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y Técnicas (CIBICI-CONICET), Córdoba, Argentina, 3 Programa Provincial de Pesquisa Neonatal, Servicio de Endocrinologı́a,
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Background: Congenital iodide transport defect (ITD) is an uncommon cause of
dyshormonogenic congenital hypothyroidism characterized by the absence of active
iodide accumulation in the thyroid gland. ITD is an autosomal recessive disorder caused
by loss-of-function variants in the sodium/iodide symporter (NIS)-coding SLC5A5 gene.

Objective: We aimed to identify, and if so to functionally characterize, novel ITD-causing
SLC5A5 gene variants in a cohort of five unrelated pediatric patients diagnosed with
dyshormonogenic congenital hypothyroidism with minimal to absent 99mTc-pertechnetate
accumulation in the thyroid gland.

Methods: The coding region of the SLC5A5 gene was sequenced using Sanger
sequencing. In silico analysis and functional in vitro characterization of a novel
synonymous variant were performed.

Results: Sanger sequencing revealed a novel homozygous synonymous SLC5A5 gene
variant (c.1326A>C in exon 11). In silico analysis revealed that the c.1326A>C variant is
potentially deleterious for NIS pre-mRNA splicing. The c.1326A>C variant was predicted
to lie within a putative exonic splicing enhancer reducing the binding of splicing regulatory
trans-acting protein SRSF5. Splicing minigene reporter assay revealed that c.1326A>C
causes exon 11 or exon 11 and 12 skipping during NIS pre-mRNA splicing leading to the
NIS pathogenic variants p.G415_P443del and p.G415Lfs*32, respectively. Significantly,
the frameshift variant p.G415Lfs*32 is predicted to be subjected to degradation by
nonsense-mediated decay.
n.org May 2022 | Volume 13 | Article 8688911
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Conclusions: We identified the first exonic synonymous SLC5A5 gene variant causing
aberrant NIS pre-mRNA splicing, thus expanding the mutational landscape of the SLC5A5
gene leading to dyshormonogenic congenital hypothyroidism.
Keywords: congenital hypothyroidism, iodide transport defect, sodium/iodide symporter, pathogenic synonymous
variant, pre-mRNA splicing defect
INTRODUCTION
Congenital iodide transport defect (Online Mendelian Inheritance
in Man #274400) is a rare autosomal recessive disorder whose
hallmark is the inability of the thyroid follicular cell to actively
accumulate the iodide required for thyroid hormonogenesis, thus
leading to dyshormonogenic congenital hypothyroidism (1). The
general clinical presentation of the disease includes a variable
degree of hypothyroidism, reduced to absent radioiodide
accumulation in an eutopic thyroid gland, and low saliva-to-
plasma iodide ratio (2–4).

The sodium/iodide symporter (NIS) is an integral basolateral
plasma membrane glycoprotein that mediates active iodide
accumulation into the thyroid follicular cell, which is the first
step in the biosynthesis of the iodine-containing thyroid
hormones (5). The intracellularly-located carboxy-terminus of
the protein is determinant for NIS expression at the basolateral
plasma membrane (6, 7). Moreover, NIS-mediated iodide
transport is electrogenic (2 sodium:1 iodide stoichiometry) and
remarkably efficient considering the submicromolar extracellular
iodide concentration (8, 9).

To date, over thirty pathogenic variants in the NIS-coding
SLC5A5 gene have been identified in patients with congenital
iodide transport defect. The molecular characterization of several
disease-causing NIS variants has revealed critical amino acids for
substrate binding, specificity, and stoichiometry, as well as
folding and plasma membrane targeting (5). A detailed
analysis of the p.G561E NIS variant revealed the importance of
the kinesin-1 subunit kinesin light chain 2 (KLC2) in thyroid
hormonogenesis (10). Moreover, the functional characterization
of the p.D396V NIS variant uncovered a critical intramolecular
ionic interaction—involving the b carboxyl group of D369 and
the guanidinium group of R130—for the correct folding required
for NIS maturation and transport to the plasma membrane (11).
Recently, based on structure-function analysis of pathogenic NIS
variants, we developed a machine learning-based NIS-specific
variant classifier aiming to improve the prediction of
pathogenicity of missense NIS variants in clinical practice (12).

