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Highlights
Allostatic–interoceptive predictive coding
frameworks suggest that regulation of
the body’s internal milieu is required to
predict and meet the needs generated
from environmental demands before
they arise.

A multilevel organization of allostatic–
interoceptive measures is proposed
across cerebral, cardiocerebral, pe-
ripheral, and psychological levels.

Behavioral variant frontotemporal de-
mentia (bvFTD) is characterized by dis-
parate autonomic, behavioral, and
pathophysiological manifestations that
Recent allostatic–interoceptive explanations using predictive coding models
propose that efficient regulation of the body’s internal milieu is necessary to
correctly anticipate environmental needs. We review this framework applied to
understanding behavioral variant frontotemporal dementia (bvFTD) considering
both allostatic overload and interoceptive deficits. First, we show how this frame-
work could explain divergent deficits in bvFTD (cognitive impairments, behav-
ioral maladjustment, brain atrophy, fronto-insular-temporal network atypicality,
aberrant interoceptive electrophysiological activity, and autonomic disbalance).
We develop a set of theory-driven predictions based on levels of allostatic
interoception associated with bvFTD phenomenology and related physiopatho-
logical mechanisms. This approach may help further understand the disparate
behavioral and physiopathological dysregulations of bvFTD, suggesting
targeted interventions and strengthening clinical models of neurological and
psychiatric disorders.
seem to parallel multilevel measures of
an allostatic–interoceptive overload.

Under a predictive coding model, the
allostatic–interoceptive deficits are ex-
plained by a mismatch between top-
down and bottom-up predictions and
prediction errors at multilevel hierarchies
impaired in bvFTD, providing a novel
framework for characterization, diagno-
sis, and interventions in bvFTD patients.
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The universe within: the body’s internal appraisal of environmental demands and
its implications for dementia
In recent years, predictive coding theories linking allostasis (see Glossary) and interoception
have gained considerable attention in neuroscience [1–6]. Predictive coding refers to the assump-
tion that the brain is actively and continuously anticipating and updating environmental
(exteroception) and internal (interoception) models. One advantage of predictive coding is that
it can be instantiated across several biological substrates and hierarchies (Figure 1A). Allostasis
refers to a process of continuous adjustment of the organism milieu (e.g., blood pressure, temper-
ature) to anticipate, and adapt to, environmental changes [7] and interoception to the sensing of the
body signals [8]. Together, allostatic and interoceptive processes jointly contribute to meeting the
upcoming internal and environmental demands through the updating of internal model predic-
tions (e.g., increasing blood supply in a fight or flight situation, lowering heart rate when going to
sleep, and reducing blood flow to skin capillaries to preserve core temperature, Figure 1B). In
such models, sensory inputs are represented in low levels of the neural and computational hierar-
chy, while complex interpretations constitute higher levels. Based on statistical assumptions, each
higher level predicts the activity in the lower level. The difference between the prediction
(e.g., anticipation of feeling pain when getting vaccinated, thus tensing the arm muscles) and the
actual sensory input (e.g., not even feeling the needle) generates a prediction error, which is
sent back to the higher level in order to correct future predictions (e.g., relaxing arm muscles
when receiving future vaccines). The predictive coding of allostasis and interoception may help un-
derstand dementia [9,10] and other neurological or psychiatric disorders [2,11].
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Figure 1. Predictive coding and allostatic interoception. (A) Predictive coding is a general algorithm that can be
instantiated among different biological substrates and their hierarchies [120]. It has been widely applied to cortical brain
activity (i.e., standard predictive coding), brain activity and proprioception (i.e., active inference), and brain activity and
interoception (i.e., interoceptive inference). Three versions of predictive coding are schematically illustrated. In the first
case, the minimization of prediction error is given by the updating of predictions to accommodate unexpected sensory
signals. In the second case, the minimization is through performing actions that confirm predictions about sensory inputs.
Finally, in the third case, the minimization is reached by performing actions to confirm predictions of interoceptive signals.
(B) Allostasis refers to a general mechanism of bodily regulation by adaptation and changes. Allostasis can be instantiated
at different levels of the body substrate. Three examples of interoceptive allostasis are illustrated. Left: greater oxygen require-
ment in the muscles during a fight or flight situation, leading to increased blood supply to the relevant muscles and the
mobilization of resources needed to perform that redistribution (e.g., increasing cardiac input); Middle: reduction of heart
rate during sleep to align with the reduced metabolic needs. Right: vasoconstriction (i.e., narrowing of blood vessels) when
the body is facing low temperatures to conserve core temperature by reducing the blood flow to the skin capillaries.
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In this article, we review the evidence to extend these models to behavioral variant frontotemporal
dementia (bvFTD), which is the most common clinical presentation of frontotemporal lobar degener-
ation. It is characterized by early changes in personality, social behavior, self-regulation, executive
functions, motivation, and emotional regulation [12–14]. bvFTD presents a pattern of progressive
neurodegeneration involving fronto-temporo-insular regions [15]. These neurocognitive early
changes could be the consequence of malfunctions in the dynamics of the allostatic–interoceptive
process [10]. Of note, alterations of allostasis and interoception have been observed across neuro-
degenerative conditions and in other variants of FTD. For instance, convergent evidence supports an
allostatic overload in Alzheimer’s disease, and interoceptive deficits are observed in other neuro-
degenerative conditions such as Parkinson’s disease and multiple sclerosis (Box 1). Despite these
related and transnosological alterations, we would argue that the proposed framework seems fairly
specific to bvFTD: bvFTD’s multimodal compromise of autonomic-interoceptive pathways, the
allostatic overload observed across different levels, and the abnormal responses to environmental
demands distinctively fit with an allostatic–interoceptive overload account.

