stimulation. 
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Table 4. The treatment effects of animal studies for ERP/EROs in AD 

References Participants Treatment Task ERP 

component 

 

Results 

Kim et al. (2020) 12 Aβ-infused 

mice model (Aβ 

group) 

 

7 normal mice 

model (vehicle 

group) 

 

Aβ-infusion Auditory 

oddball 

paradigm 

P100 

N100 

P200 

The   difference of ERP 

responses between 

standard and deviant 

tones in the Aβ-infused 

mice group. 

 

The   difference of N1 

component between 

standard and deviant 

tones in the parietal 

region in the Aβ-infused 

group. 

Nouriziabari et 

al. (2018) 

4 group of 12 

rats; 

-Saline-treated, 

GFP expressing  

-Saline-treated, 

tau-expressing  

-Scopolamine 

treated, GFP 

expressing 

-Scopolamine 

treated, tau-

expressing 

Scopolamine 

hydrobromide 

treatment 

Trace 

eyeblink 

conditioning 

paradigm 

P100 

P200  

P300 

N100 

N200 

 

 

Scopolamine caused the 

learning-related changes 

in the temporal P2 

component and other 

learning-unrelated 

components in three 

locations. 

 

Entorhinal tau 

overexpression primary 

affected the amplitude of 

temporal visual ERPs and 

learning-unrelated frontal 

and temporal auditory 

ERP components. 

Laursen et al. 

(2014) 

21 Sprague 

Dawley rats; 

-10 animals 

infused 1.25 µg 

IgG-192-SAP 

-11 animals 

sham-lesioned 

Donepezil 

hydrochloride 

Auditory 

oddball 

paradigm 

P300   amplitude in SAP-

lesioned rats compare to 

sham-lesioned rats. 

 

↑ amplitude in SAP-

treated rats after the 

treatment. 
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with sterile PBS 

Guadagna et al . 

(2012) 

Anesthetized 

mice 

Memantine Induced 

EEG activity 

by electrical 

stimulation 

and 

spontaneous 

EEG  

 Dose dependent 

alteration in induced theta 

activity in hippocampus; 

↑ in low dose 

  in high dose 

  in spontaneous theta 

rhythms. 

 

↑ in spontaneous and 

induced-gamma power. 

 

Hajos et al. 

(2013) 

Anesthetized 

mice 

Semagacestat 

(a gamma 

secretase 

inhibitor 

reducing 

amyloid-β) 

Induced 

EEG activity 

by electrical 

stimulation 

and 

spontaneous 

EEG   

   induced-theta activity 

in hippocampus. 

Kinney et al. 

(1999) 

Anesthetized 

rats 

Piracetam (a 

nootropic 

agent) 

Induced 

EEG activity 

by electrical 

stimulation  

 ↑ induced-theta activity 

in hippocampus. 

Kinney et al. 

(1999) 

Anesthetized 

rats 

Apamin (a 

potassium 

channel 

blocker) 

Induced 

EEG activity 

by electrical 

stimulation  

 ↑ induced-theta activity 

in hippocampus. 
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HIGHLIGHTS 

 The multidisciplinary expert panel aimed to review the effects of medications on 

ERO/ERP EEG oscillations in patients with ADMCI and ADD. 

 Treatment effects were mostly pronounced in the ERP P300 component along with theta 

and gamma ERO measures. 

 Electrophysiological markers may probe mechanisms of thalamocortical and subcortical 

neural (de)synchronization related to treatment effects. 
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