Here, we explored the presence of pathogenic SLC5A5 gene
variants in a cohort of five unrelated pediatric patients with
dyshormonogenic congenital hypothyroidism suspected of
having a congenital iodide transport defect based on reduced
to non-detected 99mTc-pertechnetate accumulation in an eutopic
thyroid gland. We identified the homozygous synonymous
SLC5A5 variant c.1326A>C. In silico analysis predicted that
c.1326A>C disrupts the binding of the splicing regulatory
protein SRSF5 to an exonic splicing enhancer located in exon
11. Functional in vitro characterization using a splicing minigene
reporter assay revealed that the c.1326A>C variant causes exon
n.org 2
11 or exons 11 and 12 skipping during NIS pre-mRNA splicing
leading to the NIS pathogenic variants p.G415_P443del and
p.G415Lfs*32, respectively. Significantly, the frameshift variant
p.G415Lfs*32 is predicted to be subjected to degradation by
nonsense-mediated decay.
MATERIAL AND METHODS

Patients
Five patients with dyshormonogenic congenital hypothyroidism
with a suspected defect in iodide accumulation were included in
the study. All patients were full-term infants born from non-
consanguineous Caucasian (of European descent) parents showing
an abnormally high TSH level during the neonatal screening
program (Table 1). The patients did not have clinical signs of
hypothyroidism at birth. The cut-off value adopted for basal
TSH level in blood spot determined by UMELISA TSH
Neonatal (TecnoSuma International SA, La Habana, Cuba) for
neonatal screening was 10 µIU/ml. The diagnosis of congenital
hypothyroidism was confirmed based on elevated TSH serum
levels, with or without total or free T4 levels below the normal
range (Table 1). Inclusion criteria were congenital hypothyroidism
with eutopic thyroid gland explored by ultrasonography and
reduced to absent 99mTc-pertechnetate accumulation in the
thyroid gland assessed by radionuclide scintigraphy. The reference
range for 99mTc-pertechnetate uptake adopted in the Division of
Nuclear Medicine is 0.5–4% (13); therefore, we considered values
lower than 0.4% to be reduced, and suggestive of defective iodide
accumulation. The accumulation of 99mTc-pertechnetate in salivary
glands was not tested. Determination of saliva-to-plasma iodide
ratio was not technically available in the Division of Nuclear
Medicine. Levothyroxine therapy was introduced immediately
after diagnosis at initial dosis of 5–15 µg/kg per day according to
the degree of hypothyroidism. Patient 2 was re-evaluated at the
age of three years as recommended by consensus guidelines
(14); discontinuation of levothyroxine treatment revealed
transient hypothyroidism.

Thyroid Function Tests
Thyroid function analyseswere performedby electrochemiluminescence
immunoassay by Cobas e412 analyzer (Roche Diagnostics,
Indianapolis, IN). Age-specific thyroglobulin reference intervals
were established in-house (15).

SLC5A5 Gene Sequencing
Genomic DNA was extracted from whole blood using the
standard cetyltrimethylammonium bromide-based method. All
15 coding exons and exon-intron boundaries of the SLC5A5 gene
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were amplified using the primers and PCR conditions previously
reported (16, 17). The nucleotide sequence of all PCR products
was determined in both orientations by Sanger sequencing by
capillary electrophoresis (Macrogen, Seoul, South Korea). The
nucleotide position in SLC5A5 mRNA was named according to
the National Center for Biotechnology Information reference
sequence NM_000453.3, considering the adenine of the ATG
translation start codon as nucleotide +1.

