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Abstract
In diffuse optical tomography (DOT) themain objective is to estimate the absorption coefficent and
the reduced scattering coefficient of a certainmedia given a set of boundarymeasurements. Biological
tissues containsmany objects such as arteries, skin and fat whose optical properties are rather different
than those of themedia.When these values are near to those of the background, linear techniques are
usually used to estimate them.However, certain objects, such as tumors,may have properties which
cannot bewell estimatedwith linearmodels. In this article we present a non-linear approach for the
frequency-domain problembased on an improvement of the extendedKalmanfilter (EKF)which is
used in estimation-observation problems, andmodified to theDOTparameter estimation problem.
The EKF allows to incorporate prior information of themeasurement noise as well as certain
characteristics of the objectivemedia.We show that the proposedmethodology is equivalent to
existingmethods but can be applied to other schemes such asmodel reduction as suggested in
previousworks. Some computer simulations as well as experimental results are shown to validate our
proposal.

1. Introduction

Diffuse optical tomography (DOT) is an imaging
technique that allows one to recover, given bound-
ary measurements, the optical properties within a
turbid medium. Many applications of this techni-
que are in the field of medical imaging [1]. Given
that the inverse problem needed to solve DOT is
computationally expensive, many works have been
done considering linear approximations, for exam-
ple in [2] the linear problem is solved with the use
of prior anatomical information, or, in [3], validates
experimentally a hierarchical Bayesian problem,
corresponding to the linear case. However, there
are not so many contributions for the non-linear
case [4, 5], where a Levenberg–Marquardt algo-
rithm and a Gauss–Newton scheme were developed,
respectively.

The Kalman filter (KF) [6] is a technique used
to solve observation-estimation problems which
has been used in many areas of science and engineer-
ing. As it has been so widely studied, many improve-
ments and implementations have been developed

succesfully (see for example [7]). In DOT, the KF
was applied to model physiological components
from physiological measurements [8]. Although, the
extended Kalman filter (EKF) has been applied in
fluorescence diffuse optical tomography (FDOT) to
study the pharmacokinetics of the indocyanine green
[9, 10], to the best of the autors knowledge, it has not
been applied, so far, to DOT.

In this work, we present a modified EKF algo-
rithm, which is one of the possible extensions to non-
linear problems, in the context of DOT. This contrib-
ution is organized as follows: in the next section we
present the theoretical basis of the DOT problem and
the chosen modeling approach. Then, in section 3, the
EKF algorithm and a the proposed modification are
described. In section 4, we present the rationale and

algorithms for optical properties estimation. Section 5,
describes the validation of the proposal through num-
erical simulation and phantom experiments. The
main results are shown in section 6. Finally, in
section 7 we present a discussion together with the
main conclusions.
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2. Light propagation through diffusion
equation

Light propagation in turbid media, such as biological
tissues, is modeled with the radiative transfer equation
(RTE) [11], which is an integro-differential equation
whose solutions are available only for simple and
homogeneous geometries [12, 13]. Numerical or
stochastic methods such as Monte-Carlo integration
are possible but they are computationally too expen-
sive if they aremeant to be applied in clinic evaluation;
requiring quasi real-time performance. To avoid these
problems, a diffusion approximation of the RTE can
be derived [14] through spherical harmonics expan-
sion and considering only isotropic and linearly
anisotropic terms Consider W Ì n be a simply
connected domain with boundary ¶W Ì n. Let
m ( )ra andD(r) be two scalar functions representing the
absorption and diffusion coefficients at position r,
respectively. Let W( )S r, be an incoming radiation
boundary condition at position rwith modulation
frequency Ω. Then, the photon density ( )I r w, inside
the domain satisfies the equations [15]
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with m m¢ = -( ) ( )r g1s s

is the reduced scattering coefficient and g the aniso-
tropy factor. A is the Fresnel reflection coefficient
which incorporates the refractive index mismatch at
the air-tissue boundary. n is the outward normal
vector to W.