We first review the available evidence and propose the hypothesis that bvFTD may be character-
ized by an imbalance of an allostatic–interoceptive system, with manifestations across cerebral,
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Box 1. Transnosological allostatic–interoceptive overload and bvFTD

Both allostasis and interoception are dimensional processes that are compromised in many neurodegenerative condi-
tions.

Allostatic load is closely related to Alzheimer’s disease pathophysiology, specifically regarding the bidirectional association
between impaired insulin signaling and allostatic overload [121]. Lifestyle and social factors during life contribute to the
allostatic load, which lead to allostatic overload when these become chronically harmful. Such state may trigger patho-
physiological changes in the brain, including oxidative stress and chronic inflammation, leading to insulin resistance and
predisposing the organism to Alzheimer’s disease [121]. These alternative approaches to the traditional amyloid cascade
hypothesis consider allostatic load as a crucial factor associated with the development and progression of Alzheimer’s
disease [122].

bvFTD appears to be the only neurodegenerative disease with systematic (behavioral, peripherical, HEP, and
neurofunctional) impairments of autonomic and interoceptive dimensions. Such interoceptive dysregulations, however,
are also present in other neurodegenerative conditions [123]. Although not without conflicting results, individuals with
Alzheimer’s disease tend to present impaired performance in interoceptive tasks [28] along with abnormal modulations
of the HEP, in addition to deficits in interoceptive awareness and learning [124]. Moreover, cardiac interoception deficits
are also present in Parkinson’s disease [125,126], which may help distinguish among postural instability/gait difficulty
and tremor dominant variants [127]. Similarly, interoceptive deficits in multiple sclerosis [29] are linked to cardinal fatigue
symptoms [128]. Thus, neurodegeneration spreading over core or bordering interoceptive hubs across neurodegenera-
tive diseases can lead to multiple dimensional deficits.

Despite the presence of allostatic and interoceptive alterations in many neurodegenerative diseases, combined allostatic–
interoceptive deficits are distinctively specific to bvFTD. The systematic affection of autonomic–interoceptive pathways
combined with abnormal responses to environmental demands in bvFTD uniquely fits the allostatic–interoceptive overload
account. Based on these antecedents, sui generis neurodegeneration-triggered deficits in bvFTD would influence impre-
cise interoceptive signals and lower precision, leading to an allostatic overload related with behavioral and neurocognitive
manifestations.

Glossary
Allostasis: the continuous process of
energy balance to anticipate and
perform efficient and adaptive
responses to external stressors,
primarily instantiated by the brain’s
predictions about the body’s needs to
prepare the organism to attend to those
demands before they arise. For
example, before lifting a heavy object,
the brain predicts the energy needed to
perform that action and thus increases
the blood flow to the relevant muscles to
efficiently lift the target object.
Allostatic load: level of progressive
attrition on the organism resulting from
the continuous exposure to stress-
inducing environmental demands
evoking energy relocation processes to
face those demands and balance
energy levels. For instance, high
allostatic load levels are commonly
reported in individuals living in unsafe
neighborhoods, as the organism must
be constantly relocating energy levels to
run from potential dangers, plan
alternative routes to avoid risk exposure,
and not getting quality sleep due to
being vigilant at night about potential
threats.
Allostatic overload: exacerbated
allostatic load generated by poorly
regulated or chronic allostatic
responses, resulting in abnormal
physiologic states (e.g., dysregulation of
the hypothalamic–pituitary–adrenal axis)
and predisposing the organism to
diseases (e.g., cardiovascular diseases,
diabetes, cancer, mood and anxiety
disorders).
Exteroception: sensing or perceiving
of external stimuli and environmental
changes.
Interoception: sensing or perceiving of
bodily signals. It mainly refers to the
feeling of body organs’ processes, such
as digestion, breath regulation, and
heart rate, among others.
Interoceptive inference: instantiation
of predictive coding algorithms that uses
visceromotor actions to fit interoceptive
predictions. In this case, both actions
and interoception play a role in
minimizing the same prediction error.
Examples include how interoceptive
predictions modulate physiological
homeostasis through autonomic
reflexes (e.g., blood pressure, glycemia).
Precision: the precision, or estimation
of the uncertainty, corresponds to the
level of confidence of predictions
(i.e., signals from higher regions in the
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cardiocerebral, peripheral, and psychological dimensions. Then, we propose a set of theory-
driven predictions in bvFTD, which are subsumed into a multidimensional framework integrating
neurocognitive and physiological markers bymultimodal assessments of allostatic interoceptive
inference. Under such a framework, the cognitive and behavioral impairments of bvFTD are as-
sociated with: (i) brain structural and connectivity deficits among critical allostatic–interoceptive
brain hubs, (ii) altered interoceptive electrophysiological activity, and (iii) allostatic overload at bio-
marker levels. Such a multidimensional framework may help further understand the disparate
behavioral and physiopathological dysregulations of bvFTD within a predictive coding account,
suggesting targeted interventions and strengthening clinical models of neurological and psychiatric
disorders.

Allostasis and allostatic overload
Allostatic–interoceptive predictive coding frameworks [1–6] can offer novel neurocognitive and
physiological accounts of allostasis, integrating multimodal sources of information about the
body state [16]. Importantly, such frameworks open new possibilities for assessing brain–
body–environment synergetic interactions in health and disease [17], which can be integrated
into a profile of allostatic–interoceptive manifestations at cerebral, cardiocerebral, peripheral,
and psychological levels (Figure 2).