In Silico Analysis
Splice Site Prediction by Neural Network (NNSplice), Max
Entropy Scan (MES), GeneSplicer, Human Splicing Finder
(HSF), SpliceSiteFinder-like (SSF-like), ESEFinder and
RESCUE-ESE integrated into the splicing module of Alamut
Visual version 2.9.0 (Interactive Biosoftware, Rouen, France)
were used to investigate the effect of synonymous variants on
consensus acceptor and donor splice-site sequences at the
intron-exon boundaries and exonic splicing regulatory
elements. Additional data analysis to assess the effect of
synonymous variants on exonic splicing regulatory elements
was accomplished using the algorithm HExoSplice (18). The
algorithm NMDEscPredictor (19) was used to predict whether
frameshift variants are sensitive to nonsense-mediated
mRNA decay.

Cloning and Site-Directed Mutagenesis
Human genomic sequence containing exons 11 (87 nucleotides)
and 12 (197 nucleotides) of the SLC5A5 gene along with the last
311 nucleotides of intron 10, the 82 nucleotides of intron 11, and
the first 367 nucleotides of intron 12 were amplified by PCR using
the following primers containing XhoI and BamHI restriction sites
(underlined) 5’- CACACTCGAGGTTGCAGTGAGCCAAGATCG
(forward) and 5’- TGTGGGATCCTCAAGCTGGGAGGATTGC
(reverse). PCR primers were designed using the Primer3 server
(http://frodo.wi.mit.edu/). The DNA fragments were cloned into
the corresponding cloning sites of the splicing reporter pSPL3
vector (a discontinued product of Thermo-Fisher Scientific) (20).
Site-directed mutagenesis was performed by PCR with
oligonucleotides carrying the desired mutation using Phusion Hot
Frontiers in Endocrinology | www.frontiersin.org 3
Start II DNA Polymerase (Thermo-Fisher Scientific), which was
followed by template plasmid digestion with DpnI (Promega –
Madison, WI) (21). Oligonucleotides for site-directed mutagenesis
were designed using QuikChange Primer Design Program (Agilent
Technologies, Santa Clara, CA). All constructs were sequenced to
verify specific nucleotide substitutions (Macrogen).

Cell Culture and Transfections
HeLa cells (CCL-2, American Type Culture Collection, Rockville,
MD) were obtained from our institutional cell line repository.
Cells were cultured in Dulbecco Modified Eagle’s Medium
(Thermo-Fisher Scientific - Waltham, MA) supplemented with
10% fetal bovine serum (Natocor, Córdoba, Argentina). Cells
were transiently transfected at the ratio of 4 µg plasmid/10 cm
dish using Lipofectamine 2000 (Thermo-Fisher Scientific) (22).

Splicing Minigene Reporter Assays
Total RNA was extracted from Hela cells 24 hours after transient
transfection with pSPL3-based minigene reporters using the
Direct-zol RNA MiniPrep Kit (Zymo Research - Irvine, CA).
Complementary DNA was synthesized from 1 µg total RNA.
PCR reactions were performed as described (23). The pSPL3-specific
primer sets were as follows: SD6 5′- TCTGAGTCACCTGGACAACC
and SA2 5′- ATCTCAGTGGTATTTGTGAGC. RT-PCR products
were resolved by electrophoresis on 2.5% agarose gels containing
ethidium bromide and gel purified using Wizard SV Gel and PCR
Clean-Up System (Promega) according to themanufacturer’s protocol.
All PCR products were sequenced to verify the identity of spliced
exons (Macrogen).
RESULTS

Identification of Synonymous SLC5A5
Variants in Patients With Dishormonogenic
Congenital Hypothyroidism
Five patients with congenital hypothyroidism showing diffuse
and reduced to non-detectable 99mTc-pertechnetate uptake by
the thyroid gland, which suggested a congenital iodide transport
TABLE 1 | Summary of biochemical and imaginological findings.