The solution of equation (1) is modeled with an
operator F X Y: where X is the space of para-
meters (m D,a ) and Y is the measurement space. There
are many approaches to F, such as analytical results
[17, 18, 16] when the media is homogeneous and the
geometry is simple, or numerical results (finite differ-
ence [14], finite element [4, 5], Monte Carlo solutions
[19]) otherwise. In this work we use NIRFAST [4]
finite element approach, which is a MATLAB ® tool-
box for DOT that solves the forward problem, the
inverse problem and also calculates the Fréchet Deri-
vative, or Jacobian matrix, which will also be used
throughout this article.

3. The EKF

The KF [20] is a tool that allows one to perform
dynamic estimation-observation in dynamic systems,
based on Gaussian likelihood and Gaussian a priori
information. In linear dynamic systems it can be
shown that the solution obtained with this filter is
optimal, provided that some conditions are satis-
fied [6].

The EKF is the natural extension of the linear KF
[6] to non-linear problems. The main idea is to take
the linearization at each time step and apply the linear
KF to predict and update the state towards the next
time step.

The general formulation can be stated as follows:
let Î xk

n be the estimated parameter and Î yk
m

the measurement obtained, both at k–time, the obser-
vation-evolutionmodel is
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where Mk is the state evolution operator, Hk is the
measurement operator, uk is a control variable,

Î ´Qk
n n and Î ´Rk

m m are positive-semidefinite
matrices and ( )N a C, is a Normal distribution with
mean a and covariance matrix C. Given =+ ( )x E x0 0 ,

T= - -+ + +(( ) ( ))P E x x x x0 0 0 0 0 , where E(x) is the
mathematical expectation, the EKF solution to the
system (2) is given by a prediction-update procedure
accordingly with [6]
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At each time step, the predicted or a priori covar-
iance -Pk is estimated by linearizing the state evolution
operator and combining it with the a posteriori esti-
mate -

+Pk 1 obtained at the last time step. The predicted
estimate -xk is obtained by evolving the a posteriori
estimate with the operator M. In the update phase,
Kalman gain matrix Kk is calculated. This matrix tells
us how reliable the measurements are. The a posteriori
estimate +xk is an update that considers the Kalman
gain and the innovation term - -( ( ))y H x .k k

Even though the EKF is the natural extension of
the linear KF, it does not preserve the optimality prop-
erty because of linearization errors and the Gaussian
assumption [6].

4.Optical properties estimation

Consider the frequency-domain problem of estimat-
ing m= ( )x D,a , Î x n2 with n the number of
discrete objects in our medium. Given a modulation
frequencyΩ, at each detector, amplitude and phase are
obtained in a complex measurement, i.e. Î y ,

= +y y yip j p j p j,
amp

,
phase

, , where =p n1 ,.., s,

= ¼j n1, , d , where p and j are the source and detector
numbers, respectively. The integers = * *m n n2 s d

are the total numbers of sources and detectors,
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respectively. In this way we get Î y m which
represents themeasurements. If we define

= ( ˆ ˆ ) ( )y y ylog , , 5amp phase

where the logarithm is to be applied component-wise,
and

= ¼ˆ ( ) ( )y y y, , 6ns ndamp
amp
1,1

amp
,

= ¼ˆ ( ) ( )y y y, , . 7ns ndphase
phase
1,1

phase
,

In order to use the EKF model we need to write the
estimation problem as an observation-evolution
model. Since we are considering optical parameters,
we assume no evolution. Thus, we consider

=( )M x u x, ;k if we put it in terms of (2)we obtain

= ++x x wk k k1

which is a randomwalk, i.e. the difference between the
next and present steps follows a normal distribution
with zeromean.

Let =Q Qk and =R Rk for all k, i.e. the covar-
iances are time-independent, andH=F the model in
(1). Finally, we set all the measurements to be the one
and only measurement we have, i.e. =y yk for all k.
We are ready to implement the EKF approach obtain-
ing algorithm1.