The allostatic–interoceptive system
Neuroimaging techniques have identified a domain-general allostatic–interoceptive network (AIN)
that integrates visceromotor and interoceptive processes into a multimodal network (Figure 2A).
This network connects a wide range of cognitive domains such as memory, executive function,
emotion processing, and cognitive control, with allostatic load [4]. The AIN involves a large-
scale brain network, the ‘neural backbone’ of the brain’s coordinated neural activity. This network
is composed of specific hubs of the salience network (bilateral ventral and dorsal anterior insula,
840 Trends in Neurosciences, November 2022, Vol. 45, No. 11
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Figure 2. Levels of the allostatic–interoceptive system and its potential characterization in behavioral variant
frontotemporal dementia (bvFTD). Multimodal allostatic load measurement can be used at different levels to
characterize bvFTD symptomatology and physiopathology. The allostatic–interoceptive system (A) relies on the allostatic–
interoceptive network (AIN), whose main hubs include the anterior mid-cingulate cortex (aMCC), pregenual anterior
cingulate cortex (pACC), subgenual anterior cingulate cortex (sgACC), dorsal amygdala (dAmy), agranular insula (vaIns),
dorsal mid-insula (dmIns), and dorsal posterior insula (dpIns). Specifically, the limbic cortices send prediction signals
(unbroken magenta lines) and receive prediction error signals (dashed magenta lines) from the internal milieu, evoking
psychological responses. Accordingly, multimodal measures of allostatic load can be used (B). At the cerebral level, the
structure of the AIN hubs can be assessed by voxel-based morphometry (VBM) technique and its functional connectivity
by resting-state functional magnetic resonance imaging (rsfMRI) technique. The cardiocerebral level can be evaluated by
heartbeat-evoked potential (HEP). Moreover, the peripheral level can be assessed by cardiovascular, metabolic,
inflammatory, stress hormone, and neurodegenerative biomarkers, constituting an allostatic load battery. Finally, the
psychological level can be evaluated by the allostatic–interoceptive task and psychosocial measures such as the
psychosocial index (PSI) and the diagnostic criteria for psychosomatic research (DCPR). Some multimodal impairments
are expected in bvFTD patients (C). At the cerebral level, the AIN is selectively compromised in bvFTD, along with early
structural and functional compromise of core AIN hubs. At the cardiocerebral level, less negative HEP during active tasks
and more negative resting-state HEP (rsHEP) in resting state and noncardiac monitoring tasks are also expected. At the
peripheral level, bvFTD may present altered biomarker parameters, leading to a high allostatic load index compared with
healthy controls (HC). At the psychological level, bvFTD patients will present a dissonance among the objective and
subjective arousal measures and abnormal responses to environmental demands. Figures in panels (B) and (C) are
illustrational examples and do not represent actual data.

hierarchy) and prediction errors
(i.e., signals from lower regions in the
hierarchy). Computationally, this
precision corresponds to the inverse
variance, or reliability, of a signal.
Prediction: in prediction coding
literature, the prediction is understood as
the activity of higher levels and their
signaling to lower levels in the
computational hierarchy.
Prediction error: under the predictive
coding model, the prediction error is the
mismatch between predicted and actual
sensory activity. In general, it is
quantified as the activity and the
eventual signaling from lower levels to
higher ones.
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anterior cingulate cortex, ventral striatum, thalamus, central nucleus of the amygdala, hypothala-
mus, and brainstem) and default mode network (bilateral angular gyrus, precuneus, hippocam-
pus, and medial prefrontal cortices).

The allostatic–interoceptive system, which is neuroanatomically defined by the AIN [4,18], seems to
maintain the neurocognitive balance based on interoceptive information. Specifically, the limbic
cortices project to the hypothalamus and brainstem nuclei that monitor neuroendocrine, auto-
nomic, and immune systems. These can be interpreted as anatomical paths for prediction signals
from limbic cortices. Also, under a predictive coding interpretation, the hypothalamus and
brainstem nuclei send signals that carry predictions of sensory outcomes of visceromotor changes
to the primary interoceptive cortices. In parallel, internal sensory inputs from the body are projected
through the vagus nerve to the primary interoceptive cortices, where both prediction signals and
sensory inputs are contrasted, resulting in an interoceptive prediction error [4] (Figure 2A).
Trends in Neurosciences, November 2022, Vol. 45, No. 11 841
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As such, the AIN regulates cardiocerebral and peripheral activity that together have an impact on
psychological and cognitive responses to the environment. For example, adults with a history of
infant regulatory problems present selectively aberrant default mode and salience networks (AIN
subnetworks) assessed with resting-state functional magnetic resonance imaging (rsfMRI) con-
nectivity [19]. The AIN and internal organs of the body such as the heart and gut are integrated
into a multimodal structure of interactions, based on predictive coding principles at several hier-
archical levels. This complex structure of interactions is discussed in more detail in later sections.

Measurements of allostasis
Allostatic load can be understood as a cost of sustaining allostasis [3]. The saturation of the
allostatic load due to the cumulative burden of chronic stress and life events is referred to as
allostatic overload. In this state, the organism is exposed to repeated environmental demands
evoking chronic neural and neuroendocrine responses [7]. Behavioral examples of allostatic over-
load include over-reacting and under-reacting to environmental stressors. Allostatic overload can
be assessed using various measures at different levels of description (Figure 2B). These include:
(i) cerebral measurements using brain structure and connectivity metrics [4]; (ii) cardiocerebral es-
timations of the brain’s responses to sensing the heart [20]; (iii) peripheral blood biomarkers
[21,22]; and (iv) psychological measures testing the relations between subjective and objective
arousal [4] and clinical psychosocial assessments evaluating dysregulated responses to environ-
mental demands [23,24].

At the cerebral level (Figure 2B), different measures of anatomical/structural and functional con-
nectivity can quantify the degree of interaction between the nodes that form the AIN. For instance,
the integrity of the AIN and its main hubs can be measured using methods such as voxel-based
morphometry, diffusion tensor imaging, and rsfMRI [4].