Patient 1 2 3 4 5

Neonatal screening
Age (days) 36 7 4 7 4
TSH (<10 mU/l) >20 18 20 29 67
Biochemical analysis
Age (days) 49 25 15 50 15
TSH (0.8-7.8 mg/dl) 300 16 16 46 62
T4 (6-16.5 mg/dl) 2 5 8 9 4
Free T4 (1-2.1 ng/dl) 0.1 1.3 1.2 1.0 1.2
T3 (100-310 ng/dl) 45 156 155 218 164
Tg (6-83 ng/ml) 5.2 59 221 67 157
Anti-TPO/Tg antibodies Negative Negative Negative Negative Negative
Imaginological analysis
Ultrasonography Eutopic Eutopic Eutopic Eutopic Eutopic
99mTc-pertechnetate scintigraphy Negative* Negative Reduced Reduced Reduced
May
 2022 | Volume 13 | Articl
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defect, were included in the study (Table 1). The presence of an
eutopic normal-shaped thyroid gland was ascertained by
ultrasonography. All patients were detected through neonatal
screening assessing TSH levels (Table 1). Confirmatory thyroid
function test showed increased TSH and normal to reduced total
and free thyroxine (T4) serum levels. Thyroglobulin serum levels
were variable and all patients were tested negative for thyroid
autoantibodies (Table 1).

Patients’ SLC5A5 gene sequencing revealed the homozygous
synonymous variants c.1326A>C located in exon 11 (patient 4)
(Figure 1A) and c.1626C>T located in exon 13 (patient 2)
(Figure 1B), whereas no variants were identified in the
remaining patients. The variants c.1326A>C and c.1626C>T
have been reported in the Single Nucleotide Polymorphism
database (rs73520743 and rs45602038, respectively). The variant
c.1326A>C showed an allele frequency of 0.001103 in the European
(non-Finnish) population, while c.1626C>T was 0.02997 in the
same population, according to The Genome Aggregation Database
(accessed on August 2021). We did not observe the variants in the
genome of 50 age-matched healthy pediatric patients. Moreover,
the variants c.1326A>C and c.1626C>T were observed in
homozygosis in 1 and 56, respectively, out of 61659 European
(non-Finnish) individuals, according to The Genome Aggregation
Database (accessed on August 2021). Hence, according to the
standards and guidelines provided by the American College of
Medical Genetics and Genomics (24), the c.1626C>T variant was
classified as benign (BS1).

In Silico Analysis Predicts
the Synonymous c.1326A>C
Variant as Deleterious for Normal
NIS Pre-mRNA Splicing
Synonymous variants are frequently considered benign as these
do not alter the corresponding amino acid residue and have no
Frontiers in Endocrinology | www.frontiersin.org 4
direct effect on the protein sequence. However, synonymous
variants may impact on transcription, mRNA processing and
translation (25).