Algorithm1.ExtendedKalmanfilter

Let H Q R, , be as defined above, let

=+ ( )x E x ,0 0
T= - -+ + +(( ) ( ))P E x x x x0 0 0 0 0

1: Procedure EKF + +( )x P Q R, , ,0 0 ▹Apriori information

2: While stopping criteria is not satisfied do

3: Calculate Jacobian ¢ -
+( )H xk 1

4: Calculate the predicted parameters -xk and -Pk according

to equation (3)
5: Calculate the a posteriori parameters +xk and +Pk , using

equation (4)
6: = +k k 1

7: endwhile

8: return +xk , +Pk

9: end procedure

However, this approach, depending on the para-
meters Qk and Rk, could take a large amount of itera-
tions making the method inefficient. To improve
convergence we add a line search when we calculate
the a posteriori estimate, i.e. we seek for a a Î*  such
that

a ad
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where d = - -[ ( )]K y H xk k k k , as defined in (4),
T=R DDk and T=+P LLk , which can be obtained via a

Cholesky factorization [21]. From an optimization
point of view, we are considering vector dk as a descent
direction, the line search approach finds a better
estimate given the actual point -xk and dk.

Inexact line search such as polinomial interpola-
tion orArmijo rule, can be used [22].

With this improvement, the algorithm is modified
obtaining the improved EKF

Algorithm2. Improved EKF

Let H Q R, , be as defined above, let

=+ ( )x E x ,0 0
T= - -+ + +(( ) ( ))P E x x x x0 0 0 0 0

1: ProcedureEKF + +( )x P Q R, , ,0 0 ▹Apriori information

2: k=1
3: While stopping criteria is not satisfieddo

4: Calculate Jacobian ¢ -
+( )H xk 1

5: Calculate the predicted parameters -xk and -Pk according to

equation (3)
6: Calculate +K P, ,k k and d = - -[ ( )]K y H xk k k k

7: Perform a line search by solving (8) and
update a= + -+ - -[ ( )]*x x K y H xk k k k k

8: = +k k 1

9: endwhile

10: return +xk , +Pk

11: end procedure

4.1. Acceleration viamodel reduction
A drawback of the method is the computational
burden, considering that an inversion must be com-
puted, and several matrix products are needed to
update the covariance matrices. One possible solution
to this issue is to reduce the size of the mesh in such a
way that the computation can be made fast enough to
satisfy the required application, for example, in real-
timemonitoring where the updatemust be done in the
order of 2 or 3 s. To do so, we propose to use a Model
Reduction approach as suggested in [23]. First, the
unstructured mesh ( )x o is interpolated into a regular
mesh ( )x r , where we can define the first order
derivative L and use it to generate the gaussian
smoothed samples ¼{ }( ) ( ) ( )x x x, , ,r r

k
r

1 2 , then, the sam-
ples are taken back to the original mesh

¼{ }( ) ( ) ( )x x x, , ,o o
k

o
1 2 and taken to a reduced mesh

¼{ }( ) ( ) ( )x x x, , ,i i
k

i
1 2 via an application  P : n m, as

seen infigure 1.

Figure 1.Mesh transformation scheme.Xr refers to the
regularmesh,Xo corresponds to the originalmesh, and x i

refers to the reducedmesh.  P : n m is the transforma-
tion from the originalmesh to the reducedmesh.
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Following the procedures in [23], the meanModel
Reduction error = -( ( ) ( ))( ) ( )e E H x H xo r

0 , where E
is the mathematical expectation, and the corresp-
onding covariances matrices Gxh

and GH are imple-
mented in our EKF by setting

= -ˆ ˆ ( )y y e 90 0

= + G ( )P P 10x0 0 h

= + G ( )R R 11H

This is an example of the potentiality of the EKF
formulation, allowing to implementModel Reduction
in a natural scheme, it is possible to perform a very fast
implementation inMATLAB®which can be improved
even more if languages such as C or FORTRAN are
used to develop such schemes.

5. Validation

To validate our approach,we performed both, compu-
tational simulations and phantom experiments.

