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a b s t r a c t

A biclique is a maximal induced complete bipartite subgraph of a graph. We investigate
the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the
associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all
bicliques. We characterize graphs whose edge-biclique hypergraph is conformal (i.e., it is
the clique hypergraph of its 2-section) by means of a single forbidden induced obstruction,
the triangular prism. Using this result, we characterize graphs whose edge-biclique
hypergraph is Helly and provide a polynomial time recognition algorithm. We further
study a hereditary version of this property and show that it also admits polynomial time
recognition, and, in fact, is characterized by a finite set of forbidden induced subgraphs.
We conclude by describing some interesting properties of the 2-section graph of the edge-
biclique hypergraph.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The intersection graph of a collection of sets is defined as follows. The vertices correspond to the sets, and two vertices
are adjacent just if the corresponding sets intersect. Intersection graphs are a central theme in algorithmic graph theory
because they naturally occur in many applications. Moreover, they often exhibit elegant structure which allows efficient
solution of many algorithmic problems. Of course, to obtain a meaningful notion, one has to restrict the type of sets in the
collection. In fact, [19], every graph can be obtained as the intersection graph of some collection of sets. By considering
intersections of intervals of the real line, subtrees of a tree, or arcs on a circle, one obtains interval, chordal, or circular-
arc graphs, respectively. For these classes, a maximum clique or a maximum independent set can be found in polynomial
time [9]. We note that one can alternatively define an interval graph as an intersection graph of connected subgraphs of
a path; similarly intersection graphs of connected subgraphs of a tree produce chordal graphs, and intersection graphs of
connected subgraphs of a cycle produce circular-arc graphs. More generally, one can consider intersections of particular
subgraphs of arbitrary graphs. This naturally leads to intersections of edges, cliques, or bicliques of graphswhich correspond
to line graphs, clique graphs, and biclique graphs, respectively.

We focus on edge intersections of subgraphs. The edge intersection graph of a collection of subgraphs is defined in the
obvious way, as the intersection graph of their edge-sets. In hypergraph terminology, this can be defined as the line graph
of the hypergraph whose hyperedges are the edge-sets of the subgraphs. We say that subgraphs are edge intersecting if
they share at least one edge of the graph. For instance, the EPT graphs from [10] are exactly the edge intersection graphs of
paths in trees. For another example, consider the double stars of a graph G, i.e., the subgraphs formed by the sets of edges
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incident to two adjacent vertices. The edge intersection graph of double stars of G is easily seen to be precisely the square
of the line graph of G. In contrast, if we consider the stars of G, i.e., sets of edges incident with individual vertices, then the
edge intersection graph of the stars of G is the graph G itself [19].

In this context, one can study edge intersections of particular subgraphs by turning the problem into a question about
vertex intersections of cliques of an associated auxiliary graph. In this auxiliary graph, vertices correspond to edges of the
original graph G, and two vertices are adjacent just if the corresponding edges belong to one of the particular subgraphs
considered. In the language of hypergraphs, this graph is defined as the two-section of the hypergraph of the edge-sets of
the subgraphs. For instance, in line graphs vertices are adjacent if and only if the corresponding edges belong to the same
star of G. A similar construction produces the so-called edge-clique graphs from [8] (see also [4–7,17,18]). Naturally, every
occurrence of the particular subgraph in G corresponds to a clique in such auxiliary graph, and although the converse is
generally false, one may obtain useful information by studying the cliques of the auxiliary graph.

Next, we turn our attention to the Helly property. A collection of sets is said to have the Helly property if for every
subcollection of pairwise intersecting sets there exists an element that appears in each set of the subcollection. For instance,
any collection of subtrees of a tree has the Helly property. On the other hand, arcs of a circle or cliques of a graph do not
necessarily have the Helly property. Note that it is, in fact, the Helly property that allows us to efficiently find a maximum
clique in a chordal graph or in a circular-arc graph (where theHelly property is ‘‘almost’’ satisfied [9]). By comparison, finding
a maximum clique appears to be hard in clique graphs (intersection graphs of cliques). For a similar reason, recognizing
chordal graphs and circular arc graphs is possible in polynomial time [9], whereas it is hard for clique graphs [1].

Alternatively, one can impose the Helly property on intersections, and then study the resulting class of graphs. For
instance, cliques of a graph do not necessarily satisfy the Helly property, but if we only consider graphs in which they do, we
obtain the class of clique-Helly graphs studied in [16]. In the same way, one can study the classes of neighbourhood-Helly,
disc-Helly, biclique-Helly graphs [11], and also their hereditary counterparts [12,15].