In silico analysis using splicing prediction algorithms revealed
that the c.1326A>C variant, located at position +4 of the exon/
intron 11 junction, has no impact on the splice consensus
sequence nor the creation of a new splice site. However,
complementary in silico analysis assessing the effect of the
c.1326A>C variant on splicing regulatory elements revealed
that the variant is potentially deleterious for normal NIS pre-
mRNA splicing. The variant c.1326A>C was predicted to lie at a
potential exonic splicing enhancer (ESE) motif (ACAC[A/C]CC)
using ESEfinder software. The motif carrying the c.1326A>C
variant exhibited a decrease in the splicing regulatory protein
SRSF5 binding score from 4.12 to below the threshold level set at
2.67. In addition, the analysis using HExoSplice software
revealed that the variant c.1326A>C causes a significant
negative effect on an exonic splicing regulatory (ESR) sequence
(DtESRseq = -0.5932) whose identity overlaps with the
ESEfinder-predicted SRSF5 binding site. Together, in silico
analysis suggests that the synonymous variant c.1326A>C
might reduce the affinity of SRSF5 binding to the mutant ESE
motif. In agreement, previous reports suggested that variants in
ESE could cause exon skipping leading to aberrant pre-mRNA
splicing (26–28).
The Pathogenic Variant c.1326A>C
Impairs Normal NIS Pre-Messenger
RNA Splicing
To functionally assess the impact of the synonymous c.1326A>C
variant, pSPL3-based minigene reporter constructs were
generated and functionally tested in transiently transfected
HeLa cells (Figure 2A). Minigene reporter assay revealed that
the variant c.1326A>C generates a transcript of 263 bp
compatible in size with the skipping of exons 11 and 12 (a
splicing product), as a similar pattern was observed when cells
were transfected with the empty reporter vector (Figure 2B). By
contrast, the WT minigene generates a transcript of 547 bp
compatible with the canonical spliced transcript including exons
11 and 12 (b splicing product) and a transcript of 263 bp (a
splicing product) (Figure 2B). Moreover, the variant c.1326A>C
also generated a transcript of 457 bp compatible with the spliced
transcripts including exon 12 alone (g splicing product)
(Figure 2B), and an additional artificial splicing transcript of
573 bp including a pseudoexon from the intron of the minigen
reporter vector (Supplementary Figure 1). Sequence analysis
uncovered the identity of all PCR products (Figure 2C and
Supplementary Figure 1).

If the exon-excluded transcripts of the SLC5A5 gene were
successfully translated, as the c.1326A>C variant-caused exons
11 and 12 skipping induces a change in the open reading frame of
the transcript, it would lead to the NIS variant p.G415Lfs*32,
whereas exon11 skippingwould generate the in-frameNIS deletion
variant p.G415_P443del. Significantly, NMDEscPredictor analysis
predicted that the transcript encoding the frameshift variant
p.G415Lfs*32 undergoes nonsense-mediated decay.
A B

FIGURE 1 | Identification of synonymous SLC5A5 variants in patients with
dyshormonogenic congenital hypothyroidism. Partial sequence
chromatograms covering the region of the variants (underlined) in exons 11
(c.1326A>C) (A) and 13 (c.1626C>T) (B) of the SLC5A5 gene. The reference
sequence (Refseq) is indicated in gray.
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Together, combining in silico and functional in vitro assays,
we determined that the synonymous c.1326A>C variant
disturbed normal NIS pre-mRNA splicing, thus leading to
dyshormonogenic congenital hypothyroidism due to a defect
in iodide accumulation.
Frontiers in Endocrinology | www.frontiersin.org 5
DISCUSSION

Here, we explored the presence of pathogenic SLC5A5 gene
variants in a cohort of five unrelated pediatric patients with
dyshormonogenic congenital hypothyroidism suspected of
A