5.1. Computational simulations
As a proof of concept, continous-wave (CW) simula-
tions (the modulation frequency set to w = 0) carried
out in a 2D domain containing embedded objects with
optical properties emulating a tumor [24]were used to
generate synthetic measurement sets. They were con-
taminated with measurement noise at different levels.
These data sets were used to reconstruct the optical
properties of the whole domain. The quality of the
reconstructions obtained using our EKF were com-
pared with those found with the NIRFAST solver [4]
by means of the merit criterium given below. In the
first scenario, the computational domain consists of a
circle of radius =r 30 mm, as shown in figure 2 with
background optical properties m = -0.01 mma

0 1 and
m¢ = -1 mms

0 1. Two objects are embedded inside the

medium, namely, a disk with m m= 2a a
0

disk
centered

at = - -[ ]r 10 mm, 10 mmcenterdisk
with radius

=r 5 mmdsk , and an ellipse with m m= 2a a
0

ell
centered

at = [ ]r 10 mm, 10 mmcenterell
with major and minor

semi-axis lengths of 10 mm and 6 mm, respectively.
The reconstruction bi-dimensional mesh is com-

pound of 2907 nodes and 5624 triangular elements,
while the mesh used to generate data is compound of
10547 nodes and 20404 elements; the sources and
detectors are uniformly placed over the domain
boundary as shown in figure 2. If we assume multi-
plicative noise, when we take the logarithm of the
measurements, the noise is additive.

= + ( )y y ylog log log , 12data model noise

where ynoise takes account of all the noise sources such
as shot noise, detector coupling, source attenuation,
electronic noise, etc. For our simulations, the noise
level is set between 1.01 and 1.05 obtaining from 1% to
5%of deviation.

To show the proposed acceleration, we performed
the same reconstruction with Model Reduction using
a coarse mesh with 341 nodes and 618 triangular ele-
ments which, in normal conditions, would give erro-
neous results, in this work, we have used n=2000
Gaussian smoothed samples.

5.2. Phantom experiment
As sketched in figure 3 a parallelepiped of height and
width given by = =h w 100mm and thickness
L=33mm, made of epoxy resin was used as a
phantom to acquire time-resolved (TR) data using a
time correlated single photon counting system (Beck-
er&Hickl, SPC 130). TiO2 particles and black tonner
were added to the resin to provide the desired
scattering and absorptionvproperties simmilar to
those of biological tissues, respectively. The optical
properties of the homogeneous background at

Figure 2. First scenario: (a) domain and (b) source–detector configuration. All dimensions inmm.

4

Biomed. Phys. Eng. Express 3 (2017) 015013 GRBaez et al



l = 785 nm were obtained from TR measurements,
resulting in m = 0.003342a

0 mm−1 and

m¢ = 2.5833s
0 mm−1. Two cylindrical inclusions of

radius and height of 10mm, emulating tumor-like
lesions and also made of epoxy resin were embedded
in the host phantom, located at

= -( ) ( )x y z, , 8, 10.5, 7.51 1 1 mm for inclusion 1 and
=( ) ( )x y z, , 0, 0, 232 2 2 mm for inclusion 2. Their

optical properties were previously measured from
corresponding homogeneous slabs from which the
inclusions were cut and shaped. Their values relative
to the host resulted: m m= 2.5a a

1 0, m m¢ = ¢1.5s s
1 0,

m m= 1.8a a
2 0 and m¢ = 1.8s

2

The phantom was illuminated at one face by a col-
limated laser beam emmited from a 4mW average
power ps diode laser operating at l = 785nm and at
50MHz repetition rate (Becker & Hickl BHLP-700).
Diffuse light emerging at the opposite flat face of the
host was collected by an optical fiber bundle
(f = 4mm, NA: 0.11) and sent to the photo-
multiplier (Becker&Hickl, PMC100).

The illuminating beam was positioned in direc-
tions X and Y around nine positions, centered at

=( ) ( )X Y Z, , 0, 0, 0s s s0 0 0 , uniformly covering a flat
window of 20×20mm2 in 10mm steps in both
directions. Similarly, the collection fiber bundle
was moved around 25 positions on the light exit
face, uniformely covering the same area as the
laser, but in 5mm steps and centerd
at =( ) ( )X Y Z L, , 0, 0,d d d0 0 0 .