The cardiocerebral level (Figure 2B) could be partially indexed by the heart-evoked potential
(HEP), a marker of interoceptive and brain–body regulation processes characteristic of brain re-
sponses activated by visceral signals and regulated by the ability to feel the body [20]. Neuroim-
aging and electroencephalography source localization studies [25,26] associate the HEP with
brain structures supporting allostatic and interoceptive processes. In addition to traditional active
heartbeat detection tasks, where participants must press a key each time they feel a heartbeat
[27–35], novel evidence has shown that HEP changes (commonly measured with the amplitude
difference, but also with latency and power [36,37]) during noncardiac monitoring tasks, as well
as resting-state, increased amplitude. Such changes have been associated with a hypervigilance
to interoceptive signals and linked to stress-related allostatic overload in both hypertensive pa-
tients and healthy controls [38]. Similarly, external demanding somatosensorial stimuli
(i.e., electrical pulse) triggers increased HEPmodulation [26]. In addition, the HEP involves source
generators in both interoceptive and allostatic regions (e.g., the insula, anterior cingulate cortex,
and amygdala), as well as associations with volume and cortical thickness of the right amygdala,
bilateral insula, and bilateral anterior cingulate (key AIN regions) [10]. Similarly, a selective positive
association between HEP and AIN has been observed in bvFTD, compared with other relevant
resting-state networks [10]. The HEP has been evaluated among diverse populations, including
people with neurodegenerative diseases [27,28,39], multiple sclerosis [29], generalized anxiety
disorder [40], borderline personality disorder [41], as well as healthy participants [42]. Critically,
HEP deficits are observed in cardiovascular diseases such as heart transplant and hypertension,
even after controlling for cardiovascular peripheral markers [43–45], including heart rate variability,
heart rate fragmentation, cardiac artifact, and respiratory sinus arrhythmia. In particular, the
allostatic overload canonically involves a cardiovascular response directly related to cardiovascu-
lar disease [43,44,46]. Given the links between allostasis, cardiovascular responses, and
842 Trends in Neurosciences, November 2022, Vol. 45, No. 11
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exacerbated HEP, the latter can be partly understood as a marker of allostatic–interoceptive
overload in terms of predictive coding. In this framework, the HEP can be modulated at both
bottom-up (i.e., triggered by cardiovascular disbalance and related error processing) and
top-down pathways (i.e., impaired interoception triggering aberrant predictive inferences).

With regard to the peripheral level, allostatic overload can be triggered by several health risks,
including reduced physical activity, poor sleep quality, unhealthy diet, obesity, alcohol intake,
and smoking habits, among others [7]. Multiple biomarkers target physiological imbalance asso-
ciated with altered allostatic load (Figure 2B, for other examples see [45,47–49]). This minimally
invasive approach is useful in characterizing different diseases associated with allostatic overload
(e.g., diabetes, musculoskeletal disorders, and cancer [7]). Due to the constant interaction of
blood with all organ systems, these biomarkers have been primarily studied in blood samples
[21,22]. Importantly, multiple biomarker signatures of allostatic load can be assessed through
an allostatic load battery. Specifically, multisystemic biomarkers associated with allostatic over-
load include: (i) cardiovascular [50,51]: arterial tension and resting pulse rate; (ii) metabolic
[51,52]: body mass index, waist–hip ratio, total cholesterol, high-density lipoprotein, low-
density lipoprotein, triglycerides, glycated hemoglobin, fasting glucose, creatinine, and albumin;
(iii) inflammatory [51,53–60]: tumor necrosis factor-α, tumor growth factor-β, C-reactive protein,
interleukin-2, interleukin-6; (iv) stress hormone [61]: cortisol; and (v) neurodegenerative parame-
ters [54,62–67]: neurofilament light chain and progranulin. A weighted allostatic load battery
based on multimodal cut-off scores being used can lead to an integrative biomarkers score.

Finally, at the psychological level (Figure 2B), novel interoceptive–neurocognitive measures using
behavioral and electrophysiological measurements can evaluate the allostatic–interoceptive func-
tion. This is done by testing the correspondence between the subjective arousal experience (self-
report) and objective sympathetic arousal (electrodermal activity) when viewing emotionally evoc-
ative images, aiming at evaluating the underlying visceromotor control and related psychological
functions. The dissonance between the objective and subjective arousal measures is negatively
correlated with the functional connectivity intensity of the AIN [4] and arguably positively corre-
lated with the allostatic load. Additionally, allostatic overload is observed in a variety of mental
health disorders characterized by abnormal behavioral responses to stress and environmental
demands, including mood and anxiety disorders [68], affective and somatic depressive symp-
toms among older adults [69], post-traumatic stress disorder [45], and adulthood depression fol-
lowing childhood physical abuse [70]. Such allostatic overload in mental health disorders can be
further assessed by psychosocial measures evaluating dysregulated responses to environmental
demands, such as the diagnostic criteria for psychosomatic research [24] and the psychosocial
index [23].

These cerebral, cardiocerebral, peripheral, and psychological levels do not describe the same
mechanisms nor quantify the same dimensions. So far, studies using such group criteria and
biomarkers are scarce but critical to provide a more holistic approach to understand allostatic
overload.

Evidence of allostatic–interoceptive overload in bvFTD
Various symptoms and neurocognitive markers related to allostatic–interoceptive overload are
present in bvFTD, suggesting that these processes and measurements could be integrated
into a multimodal dynamic of allostatic–interoceptive processes.