B

C

FIGURE 2 | The variant c.1326A>C causes NIS pre-mRNA splicing defect. (A) Scheme of pSPL3-based minigene reporter constructs used in functional assays. The
genomic fragment containing exons 11 and 12 along with a fragment flanking introns 10 and 12, and the spacing intron 11 was cloned between pSPL3 vector exons SD
and SA using XhoI and BamHI restriction sites. Arrows show pSPL3 vector SD and SA exon-specific primers (SD6 and SA2) used in RT-PCR analysis. Canonical and
aberrant splicing products are indicated by dashed lines above and below the construct, respectively. The variant c.1326A>C is indicated. (B) Agarose gel electrophoresis
of RT-PCR products from empty, WT or c.1326A>C pSPL3 minigene reporter transiently transfected into HeLa cells. The empty pSPL3 vector, where only SD-SA exons
splicing occurred, lead to a 263 bp PCR product (a splicing). The WT pSPL3 minigene mainly yielded a 547 bp PCR product including SD-SA exons (263 bp) flanking
the exons 11 (87 bp) and 12 (197 bp) of the SLC5A5 gene (b splicing). The c.1326A>C pSPL3 minigene leads to a main PCR product of 263 bp including only SD-SA
exons and secondary PCR products of 457 and 573 bp including SD-SA exons flanking exon 12 alone (g splicing) or including an artificial pseudoexon derived from the
intronic sequence of the reporter vector (Supplementary Figure 1), respectively. Schemes represent the a, b and g splicing RT-PCR products. (C) Sequencing analysis
confirmed the identity of a, b and g splicing RT-PCR products.
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having a congenital iodide transport defect. Significantly, we
identified the homozygous synonymous c.1326A>C variant
causing aberrant NIS pre-mRNA splicing in one of the patient.
Consistent with the recessive nature of the disease, the mother of
the patient showed conserved thyoid function although her
genetic material was not available for segregation analysis. Our
analysis did not reveal pathogenic variants in the coding region
of the SLC5A5 gene in three out of four patients with permanent
congenital hypothyroidism. Therefore, although we focused on
the coding region and exon-intron boundaries, other potential
mechanisms, such as large genomic rearrangements and variants
likely affecting regulatory elements, including the promoter,
enhancers, and deep intronic regions should also be
considered. Interestingly, pathogenic variants in TSHR and
PAX8 genes have been reported in patients with permanent
congenital hypothyroidism showing reduced to normal-sized
eutopic thyroid glands with low to absent radioiodide uptake
on thyroid scintigraphy (29, 30). Regarding the patient with
transient congenital hypothyroidism, Castellnou et al. (31)
recently reported a case of transient congenital hypothyroidism
with eutopic gland and undetectable radioiodide uptake on
thyroid scintigraphy due to maternal thyrotropin receptor-
blocking antibodies (TRAbs). This report highlights the
importance to analyze TRAbs in hypothyroid mothers during
pregnancy, which is particularly useful when congenital
hypothyroidism is diagnosed in their newborns. Unfortunately,
maternal TRAbs data were not available for our patients.

Most disease-causing exonic single nucleotide variants are
frequently assumed to exert their effects by altering the amino
acid sequence of the protein. However, many human genetic
diseases are caused by exonic variants that disrupt canonical
splice sites at exon-intron boundaries or splicing regulatory
elements that enhance the recognition of the splice sites, which
are relevant to pre-mRNA splicing, leading to abnormal splicing
outcomes (32). Indeed, one-third of disease-causing mutations were
predicted to result in aberrant splicing (33). Interestingly, exonic
synonymous variants—which do not alter protein sequences—or
even non-synonymous single nucleotide variants have been
demonstrated to contribute to human diseases by affecting
transcription and splicing regulatory factors within protein-coding
regions (33). Particularly, synonymous variants were reported as a
disease-causingmechanism in several endocrine disorders including
familial pheochromocytoma (34), combined pituitary hormone
deficiency (35, 36), pseudohypoparathyroidism type 1 (37) and
maturity-onset diabetes of the young (38). Therefore, synonymous
variants should not be neglected in gene variant prioritization
pipelines as they may produce abnormal mRNAs and
dysfunctional proteins.

Patients with congenital hypothyroidism due to deficient
iodide accumulation show a substantial clinical and
biochemical heterogeneity (39). Under conditions of iodine
sufficiency, thyroid function at diagnosis reflects differences in
residual mutant NIS protein activity (39, 40). Thus, thyroid
function in the patient carrying the pathogenic variant
c.1326A>C was sufficient to preserve normal peripheral thyroid
hormone levels. A likely explanation for this situation is the
Frontiers in Endocrinology | www.frontiersin.org 6
presence of residual properly-spliced NIS expression, which
correlates with the clinical observation of reduced 99mTc-
pertechnetate when the patient was examined by thyroid
scintigraphy. Considering that NIS-mediated iodide uptake is a
crucial step in the synthesis of thyroid hormones, our results
indicate that the variant c.1326A>C impairs iodide uptake by
interfering with normal NIS pre-mRNA splicing. Therefore,
defective NIS pre-mRNA splicing leading to lack of sufficient
NIS molecules at the basolateral plasma membrane in the thyroid
follicular cells may explain the mechanism underlying the
deficient accumulation of iodide causing dyshormonogenic
hypothyroidism. In this context, the increase in TSH levels
following a decrease in thyroid hormone production may
partially overcome the splicing defect by upregulating SLC5A5
gene transcription, as has been observed in patients with different
loss-of-function NIS variants (41, 42).