The whole system was automated by an ad-hoc
software written in LabView®and using motorized
translation stages (Zaber Technologies, Canada).
Data was collected in time-domain regime, Fourier
transformed to the frequency-domain, and selected
the amplitude and phase corresponding to

w = 100MHz, in order to be handled by our algo-
rithm. Calibration was performed using and homo-
geneous phantom with the same dimensions and
optical properties as the background of the objective
phantom. Calibration is necessary to make the mea-
surements compatible with the algorithm. The recon-
structionmesh is an unstructured parallelepipedmesh
with 11877 nodes and 49633 linear tetrahedral ele-
ments. The reconstruction volume simulates a sub-
domain of the original phantom of dimensions

´ ´45 mm 45 mm 33 mm (see figure 4).

6. Results

In order to perform the reconstructions detailed in
algorithm 2, we choose as starting values m=+x a0

0,

g=+ ( )P diag0 with g = -10 3. We set the covariance
with a short step to avoid very large jumpswhich could
lead to divergence of the method because of the ill-
posedness of the problem. To initialize R we use
= ( ∣ ∣)R ydiag 1 data (as suggested in [25]) where we

assume the that measurements are uncorrelated. Note
that the measurement covariance acts as a measure-
ment regularization operator (see equation (4)),
because of this, high diagonal elements in the covar-
iance matrix could lead to smooth solutions at the
expense of the quality of the reconstruction setting.
R=0 is equivalent to assume that the measurements
are perfect, i.e. without noise, which could lead to
noisy reconstructions because the operator Hk is ill-
conditioned [14]. The algorithm stops when the norm
of the relative step is below 2%. Given that the linear
KF, in the Bayesian sense is the Maximum a Posteriori
(MAP) [26] estimate of a Gaussian likelihood over the
measurement error and a Gaussian a priori, the EKF is
the MAP calculated at each iteration, also assuming

Figure 3.Experimental Setup showing the host parallelepiped and the areas scanned by the source and detection fiber bundle.
Inclusions are not shown for clarity.
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Gaussian likelihood and prior, which guarantees
smooth solutions as shown in figure 5. To assess the
goodness of the reconstructions we use the merit
function defined by

= -( ) ∣∣ ∣∣ ∣∣ ∣∣ ( )e x x x x 13rec rec exact 2 exact 2

where xexact is the objective mesh. In figure 5 recon-
structions of scenario 1 corresponding to figure 2 are
shown where the NIRFAST reconstruction is used as a

reference. Note that NIRFAST offers two types of
iteration-based filters, namely, a median and a mean
type. No filtering was used in our simulations and
comparisons given that our algorithm does not make
use of any filter. To test the robustness of our
approach, three different noise levels are represented.
Namely, the first row corresponds to a noise level of
0.5%, the second one to noise level of 1% and the third
one to 2%. Although both algorithms successfully
locate both inclusions, below 2% of noise level, the
EKF approach shows improved robustness giving
reasonable good results even for noise levels up to 10%
as can be seen in figure 7. In figure 6 the condition
number of the matrix = ¢ ¢-S H P H Tk k k k which suggests
how stable the inversion procedure in the updating
step (4) is.

In table 1 the goodness of the reconstructions are
shown for each noise level and each algorithm

Figure 4.Geometry of the phantom sub-domain showing the locations of the two target inclusions. The sub-domain shownhas
dimensions ´ ´45 mm 45 mm 33mm.

Figure 5. Simulated data reconstruction: comparison of ma
EKF reconstructions (first column) versus ma NIRFAST
reconstructions (second column) for three different noise
levels. Namely, from top to bottom, 0.5%, 1% and 2%.No
filteringwas used between iterations in any case.