At a neuroanatomical level, brain hubsmediating interoception and allostasis, such as the anterior
insula, anterior cingulate cortex, and amygdala, are structurally and functionally compromised
Trends in Neurosciences, November 2022, Vol. 45, No. 11 843
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early in bvFTD [71–73] (Figure 2C). Usually, patients with bvFTD show aberrant connectivity [74–79]
of the salience [80–82] and the default mode networks [78], which supports the involvement of the
AIN [4,74]. The salience network has been related to the ongoing tracking of bodily states [81], while
specific hubs of the default mode network are crucial for allostatic–interoceptive processes [4,83].
Moreover, autonomic nervous systems regulation relies on the appropriate function of insular
networks, which are often compromised in bvFTD [84]. Thus, neuroanatomical evidence suggests
a direct impairment of anatomical and functional AIN connectivity in bvFTD. Importantly, brain
regions other than those involved in allostatic–interoceptive processes are also impaired in this
disease (e.g., paracingulate gyrus) [73]. Nevertheless, allostatic–interoceptive brain hubs, such as
the anterior insula, anterior cingulate cortex, and amygdala, seem critical for multiple manifestations
in bvFTD. Specifically, what is observed is an increased impairment of AIN hubs in comparison with
other brain regions. The AIN, in turn, is associated with anatomical connectivity supporting predic-
tions and prediction errors from key nodes of the network [4]. Recent evidence has shown selective
functional impairment of the AIN in bvFTD [10].

At the cardiocerebral level, atypical HEP is observed during active tasks [27,28,39] and resting in
bvFTD [10] (Figure 2C). Key nodes of allostatic–interoceptive processes where the HEP is gener-
ated, such as the insula and amygdala [25,26,85,86], are structurally and functionally affected in
bvFTD [27]. Moreover, contrary to healthy participants, bvFTD patients do not show increased
HEP modulation during negative emotion recognition, suggesting a desynchronization and
decoupling between interoceptive and emotional processing [39]. Thus, since emotional pro-
cessing partly relies on the perception and integration of visceral information, the efficient coordi-
nation of those multimodal processes could prove central for successful allostasis [4,6]. In terms
of predictive coding, these impairments in bvFTD may generate, or be generated by, an increase
of error between predictions and interoceptive signals impacting the overall interoception of heart
signals.

At the peripheral level, bvFTD patients exhibit autonomic nervous system dysregulations and im-
balanced autonomic load [87], related to exacerbated behavioral responses to environmental
stimuli [72,88,89], abnormal emotional reactivity and preparatory physiological response to emo-
tional stimuli [90,91], and interoceptive dysregulations associated with socioemotional processes
[27,39,92]. An additional set of evidence suggests that bvFTD patients present abnormal re-
sponses in all the aforementioned measures of allostatic load, including cardiovascular, meta-
bolic, inflammatory, stress hormone, and neurodegenerative biomarkers (Figure 2C). First,
cardiovascular risk factors (e.g., elevated body mass index) could trigger a biological cascade re-
sulting in vascular damage, increasing dementia symptomatology [50]. Second, bvFTD patients
show metabolic abnormalities associated with malnutrition [52]. Third, changes in inflammatory
peripheral biomarkers have been reported in different frontotemporal dementia subtypes, sug-
gesting that inflammatory factors play an important role in the pathogenesis of the disease
[53,54]. Specifically, high levels of tumor necrosis factor-α and tumor growth factor-β [55–57],
but low levels of interleukin-12, have been found in patients with bvFTD [58]. Also, increased
interleukin-6 and C-reactive protein serum levels have been associated with cognitive decline in
older adults who present metabolic syndrome [59,60]. Fourth, bvFTD patients show low cortisol
levels, which would serve as a compensatory mechanism to regulate the top-down cognitive
control deficits [61]. Fifth, neurodegenerative parameters have been also found dysregulated in
bvFTD [54]. Neurofilament light chain is a component of the neuronal cytoskeleton [62] and its
concentration levels have been shown to increase in serum and plasma of frontotemporal de-
mentia patients, predicting disease severity and brain volume loss [63–66]. Moreover, this classi-
cal neurodegeneration marker has also been associated with body mass index and allostatic
load, along with risk indicators, including cardiovascular, metabolic, and inflammatory biomarkers
844 Trends in Neurosciences, November 2022, Vol. 45, No. 11
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[93]. Additionally, lower plasma levels of progranulin, a pleiotropic growth factor, have been found
in FTD patients in comparison with healthy controls [67]. Importantly, all those parameters have
been related to the dynamics of allostatic overload [7,93] and, therefore, may play a relevant
role in interoceptive changes [94].

At a psychological level, bvFTD patients commonly show cognitive deficits, including in executive
function and emotion processing [12,14,91,95–97]. These impact their day-to-day functionality
and behavior by increasing the misadjusted responses to environmental demands (Figure 2C)
[95,96,98,99], such as under-reacting to evocative emotional stimuli [90,91,97] and presenting
aberrant responses to social situations [100]. Convergently, many of these processes seem
to be regulated by allostatic–interoceptive mechanisms [4,92], leading to allostatic overload
[101–106]. For instance, bvFTD patients exhibit impaired performance in the heartbeat detection
task (i.e., less accuracy in key-pressing following the sensing of a heartbeat) followed by negative
facial emotion recognition (i.e., anger, disgust, sadness, and fear). This suggests altered dynamics
of interoceptive predictions and reduction in prediction errors, which may contribute to atypical
emotion recognition [39]. Moreover, allostatic overload is related to abnormal stress responses,
cognitive dysfunction, and behavioral disturbances, which typify the symptomatology and physio-
pathology of bvFTD [12]. In particular, prevalent heart rate and autonomic changes in bvFTD are
associated with changes in energy expenditure [107].

To summarize, specific bvFTD symptomatology and related markers have been described at multi-
ple levels. Beyond preliminary evidence [10], we will propose in the next section that these markers
may suggest an integral allostatic–interoceptive overload in terms of predictive coding. Such an ap-
proach may better characterize bvFTD and bring a more integrated vision of those deficits.

