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Most organisms adjust their physiology and metabolism in

synchronization with the diurnal and seasonal time by using an

endogenous mechanism known as circadian clock. In plants,

light and temperature signals interact with the circadian system

to regulate the circadian rhythmicity of physiological and

developmental processes including flowering time. Recent

studies in Arabidopsis thaliana now reveal that the circadian

clock orchestrates not only the expression of protein coding

genes but also the rhythmic oscillation of introns, intergenic

regions, and noncoding RNAs. Furthermore, recent evidence

showing the existence of different oscillators at separate parts

of the plant has placed the spotlight on the diverse mechanisms

and communicating channels that regulate circadian

synchronization in plants.
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Introduction
Circadian rhythms are oscillations in biological processes

with a period of approximately 24 hours that are present in

most living organisms. These rhythms persist under con-

stant environmental conditions for several days or weeks

indicating that are generated by a self-sustained endogen-

ous oscillator known as the circadian clock [1]. In addition

to the central oscillator, the circadian system involves

input pathways that entrain or adjust the oscillator in

response to daily and seasonal changes in light and

temperature cycles. The so-called output pathways link

the central oscillator with the multiple physiological and

developmental processes that are rhythmically controlled

by the clock [1]. In this review, we attempt to briefly

summarize some basic notions on clock organization and

function, highlighting a few of the many recent discov-

eries that have considerably improved our knowledge of

circadian clock function in Arabidopsis thaliana. Many
Please cite this article in press as: Más P, Yanovsky MJ. Time for circadian rhythms: plants get
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excellent reviews cover with much more detail the

advances on plant circadian clock research and readers

are encouraged to consult them [2–4].

Circadian clock function and organization
The ultimate function of the circadian system is the

generation of physiological and metabolic rhythms in

close synchronization with the 24-hour period of the

cyclic environment [1]. Underlying all these rhythmic

biological activities are endogenous oscillations of gene

expression. Indeed, recent genome-wide studies have

shown that a high proportion of the Arabidopsis genes

rhythmically oscillate under environmental cycles or

under constant conditions [5�,6��,7�,8�]. Analysis of cis-
acting elements enriched in the promoters of these genes

has allowed the identification of morning-specific and

evening-specific motifs controlling the daily transcrip-

tional program [5�,8�]. By using tiling arrays, Hazen

et al. also identified about 25% of the protein coding

genes as circadianly regulated [6��]. The use of this type

of arrays has opened new horizons on clock function and

regulation as many intergenic regions, introns, and natural

antisense transcripts (NATs) were also found to be

regulated by the circadian clock [6��]. A majority of the

cycling introns had a similar phase to that of the coding

regions of the transcript, although in some instances,

there was a difference of 4–12 hours between the peak

phase of the intron compared to the exons. Unexpectedly,

the authors also detected rhythmic introns and NATs in

genes or sense strand transcripts lacking oscillations. It is

possible that this represents a new mechanism for clock-

controlled protein function at a very specific time window

during the circadian cycle. Noncoding transcripts in-

cluding microRNAs (e.g. miRNA160B, 167D, 158A,

157A), trans-acting siRNAs (e.g. TAS3), and small nucleo-

lar RNA (e.g. snoRNA77) were also found to be rhyth-

mically controlled, although the biological implications of

this regulation are uncertain, as some known targets of the

cycling miRNAs do not oscillate themselves. Overall, this

study clearly extends the circadian function far beyond

protein coding transcripts and opens exciting insights into

new functional regulatory mechanisms within the clock-

work. The circadian field waits for the biological

relevance and impact on clock function of these newly

discovered circadian regulations.

The biological rhythms rely on molecular oscillators

whose expression and activities are in turn rhythmically

controlled, mostly by interlocked transcriptional–transla-

tional feedback loops [1]. In Arabidopsis, a current model

of these interlocked loops includes the morning-

expressed MYB transcription factors CIRCADIAN
synchronized, Curr Opin Plant Biol (2009), doi:10.1016/j.pbi.2009.07.010
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CLOCK ASSOCIATED1 (CCA1) [9] and LATE