Figure 6.Condition number of thematrix T= ¢ ¢-S H P Hk k k k in
the non-reducedmesh, for a 3%noise level versus iteration
number.
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according to the merit function given in (13). Note
that while NIRFAST inverse solver produces mono-
tonically crescent values of the function e(x), the EKF
produces nearly constant values for all three noise
levels. This occurs because the EKF was inherently
designed to deal with measurement errors [6]. In
table 2 iterations and CPU time are shown. The EKF
requires less iterations but more time spent at each
iteration, this is caused by the line-search procedure at
line 7 of algorithm 2. Here, we are using cubic inter-
polation. Clearly, faster line-search algorithms would
result in faster iterations.

In figure 8, we show the reconstruction with the
model reduction approach. Although some of the preci-
sion is lost, the acceleration is huge given that the amount
of nodes is considerably less than our original mesh, the
mean time per iteration in the original mesh is about
3.43 s while, on the reduced mesh, the mean iteration
time is about 0.43 s, i.e. almost oneorder ofmagnitude.

For the experimental data, the reconstruction can
be seen in figures 9 and 10 which represents a fifth

iteration of our algorithm, taking 10 min on a 3.9 GHz
Pentium I7 and 24 GB of RAM. Regarding the size and
location, the inclusions are well recovered, especially
with ma, although the contrast is not as good as expec-
ted in m¢s. Finally, in m¢s it is notorious the appearances
of artifacts.

7.Discussion and conclusions

In this work, we developed and tested a modified
version of the extended Kalman filter (EKF) and
applied it to diffuse optical tomography, both in CW
and frequency-domain reconstructions. We com-
pared its performance with the NIRFAST inverse
solver, obtaining good results concerning robustness.
Performed simulations show that the EKF is capable of
retrieving both, location and optical properties of
embedded inclusionswith a certain degree of precision
even for noise levels as high as 10%.Moreover, speed is
comparable with NIRFAST inverse solver and, addi-
tionally, no iteration-based filtering is needed. Given
that the EKF produces the Gaussian best approx-
imation the density of the density

p = - - -+ + +( ∣ ) ( ∣∣ ( ) ∣∣ ∣∣ ∣∣ )
( )

x y H x y x Zexp

14

k k k k R Q1 1 1
2 2

where Z is a normalization term, the resulting
reconstructions are smooth. Although true solutions
may not be smooth, it can be a good starting point for a
linear reconstruction which preserves edges, such as
L1 or total variation regularization. The covariance
matrix obtained may be stored to follow the evolution
of the studied media at a later time (for example, to
follow the evolution of a lesion or tumor).

The EKF approach can be seen as a generalization
of the Gauss–Newton method developed in [15],
because of the following two reasons: (i) the EKF con-
templates the use of the measurement covariance,
which could be obtained via a calibration procedure or

Figure 7. Simulated data reconstruction: reconstructionwith
a noise level of s = 10%. The goodness for this reconstruc-
tion is 0.1653.

Table 1.Goodness of the reconstructionswith EKF
andNIRFAST.

Noise level s= s( )e xEKF, s( )e xNIRFAST ,

s = 0.005 0.1236 0.1689

s = 0.010 0.1246 0.1722

s = 0.020 0.1218 0.2103

Table 2.Comparison of number of iterations andCPU time for
scenario 1 reconstructions.

Noise level s= EKF NIRFAST

s = 0.005 3 iterations, 12.10 s 28 iterations, 11.82 s

s = 0.010 3 iterations, 11.68 s 23 iterations, 10.54 s

s = 0.020 3 iterations, 12.48 s 24 iterations, 10.69 s

Figure 8. Left: reconstructionwithout theModel Reduction
approach using the coarsemeshwith 341 nodes and 618
triangular elements. Right: reconstructionwith theModel
Reduction approach using the same coarsemesh. Themean
iteration time is 0.43 s. The noise level was set to 3 per cent of
themaximumvalue.
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use one as we did in this work inspired by [25]; and (ii)
the EKF includes an updating procedure for the para-
meter (optical properties) covariancematrix.