Towards an allostatic–interoceptive predictive coding model for bvFTD
The allostatic–interoceptive predictive coding model proposes that the prediction of interoceptive
signals and the minimization of their prediction errors through visceromotor activity is crucial for
successful allostasis [8,9,11]. This inference requires a cascade of top-down interoceptive and
visceromotor predictions that are in constant evaluation to account for bottom-up interoceptive
and proprioceptive prediction errors [108]. In the AIN, visceromotor predictions from agranular re-
gions project to subcortical regions to engage homeostatic reflexes (e.g., activate sweating re-
flexes to cool down the body in hot environments). As such, predictions become homeostatic
set-points, or attractors that guide behavioral allostatic mechanisms through interoceptive pre-
diction errors [11] (i.e., the corrections between expectations and sensory evidence). This re-
quires a multilevel structure described in terms of anatomical neural paths and functional neural
activity. This hierarchical organization is depicted in Figure 3A (Key figure). Top regions such as
the prefrontal cortex and cingulate cortex form a layer of interactions that generate predictions
of lower levels. These predictions project to relay regions such as the insula, thalamus, and
hypothalamus. These regions integrate top predictions and peripheral errors from organs and
muscles. Pathways such as the hypothalamic–pituitary–thyroid axis or hypothalamic–
neurohypophysis system, also play a key role in interoceptive communication [94]. Therefore,
allostatic regulation demands the integration of neural and non-neural signals through a complex
network of interactions, operating at different levels and timescales.

In a well-functioning system, interoceptive prediction errors can be minimized by modifying pre-
dictions and/or by the action of autonomic reflexes that make interoceptive physiological states
fit predictions. Examples of the first case include the reevaluation of predictions about the temper-
ature of a given surface (e.g., sensory signal correcting the expectation of a hot surface). This pro-
cess is associated with perception in predictive coding literature. An example of the second case
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Key figure

An allostatic-interoceptive predictive coding model for behavioral variant frontotemporal dementia
(bvFTD)

R
el

ay
 re

gi
on

s
Pe

rip
he

ry
To

p 
re

gi
on

s

Predictions

(A) Allostatic-interoceptive predictive 
coding model for bvFTD

(B) Hierarchical levels and bvFTD 
symptomatology

Predictions errors

PFC

vaIns
OFC
Amy

dmIns/dpIns
Thal
HT
PBN
NTS

Visceromotor
Interoceptive
Non-neural control

Prediction Prediction error Neural assemblies

sgACC/pACC/aMCC

Normal functioning
Top regions

Relay regions
Periphery

Dysregulated responses to the environment
Top regions

Relay regions
Periphery

X
X

X

Interoceptive dysfunction
Top regions

Relay regions
Periphery

X

XX

X

X

TrendsTrends inin NeurosciencesNeurosciences

Figure 3. The proposed model, summarized in the figure, expands previous allostatic–interoceptive models to bvFTD manifestations. (A) Prefrontal cortex (PFC), anterior
mid-cingulate cortex (aMCC), pregenual cingulate cortex (pACC), subgenual anterior cingulate cortex (sgACC), agranular insula (vaIns), orbitofrontal cortex (OFC), and
dorsal amygdala (Amy) are placed on top of the hierarchy. These regions are thought to modulate their activity by within-level interactions (arrows not shown) and
generate predictions about the activity of other systems. In particular, they send visceromotor (yellow lines) and interoceptive predictions (dark lines) to the relay
regions: the dorsal mid-insula (dmIns) and dorsal posterior insula (dpIns), thalamus (Thal), hypothalamus (HT). These relay regions integrate predictions from top
regions and prediction errors from peripheral regions to generate their corresponding predictions and feedback. In this relay level, the parabrachial nucleus (PBN) and
nucleus of the solitary tract (NTS) also receive predictions from dpIns, THAL, and HT. The types of predictions and errors correspond to visceromotor, neural
interoceptive, and non-neural interoceptive communication. Finally, the periphery, formed by organs (heart, gut) but also autonomic, neuroendocrine, and immune
systems, receives signals and communicates errors to relay regions (red lines), closing the loops through action. (B) A normal state of functioning of the organism is
characterized by optimal matching among top-down predictions and sensory inputs, leading to an error minimization. In bvFTD, a predictive coding proposes a sui
generis interoceptive deficits and elevated peripheral and immunological stress, leading to imprecise predictions overcharged by a feedback loop of inaccurate
prediction errors, impairing error minimization. This would lead to an overconsumption of resources by the top regions to accommodate top-down predictions and
sensory inputs, therefore impacting again the interoceptive system functionality. Similarly, the dysregulated responses to environmental stressors, one of the core
bvFTD symptomatology, could be understood as a consequence of imprecise top-down predictions about the body’s peripheral level of energy predisposed to
perform actions, therefore over-reacting to seemingly inoffensive environmental stressors and under-reacting to relevant ones. As actions would be inadequate,
prediction errors would overcharge.
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is muscular activity that generates action. In this scenario, to put it differently, an action generates
changes to match predictions (e.g., if the system predicts a hot surface, the hand moves to avoid
getting burned, even if the surface is not hot). These predictions can generate visceromotor activity
only if the error signals are minimal (high precision, i.e., the system does not require allocation of
resources to the reevaluation of predictions). Otherwise, the action is postponed in favor of the re-
vision of predictions. In other words, when predictive errors are minimal, the inferences match the
causes of the sensory event and, therefore, plans and actions are congruent within the system.
These predictions and errors come from multimodal sources. In our conceptual model, these
source signals are integrated not only in the insular cortex, as commonly suggested, but also in
the hypothalamus, medial nucleus of the solitary tract, and the parabrachial nucleus. Collectively,
they form a key relay layer between the central nervous system and peripheral systems
(Figure 3A). These areas transduce both neural and non-neural interoceptive signals to generate
prediction errors that will be integrated into further top layers. Top regions, such as the prefrontal
and cingulate cortex, assimilate prediction errors from several modalities, including interoception.
At such a level, the prediction may fit both current multimodal signals as well as anticipating how
these signals will change under certain actions (e.g., blood pressure). Therefore, reflexes (targeting
homeostasis) and allostatic behaviors (goal-directed) interplay with each other through the con-
stant evaluation of the precision values related to expected behaviors. A common example could
be hypoglycemia, the excessive drop off of glucose in the blood. This condition will generate
low-level predictions that make the autonomic reflexes store glucose through interoceptive predic-
tion [105]. In turn, proprioceptive predictions could reduce the precision of low-level interception by
way of engaging allostatic behavior and preparing the body for an eventual meal.