ELONGATED HYPOCOTYL (LHY) [10] which nega-

tively regulate the expression of the pseudo-response

regulator TIMING OF CAB EXPRESSION 1 (TOC1, also

known as PRR1) [11,12]. TOC1 in turn, positively drives

CCA1 and LHY transcription, closing the loop for the next

cycle [13]. Evidence of a mechanism by which CCA1

might repress TOC1 expression during the day was pro-

vided in a recent study [14]. The mechanism includes the

clock-controlled changes of histone acetylation at the

TOC1 promoter, which are antagonized by the direct

binding of CCA1 [15]. LHY might also participate in

the repression of histone acetylation, as both transcription

factors act synergistically in the control of circadian

rhythms by the clock [16]. It would be interesting to

examine whether the repression by CCA1 and LHY of

other evening-expressed genes also occurs by antagoniz-

ing histone acetylation at their promoters. The expression

of CCA1 and LHY is in turn tightly regulated by other

clock components, including the members of the TOC1

family, PRR7 and PRR9, which altogether form the so-

called morning loop [17–19]. Lastly, proper regulation of

rhythmic expression in the evening was proposed to

require the reciprocal regulation between the clock-

associated protein GIGANTEA (GI) and TOC1 [20]

although the results of some genetic studies are now

questioning the direct role of GI within the evening

oscillator [21,22]. In any case, it is clear that these tran-

scriptional feedback loops are not sufficient to explain all

the rhythmicity in the plant [23] and thus, major research

efforts have been devoted to the identification of new

oscillator components. A recent study illustrates this point

with the characterization of a TCP (TB1, CYC, PCFs)

transcription factor denominated CHE (CCA1 HIKING

EXPEDITION) [24��]. CHE represses the expression of

CCA1 most likely through direct binding to the CCA1
promoter. The elevated transcript abundance of CHE in a

cca1/lhy double mutant background was indicative that

CCA1 and LHY in turn repress CHE expression, estab-

lishing a new transcriptional feedback loop between

CCA1/LHY and CHE [24��]. CHE might also function

as a molecular connector between TOC1 and CCA1/LHY

as the study reports the physical association of CHE with

TOC1. Protein–protein interactions among clock com-

ponents and regulation of protein stability are other

regulatory mechanisms intimately linked with the circa-

dian system and contribute to the stability and robustness

of the clock [25,26].

New advances on clock synchronization with
the environment
Light and temperature are the main environmental cues

responsible for clock synchronization with the environ-

ment. The synchronizing signals help to adjust the

endogenous period of the clock to exactly match the

24-hour environmental cycle [27]. The red/far-red and

the blue light photoreceptors PHYTOCHROMES
Please cite this article in press as: Más P, Yanovsky MJ. Time for circadian rhythms: plants get
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(PHY) and CRYPTOCHROMES (CRY) have been

known for a decade to play a central role in the synchro-

nization of circadian oscillations to light/dark cycles [28]

although the molecular mechanisms behind this regula-

tion have remained obscure. These photoreceptors

promote photomorphogenic development antagonizing

the action of an E3 ubiquitin ligase, COP1 (CONSTI-

TUTIVELY PHOTOMORPHOGENIC 1) that targets

for degradation transcription factors involved in light

signaling [29]. A role for COP1 in the regulation of

circadian rhythms and flowering time had been reported,

but how COP1 affects these processes was uncertain. A

recent report has shed some light on how COP1 contrib-

utes to regulate flowering time and circadian rhythms

[30��]. The study shows that the flowering phenotypes of

cop1 mutant plants can be largely rescued under short day

cycles of 18 hours, which more closely resemble the

circadian period of this mutant. Thus, an important part

of the cop1 flowering phenotype is owing to its circadian

defect. In addition, cop1 is epistatic to cry2 in the regu-

lation of flowering time while mutations in GI are epistatic

to cop1. This establishes an order in which COP1 acts

downstream of CRY2 and upstream of GI in the regula-

tion of flowering time. Furthermore, COP1 interacts in
vivo with GI and this interaction contributes to regulate

GI abundance specifically in the dark and in the presence

of the clock-related and flowering-related gene ELF3

(EARLY FLOWERING 3). Thus, light regulates circa-

dian rhythms in part by antagonizing COP1 activity in the

nucleus, which modulates GI protein stability through an

interaction facilitated by ELF3.

In addition to the entrainment of the clock by light

signals, the importance of other synchronizing cues has

been highlighted in a number of interesting studies.

These studies have shown the existence of a temperature

sensitive oscillator that can be distinctly phased from the

oscillator synchronized by light [31]. Furthermore, ther-

mocycles synchronize the phase of the clock by a differ-

ent mechanism than photocycles [8�] with the cyclic

changes in temperature dominating over photocycles in

the synchronization of processes such as cell cycle and

protein synthesis [8�]. However, some connection be-

tween the light-sensing and temperature-sensing systems

might exist as the photoreceptor signaling pathways are

temperature sensitive [32,33]. Studies of rhythmic oscil-

lations after entrainment to thermocycles and clock reset-

ting in response to cold pulses suggested that the two

pseudo-response regulators PRR7 and PRR9 might be

essential components of an oscillator necessary for proper

clock responses to temperature signals [19,34].