A drawback of themethod is that thememory nee-
ded to update the covariance matrix is huge when the

size of the mesh is high, but this problem can be tack-
led when we do not change the covariance over time,
assuming that the optical properties covariance are
known (for example, a diagonal covariance), or to cal-
culate the covariance in some steps and then stop

Figure 9.Reconstruction of the relative absorption coefficient fromphantomdata. From left to right and from top to bottom, the
slices of the reconstructed domain in the planeXY. The planeZ=0 corresponds to the slice where the laser impinges on. The
separation between consecutive slices isD = »( )z 33 24 mm 1.3mm.

Figure 10.Reconstruction of the relative reduced scattering coefficient fromphantomdata. It follows the same order asfigure 9.
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updating the covariance matrix, this is equivalent as
assuming that the covariance has reached a stationary
point, however, this needs to be analyzed further. In
some cases, this may be a good approximation con-
sidering that many algorithms, so far, make this
assumption and perform well. As a matter of fact, in a
recent publication [27] reconstructions with full cov-
ariance matrix, diagonal variance matrix and identity
matrix were performed and compared concluding
that the covariance and variance matrix approaches
perform similarly but outperform the identity matrix.
In practice, this can be achieved by defining the var-
iance matrix without updating the parameter covar-
iance, or, by updating it only in a few iterations and
thenfixing it.

It is also important to remark that this methodol-
ogy can be applied to other problems such as Fluores-
cence Tomography or Difference Tomography by
changingmodelHk.

Asfinal remarks wewould like tomention that: the
presented approach could be used or be slightly mod-
ified for Functional Monitoring and Imaging by using
real measurements at different times instead of fixing
as we have done here, which is how the EKF was ori-
ginally designed for. Another possible approach is to
model the evolution of the lesion or tumor and use it
inM. Since the EKF is used in many and diverse engi-
neering applications, hardware implementation for
actual tomographic devices would be straightforward
resulting in faster reconstructions.

8. Funding Information

Authors wish to thank financial support from CON-
ICET, PIP 301 grant andCICPBA, grant FCCIC 2016.

References

[1] Durduran T, ChoeR, BakerWB andYodhAG2010Rep. Prog.
Phys. 73 076701

[2] GuvenM,Yazici B, Intes X andChance B 2005Phys.Med. Biol.
50 2837

[3] YamashitaO, ShimokawaT, Aisu R, Amita T, Inoue Y and
aki SatoM2016NeuroImage 135 287–99

[4] DehghaniH, EamesME, Yalavarthy PK,Davis SC,
Srinivasan S, Carpenter CM, Pogue BWandPaulsenKD2008
Commun.Numer.Methods Eng. 25 711–32

[5] SchweigerMandArridge S 2014 J. Biomed. Opt. 19 040801
[6] SimonD2006Optimal State Estimation: Kalman,H infinity,

andNonlinear Approaches (NewYork:Wiley)
[7] Humpherys J, Redd P andWest J 2012 SIAMRev. 54 801–23
[8] Diamond SG,Huppert T J, KolehmainenV,

FranceschiniMA,Kaipio J P, Arridge SR andBoasDA2005
Physiological system identificationwith theKalman filter in
diffuse optical tomographyMedical Image Computing and
Computer-Assisted Intervention-MICCAI 2005 (Berlin:
Springer) pp 649–56

[9] AlacamB, Yazici B, Intes X,Nioka S andChance B 2008Phys.
Med. Biol. 53 837

[10] AlacamB, Yazici B, Intes X andChance B 2006 IEEETrans.
Biomed. Eng. 53 1861–71

[11] IshimaruA 1978Wave Propagation and Scattering in Random
Media (NewYork: Academic)

[12] Liemert A andKienle A 2013 Sci. Rep. 3 1-7
[13] Liemert A andKienle A 2011Phys. Rev.A 83 015804
[14] Arridge S R 1999 Inverse Problems 15R41
[15] SchweigerM,Arridge SR andNissil I 2005Phys.Med. Biol.