In the context of bvFTD, the system of predictions, errors, and precision values can be under-
stood at different explanatory levels (Box 2). On the one hand, sui generis neurodegeneration-
triggered interoceptive deficits, as well as peripheral and immunological stress, may lead to
Box 2. Potential explanatory levels of allostatic–interoception in bvFTD

A predictive coding approach of allostatic–interoception in bvFTD can be understood at different explanatory levels. The
first level suggests that neurodegeneration triggers damage to the allostatic–interoceptive system and, as a consequence,
such disturbances are related to different neurocognitive symptoms in bvFTD. The existing evidence, reviewed in the ar-
ticle, directly supports this claim.

The second level suggests a circular interaction between sui generis neurodegenerative processes andmalfunctions in the
dynamics of the allostatic–interoceptive process. Thus, early impairments triggered by neurodegeneration interact across
the lifespan [121,122] with environmental demands and dysregulated behaviors, accentuating the allostatic overload and
worsening the neurocognitive process. Although more speculative, this proposal is partially supported by the current ev-
idence. For instance, neurodegeneration can be understood as a lifespan process involving both intrinsic neurodegener-
ation and the burden of life-long stressors [129]. Moreover, predictive coding can be understood as an increasing
disbalance between an internal model of the intero-exteroceptive process and the adaptation to the environment [105].
The initial neurodegenerative changes will disrupt the allostatic–interoceptive overload, creating an inadequate response
to environmental demands, resulting in increased chronic stress responses. The proposed framework detailed in
Figure 3 describe these levels. Longitudinal assessment and future experiments of these complex and hypothetical inter-
actions are required to further test this hypothesis.

Finally, a third level presumes a direct causal link between an initial malfunction of predictive coding of allostatic
interoception processes and a concomitant pathophysiology of neurodegenerative mechanisms. For instance, chronic
stress plays an important role in immune regulation [130,131] that in turn impacts FTD etiology [53,54,132,133] and other
neurodegenerative conditions [130]. Allostatic overload may be an important factor causing neurodegenerative disease
and contributing to TDP-43 aggregation [134] associated with frontotemporal dementia [135]. Chronic stress and its as-
sociated allostatic overload influences lipoproteins, fast insulin, and glucose and predisposes to cardiovascular disease, all
associated with neurodegeneration. Also, cellular stress response and brain inflammation mechanisms in neurodegener-
ation are associated with allostatic load [121]. This third explanatory level, however, has not been explored and studied in
detail in FTD, or in other neurodegenerative conditions, beyond this emerging evidence.
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Outstanding questions
Can the allostatic–interoceptive frame-
work of predictive coding bring a more
integrative and multidimensional ap-
proach to psychiatric and neurological
manifestations in bvFTD?

How can the multimodal signatures of
allostatic–interoceptive overload be si-
multaneously assessed at cerebral,
cardiocerebral, peripheral, and psy-
chological levels in this neurodegener-
ative disease?

What are the required steps to develop
a more mechanistic and theoretically
informed model of current available
evidence on allostatic–interoceptive
disbalance in bvFTD? Can dynamical
system modeling provide a stronger
approach?

What are the most effective techniques
to develop interventions aimed to
modulate dysregulated allostatic–
interoceptive overload in bvFTD?
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imprecise interoceptive signals and lower precision. This effect overcharges higher levels in
order to accommodate predictions through interoceptive priors and ensure homeostasis. In
turn, the higher regions may generate inaccurate predictions, lowering, even more, the values
of precision and increasing the interoceptive system dysfunction. Both, this dysfunction and
progressive neurodegeneration may reinforce the selective compromise of structural and func-
tional organization of the AIN, as recently observed in bvFTD patients [10]. Following this
model, biomarkers related to peripheral and immunological stress included in the allostatic
load battery may track the dysfunction risk at this level. As discussed earlier, bvFTD population
presents such biomarkers with abnormal values compared with healthy controls.

On the other hand, psychological and environmental stressors may generate an adjustment of the
system’s beliefs about its own capacity to regulate bodily activity. These new predictions are unable
to match interoceptive prediction errors, reducing precision and generating a further loop of dysfunc-
tion. In turn, this forces the system to make prediction errors stronger in order to adjust predictions.
Over time, this condition may generate over-reactions to the seemingly inoffensive exterior and inter-
oceptive stressors. Thus, in bvFTD this dysfunction would lead to a deficient inhibition and hypervig-
ilance of interoceptive signals instantiated by stress-related allostatic overload, partially indexed by a
reduced HEP during active tasks [27,39,109] and exacerbated resting-state HEP amplitudes [10].

In short, we propose that the core bvFTD psychological symptomatology are related to cerebral
(AIN functional connectivity and brain volume), cardiocerebral (HEP), and peripheral (biomarkers)
measures of allostatic overload.

Implications of the model
The framing of bvFTD as a condition typified by allostatic–interoceptive imbalance under the predictive
coding interpretation, leads to a set of relevant implications (Figure 3B). As described in previous sec-
tions, the symptomatology of bvFTD and potential mechanisms involved are related to dysfunctions
at several levels of processing. This implies that the end point described by bvFTD symptoms can be
related to different cascades of mismatch error predictions generated either from top-down or
bottom-up interactions. The model suggests that bvFTD corresponds to the dynamical dysfunction
of these two interactive loops. Another consequence relates to the importance of non-neural interac-
tions and their interpretation as predictions and prediction errors within the system, although at differ-
ent temporal scales. A key implication of this reasoning is the role of the hypothalamic–peripheral axis
in regulating non-neural interactions. Consequently, the model predicts a correlation between the
dysfunction of this axis and the increase of peripheral markers of allostatic overload.