The studies of clock synchronization by environmental

cues are usually performed with adult plants. Interest-

ingly, a recent study has shown that in germinating

seedlings, the rhythmic expression of clock genes can

be detected as early as two days after imbibition, even
synchronized, Curr Opin Plant Biol (2009), doi:10.1016/j.pbi.2009.07.010

www.sciencedirect.com
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Figure 1

Schematic representation depicting a model for clock function in Arabidopsis shoots and roots. The circadian system in Arabidopsis shoots is

composed of interconnected morning and evening oscillators. In the morning loop, CCA1 and LHY activate the expression of PRR7 and PRR9 that in

turn repress CCA1 and LHY. In the evening oscillator, GI functions in the promotion of TOC1 that in turn represses GI expression. The morning and

evening loops are connected by the reciprocal regulation between CCA1 and LHY with TOC1. In roots, there is only a morning loop; the interactions

between TOC1 and GI in this organ are not clear. Under light:dark cycles, a photosynthesis-related signal (Ph-signal) from shoots synchronizes the

morning loop in roots (discontinuous green arrow). For simplicity, some clock-associated components were not included in the scheme. Arrows

denote transcriptional activation while lines ending in perpendicular dashes indicate repression. The white semicircles indicate light period during the

day or subjective day; the dotted semicircles indicate the light conditions during the subjective night; the dark semicircles indicate the dark conditions

during the night. In the root clock, the blue dashed lines and question marks in the subjective night indicate unknown components or regulatory

mechanisms.
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It was concluded that seed hydration was sufficient not

only for initiating rhythmicity but also for clock synchro-

nization among individuals [35]. The presence of clock

activity in etiolated seedlings is suggestive of an entrain-

ment mechanism driven initially by temperature and

followed by light–dark entrainment of the soil-emerged

seedlings.

Internal coordination of circadian rhythms
An appropriate phasing of circadian rhythms generated in

different organs is crucial for optimal fitness and adap-

tation. Indeed, jet lag symptoms arise when clocks pre-

sent in different organs are not operating in synchrony

because of a differential speed of adjustment to a new

light/dark environment [36]. Plants, unlike animals, lack a

central nervous system that keeps circadian oscillations

synchronized within cells located in different organs. So

what keeps the clocks from shoot and root cells in synch?

A recent paper explored this question [37��]. The authors

observed that the clock genes CCA1 and LHY oscillated

in synchrony in roots and shoots under light:dark (LD)

cycles but not under continuous light (LL), suggesting
Please cite this article in press as: Más P, Yanovsky MJ. Time for circadian rhythms: plants get

www.sciencedirect.com
that a shoot-derived signal was entraining the clocks in

root cells under LD conditions [37��] (Figure 1). Indeed,

addition of sucrose to the medium at dusk in plants grown

under LD cycles mimicked the effect of LL conditions

(i.e. there was a loss of synchrony between shoot and root

clocks). In addition, blocking photosynthesis with an

inhibitor of electron transport in chloroplasts, affected

expression of clock genes in roots but not in shoots [37��].
Thus, all the above results suggest that an entraining

signal, most likely carbohydrates produced by the photo-

synthetic process, is translocated from shoots to roots and

contributes to synchronize circadian oscillations in root

cells with those in the shoot (Figure 1).

How many oscillators?
A long-standing question closely related with the circa-

dian synchronization of rhythms in separate parts of the

plant is the possible existence of different oscillators with

distinct properties. Studies showing various free-running

periods of independent outputs were indeed suggesting

the existence of more than one oscillator with a different

molecular architecture [31,38,39]. However, it was not

clear whether there was a cellular or tissular specificity in
synchronized, Curr Opin Plant Biol (2009), doi:10.1016/j.pbi.2009.07.010

Current Opinion in Plant Biology 2009, 12:1–6
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the organization of the multi-loop oscillators. The study

by James et al. mentioned above, also provided new

insights into variations of clock regulation and function

among different Arabidopsis tissues [37��] (Figure 1). The

study shows that TOC1 mRNA clearly cycles under con-

tinuous light in shoots but not in roots. TOC1 oscillations

are normally driven by the direct binding of LHY and

CCA1 to the evening element (EE) present in the TOC1
promoter. In roots, however, LHY is unable to bind the