50 2365
[16] ContiniD,Martelli F andZaccanti G 1997Appl. Opt. 36

4587–99
[17] Kienle A 2005 J. Opt. Soc. Am.A 22 1883–8
[18] Kienle A and PattersonMS1997 J. Opt. Soc. Am.A 14 246–54
[19] FangQ andBoasDA2009Opt. Express 17 20178–90
[20] KalmanRE 1960 J. Fluids Eng. 82 35–45
[21] GolubGHandVan LoanCF 2012Matrix Computations vol 3

(Baltimore: JHU)
[22] SunWandYuanYX2006Optimization theory andmethods:

nonlinear programming vol 1 (NewYork: Springer)
[23] Arridge S R, Kaipio J P, KolehmainenV, SchweigerM,

Somersalo E, TarvainenT andVauhkonenM2006 Inverse
Problems 22 175

[24] Vo-DinhT 2014Biomedical Photonics Handbook: Biomedical
Diagnostics vol 2 (BocaRaton, FL: CRCPress)

[25] Ye J C, BoumanC,WebbK andMillane R 2001 IEEE Trans.
Image Process. 10 909–22

[26] Kaipio J and Somersalo E 2006 Statistical andComputational
Inverse Problems vol 160 (NewYork: Springer)

[27] Brigadoi S, Powell S, Cooper R J, Dempsey LA, Arridge S,
Everdell N,Hebden J andGibsonAP 2015Biomed. Opt.
Express 6 4719–37

9

Biomed. Phys. Eng. Express 3 (2017) 015013 GRBaez et al

https://doi.org/10.1088/0034-4885/73/7/076701
https://doi.org/10.1088/0031-9155/50/12/008
https://doi.org/10.1016/j.neuroimage.2016.04.068
https://doi.org/10.1016/j.neuroimage.2016.04.068
https://doi.org/10.1016/j.neuroimage.2016.04.068
https://doi.org/10.1002/cnm.1162
https://doi.org/10.1002/cnm.1162
https://doi.org/10.1002/cnm.1162
https://doi.org/10.1117/1.JBO.19.4.040801
https://doi.org/10.1137/100799666
https://doi.org/10.1137/100799666
https://doi.org/10.1137/100799666
https://doi.org/DOI: 10.1007/11566489_80
https://doi.org/DOI: 10.1007/11566489_80
https://doi.org/DOI: 10.1007/11566489_80
https://doi.org/10.1088/0031-9155/53/4/002
https://doi.org/10.1109/TBME.2006.881796
https://doi.org/10.1109/TBME.2006.881796
https://doi.org/10.1109/TBME.2006.881796
https://doi.org/10.1038/srep02018
https://doi.org/10.1103/PhysRevA.83.015804
https://doi.org/10.1088/0266-5611/15/2/022
https://doi.org/10.1088/0031-9155/50/10/013
https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1364/AO.36.004587
https://doi.org/10.1364/JOSAA.22.001883
https://doi.org/10.1364/JOSAA.22.001883
https://doi.org/10.1364/JOSAA.22.001883
https://doi.org/10.1364/JOSAA.14.000246
https://doi.org/10.1364/JOSAA.14.000246
https://doi.org/10.1364/JOSAA.14.000246
https://doi.org/10.1364/OE.17.020178
https://doi.org/10.1364/OE.17.020178
https://doi.org/10.1364/OE.17.020178
https://doi.org/doi:10.1115/1.3662552
https://doi.org/doi:10.1115/1.3662552
https://doi.org/doi:10.1115/1.3662552
https://doi.org/10.1088/0266-5611/22/1/010
https://doi.org/10.1109/83.923278
https://doi.org/10.1109/83.923278
https://doi.org/10.1109/83.923278
https://doi.org/10.1364/BOE.6.004719
https://doi.org/10.1364/BOE.6.004719
https://doi.org/10.1364/BOE.6.004719

	1. Introduction
	2. Light propagation through diffusion equation
	3. The EKF
	4. Optical properties estimation
	4.1. Acceleration via model reduction

	5. Validation
	5.1. Computational simulations
	5.2. Phantom experiment

	6. Results
	7. Discussion and conclusions
	8. Funding Information
	References