Disruption of pre-mRNA splicing has been implicated in the
etiology of numerous congenital human disorders (43). Several
reports support splicing defects as a disease-causing mechanism
in congenital hypothyroidism (44–48). Particularly, NIS splicing
defect-caused dyshormonogenic congenital hypothyroidism has
been described in the literature. Pohlenz et al. (49) reported the
nonsense variant c.1593C>G (originally named c.1940C>G) that
generates a cryptic 3’ splice acceptor site in exon 13 leading to the
mis-splicing variant p.S509Rfs*6 NIS. Moreover, two recent
reports provided functional evidence that the variants c.970-
3C>A and c.970-48G>C disrupts canonical and non-canonical
splice sites, respectively, located in the intron 7 causing exon 8
skipping during NIS mRNA splicing, thus leading to the
nonsense variant p.Y324Hfs*148 NIS (11, 50). Here, we report
the exonic synonymous SLC5A5 gene variant c.1326A>C causing
aberrant NIS pre-mRNA splicing. The variant c.1326A>C is
predicted to disrupt a potential ESE motif located in exon 11,
thus promoting exon 11 or exons 11 and 12 skipping during the
splicing process. The skipping of exon 11 during NIS pre-mRNA
splicing leads to the in-frame deletion variant p.G415_P443del,
which is likely inactive, as the ITD-causing in-frame deletion
variant p.A439_P443del NIS identified in a patient showing not-
detectable 131I-iodide uptake by the thyroid gland is
intracellularly retained and does not accumulate iodide (51,
52). Moreover, the skipping of exons 11 and 12 change the
open reading frame of the transcript leading to the NIS
pathogenic variant p.G415Lfs*32, whose transcript is predicted
to undergo nonsense-mediated mRNA decay.

The implementation of next-generation sequencing has been
instrumental in expanding the mutational landscape of
monogenic forms of congenital hypothyroidism (53). Recently,
whole-exome sequencing revealed pathogenic GBP1 variants in
patients with defective developmental thyroid morphogenesis
(54). The future implementation of next-generation sequencing-
based approaches might reveal novel disease-causing gene
variants in patients with permanent dyshormonogenic
congenital hypothyroidism showing a phenotype of defective
iodide accumulation. A precedent for this hypothesis is provided
by the observation that the KCNQ1/KCNE2 potassium channel
is crucial in facilitating NIS-mediated iodide transport (55).
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Geysels et al. A Synonymous SLC5A5 Variant Causing Congenital Hypothyroidism
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the medical ethics committee of the Hospital de
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7. Martıń M, Salleron L, Peyret V, Geysels RC, Darrouzet E, Lindenthal S, et al.
The PDZ Protein SCRIB Regulates Sodium/Iodide Symporter (NIS)
Expression at the Basolateral Plasma Membrane. FASEB J (2021) 35:
e21681. doi: 10.1096/fj.202100303R

8. Ravera S, Quick M, Nicola JP, Carrasco N, Amzel LM. Beyond non-Integer
Hill Coefficients: A Novel Approach to Analyzing Binding Data, Applied to
Na+-Driven Transporters. J Gen Physiol (2015) 145:555–63. doi: 10.1085/
jgp.201511365

9. Nicola JP, Carrasco N, Amzel LM. Physiological Sodium Concentrations
Enhance the Iodide Affinity of the Na+/I- Symporter. Nat Commun (2014)
5:3948. doi: 10.1038/ncomms4948
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