EE, resulting in constant and elevated TOC1 mRNA

levels. Consistent with the lack of function of the evening

loop in roots, toc1 mutants shorten the period of LHY
expression in shoots but not in roots. In animals, mice

lacking the protein CLOCK are arrhythmic for locomotor

activity, but show normal circadian rhythms of food

anticipatory activity [40]. In contrast, PER2 mutant mice

have defects in both types of circadian rhythms. Inter-

estingly, circadian rhythms in food anticipatory activity

are driven by a food entrainable oscillator, which is

distinct from the light entrainable oscillator present in

the suprachiasmatic nucleus. The presence of different

oscillators was also inferred in studies of the mechanism

generating the methamphetamine-sensitive circadian

oscillator which does not involve the extensively charac-

terized and canonical molecular feedback loops [41].

Thus, the existence of circadian oscillators with different

molecular architectures, different sensitivities to synchro-

nizing signals, and localized in different organs appears to

be a common theme in the plant and animal circadian

systems.

Interaction with other signaling pathways
The proper timing of clock outputs with the external

environment was suggested to confer an adaptive

advantage to plants allowing both the anticipation of

the environmental transitions and the proper phasing

of physiology and metabolism. Indeed, various studies

have shown that proper clock function enhances plant

fitness and survival [42–44]. Furthermore, clock regula-

tion of physiological and metabolic pathways provides

gain advantages to hybrids and allopolyploids, leading to

growth vigour and increased biomass [45�]. In this sense,

it is not surprising that the critical interactions between

the circadian clock and other pathways, including those

of stress and hormone signaling [5�,46] exist. Consistent

with this notion, microarray studies have revealed a

significant overlap between transcripts controlled by

the clock and auxin [47�], methyl jasmonate, and abscisic

acid [48�]. Furthermore, the abundance of ABA, auxin,

brassinosteroids, ethylene, and gibberellins was shown to

be regulated by the clock [49–52]. The circadian clock

also controls the sensitivity to auxin, affecting the plant

responses to this hormone [47�]. In turn, circadian clock

function can be also regulated by cytokinin, abscisic acid,

and brassinosteroids which modulate a diverse range

of circadian parameters [53,54]. A recent study has

also shown that internal coincidence of phytohormone
Please cite this article in press as: Más P, Yanovsky MJ. Time for circadian rhythms: plants get
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signaling and external coincidence with darkness are

both required to coordinate plant growth [7�]. Thus,

the circadian clock was shown to indirectly control

growth by gating light-mediated phytohormone tran-

script abundance [7�].

The circadian clock also interacts with signaling path-

ways involved in plant responses to cold temperatures

[55,56]. Rhythmic expression of cold-induced transcrip-

tion factors is gated by the clock which in this way

modulates the plant tolerance to freezing conditions

[57]. The complexity of interacting networks was exem-

plified by the finding that cold acclimation is also

regulated by low red to far-red ratio (R/FR) light signals

in a clock-dependent manner [58]. New studies are

increasingly demonstrating a broader network of cross-

talk between the clock with many other pathways in-

cluding sugar signaling [59], nitrogen assimilation [60�],
carbon status [61], metabolite abundance [62] as well as

with other signaling molecules such as Ca2+ and cyclic

adenosine diphosphate ribose [63�].

Concluding remarks
The plant circadian world has been shaken by a number

of recent studies dealing with fundamental questions of

circadian clock function. Plant organs with differential

susceptibility to internal and external synchronization

cues place the spotlight on the diverse mechanisms

and communicating channels that regulate circadian syn-

chronization in plants. Different oscillators in separate

parts of the plant also open exciting research avenues on

the molecular architecture of the oscillators that

temporally and spatially regulate clock outputs. The

recurring observation in plants and animals of transcrip-

tional feedback loops that can be plugged or unplugged

from the circadian network in specific organs opens a

series of interesting questions: How are oscillations

within morning loops regulated in the absence of the

evening loop? Are there other connecting loops that aid in

the generation of rhythmicity? What are the signals and

mechanisms underlying synchronization in roots? Is the

modular nature of the circadian system necessary for

appropriate entrainment of the clocks from different

organs, and/or for proper regulation of organ-specific

outputs? Judging by the fast pace and the relevance of

the recent findings, we are positive that these and other

crucial questions will soon receive a conclusive answer.
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