Another group of implications relate to early characterization and intervention. If our model proves
to be useful, preventive diagnosis and early characterization is possible through the use of the bat-
tery of tests formerly outlined. This battery will generate a physiological profile quantifying the mul-
timodal risk of bvFTD symptomatology during prodromal stages [110]. This model can be also
tested on longitudinal studies. If cerebral, cardiovascular and peripheral markers prove to predict
future symptomatology, this alone opens the door to early interventions. For instance, if interocep-
tive deficits at behavioral and cerebral levels are observed at early disease stages, intervention ap-
proaches based on meditation and body awareness impacting interoceptive process [111,112]
may be helpful. Although these comments are speculative, they offer concrete lines of research.

Concluding remarks and future perspectives
This work proposes that allostatic–interoceptive overload in bvFTD may be an underlying phe-
nomenon across hallmark behavioral dysregulations and misadjusted physiopathological pro-
cesses. This framework may offer a roadmap for future work (see Outstanding questions).
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bvFTD patients have been characterized by a variety of psychiatric symptomatology, such as per-
sonality and behavioral changes, often making timely diagnosis and treatment difficult [113]. Im-
portantly, allostatic and interoceptive impairments have been more comprehensively assessed in
psychiatric conditions [11,114] than in neurological conditions. Linking allostatic overload and in-
teroceptive maladjustment with global behavioral impairments will help improve the diagnostic
accuracy and diagnostic dimensionality between psychiatric and neurodegenerative conditions
[98], offering novel and convergent biomarkers and clinical insights [7]. Despite the presence of
disparate allostatic and interoceptive deficits across neurodegenerative conditions, these impair-
ments seem to be selectively compromised in bvFTD, suggesting an allostatic–interoceptive
overload (Box 1). The predictive coding framework of allostatic–interoceptive overload in bvFTD
may also offer a transnosological account [1] towards the development of integrative clinical
models across neurology and psychiatry.

The evidence reviewed here supports the position for an integrated framework that connects
multiple disparate neurocognitive manifestations in bvFTD. This explanatory level does not require
nor sustain single causal or mechanistic explanations of neurodegeneration, but proposes an ini-
tial sui generis neurodegenerative effect at the core of the allostatic–interoceptive overload. Other
speculative and controversial explanations that link bidirectional interactions between allostatic
overload and neurodegeneration, or physiopathological causation of neurodegeneration, will re-
quire further research (Box 2).

Current evidence in bvFTD for the proposed framework is still mainly correlational and the predic-
tive coding approaches are not without limitation, especially when these are not instantiated by
domain-specific evidence (Box 3). Independently of the mechanistic implementations, the predic-
tive coding metaphor is useful in bringing pragmatic simulations and simpler explanations that
may complement more developed mechanistic explanations (i.e., dynamical system models). In
future work, the predictive coding framework of allostatic–interoceptive overload, neurocognitive
markers of allostatic overload, and physiological measures could be integrated into a broader
multimodal dynamical structure of multilayer networks [115,116]. These multilevel layers and
their corresponding measurements [16] would offer a global allostatic–interoceptive overload
profile. Such assessments may bring a cohesive understanding of bvFTD and motivate a novel
empirical program based on an allostatic–interoceptive dysregulation.

Multiple divergent deficits in bvFTD patients, such as cognitive impairments [27], behavioral mal-
adjustment [12], atrophy and impaired connectivity among fronto-insular-temporal hubs [27,39],
aberrant electrophysiological activity [27,28,39], and autonomic nervous system disbalance [87]
can be better explained within a predictive coding model of allostatic–interoceptive load. Within
Box 3. Towards robust approaches to allostatic interoception

Finding empirical evidence that supports the main assumptions of allostatic–interoceptive overload and predictive coding
models remains challenging [105,136]. Even authors supporting predictive coding are cautious about the current biolog-
ical implementations [105,108]. Most evidence is correlational and changes in neural activity are interpreted in term of pre-
dictive mechanisms, assuming that afferent and efferent anatomical connectivity are predictions and prediction errors,
respectively. The role of the anterior insular cortex, for example, is assumed to be central mainly because it is an anatomical
and functional hub receiving both top-down as well as bottom-up neural signals and correlating with interoceptive activity
[108]. As such, it is hypothesized that the insula works as a comparator and source of anticipatory visceromotor control.
Confirmatory evidence, however, does not go beyond this preliminary account [136]. Recent advanced laminar fMRI
methods may bring more light regarding direct evidence of predictive coding models. Similarly, specific evidence pointing
at each instantiation of the model predictions are required, including directionality, inference, errors, sui generis deficits and
subsequent impairments, as well as disease stage characterization. Such domain-specific evidence is critically required to
build a predictive model that surpasses basic general principles, abstract conceptualization, and preliminary and indirect
evidence.
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this framework, the interoceptive and exteroceptive stimuli are continuously parameterized
to evaluate priorities and predict environmental changes to instantiate organism needs before
incurring in errors [117,118]. These behavioral and physiological adjustments to environmental
demands depend on the convergence of socioemotional stimuli with bodily signals [39], self-
protection [119], and the assessment of situational context [72,88], all impaired in bvFTD patients.
By integrating multimodal signatures (cerebral, cardiocerebral, peripheral, and psychological
markers) in a theoretical account, this framework may offer novel and relevant insights into the
behavioral and physiological substrates of bvFTD.
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