In this paper, we investigate the intersections of edge-sets of bicliques. With each graph Gwe associate the edge-biclique
hypergraph, denoted by EB(G), defined as follows. The vertices of EB(G) are the edges of G, and the hyperedges of EB(G)
are the edge-sets of the bicliques of G. We remark that while for cliques the usual vertex intersection graphs (i.e., clique
graphs and hypergraphs) are the most natural construct, for bicliques both the vertex and the edge intersection graphs are
natural, and have interesting structure. (See [13] for a characterization of vertex intersection graphs of bicliques.)

The paper is structured as follows. First, in Section 2 we observe some basic properties of the two-section graph of the
edge-biclique hypergraph EB(G). This will allow to prove that EB(G) is conformal (it is the hypergraph of cliques of its two-
section) if and only if G contains no induced triangular prism. Next, in Section 3we discuss the Helly property and prove that
EB(G) is Helly if and only if the clique hypergraph of the two-section of EB(G) is Helly. This will imply polynomial time
testing for the Helly property on EB(G). In Section 4 we look at a hereditary version of this property by studying graphs G
such that for every induced subgraph H of G, the hypergraph EB(H) is Helly. We show that the class of such graphs admits
a finite forbidden induced subgraph characterization. This will also yield a polynomial time recognition algorithm for the
class. In Section 5, we conclude the paper by further discussing properties of the two-section graph of EB(G). In particular,
we compare it to the line graph of G, point out some small graphs that are not two-sections of edge-biclique hypergraphs,
and characterize graphs whose every induced subgraph is the two-section of some edge-biclique hypergraph.

2. Notation and basic definitions

A graph G = (V , E) consists of a vertex set V and a set E of edges (unordered pairs from V ). A hypergraph H = (V , E)
consists of a vertex set V and a set E ⊆ 2V of hyperedges (subsets of V ). For a set X of vertices of a graph G, we denote by
G[X] the subgraph of G induced by X . A set X is a clique of G if G[X] is a complete graph and X is (inclusion-wise) maximal
with this property. A set X is a biclique of G if G[X] is a complete bipartite graph and X is (inclusion-wise) maximal with this
property.

For a hypergraphH = (V , E) and a subset E ′
⊆ E , we say thatH ′

= (V , E ′) is a partial hypergraph ofH . A subhypergraph
of H induced by a set A ⊆ V is the hypergraph H[A] = (A, {X ∩ A | X ∈ E} \ {∅}).

To make the presentation clearer, we shall use capital letters G,H, . . . to denote graphs and calligraphic letters G, H, . . .
to denote hypergraphs. Similar convention shall be used for graph and hypergraph operations. In particular, the following
operations shall be used throughout the paper.

Let H = (V , E) be a hypergraph. The dual hypergraph of H , denoted by H∗, is the hypergraph whose vertex set is E and
whose hyperedges are {Xv | v ∈ V } where Xv = {X | X ∈ E ∧ X ∋ v}. In other words, each Xv consists of all hyperedges
of H that contain v. The 2-section of H , denoted by (H)2, is the graph with vertex set V where two vertices u, v ∈ V are
adjacent if and only if u, v ∈ X for some X ∈ E . The line graph of H , denoted by L(H), is the graph with vertex set E where
X, X ′

∈ E are adjacent if and only if X ∩ X ′
≠ ∅. Note that L(H) is the 2-section of the dual hypergraph of H .

Let G = (V , E) be a graph. The line graph of G, denoted by L(G), is the graph with vertex set E where two edges of E are
adjacent if and only if they share an endpoint in G. The clique hypergraph of G, denoted by K(G), is the hypergraph whose
vertex set is V andwhose hyperedges are the cliques of G. The clique graph of G, denoted by K(G), is the graphwhose vertices
are the cliques of Gwhere two cliques are adjacent if and only if they have a vertex in common. In other words, K(G) is the
line graph of the clique hypergraph K(G). The edge-biclique hypergraph of G, denoted by EB(G), is the hypergraph with
vertex set is E whose hyperedges are the edge-sets of the bicliques of G. The biclique line graph of G, denoted by LG, is the
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Fig. 1. (a) G, (b) EB(G), (c) the line graph of EB(G), (d) LG = the 2-section of EB(G), (e) the clique graph of LG .

graph with vertex set E where two edges of E are adjacent if they belong to a common biclique of G. Note that LG is the
2-section of EB(G).

For the reader’s convenience, we summarize these notions in the following two tables.

H = (V , E) notation vertices (hyper)edges

dual H∗ hyperedges hyperedges sharing a common vertex
line graph L(H) hyperedges two intersecting hyperedges
2-section (H)2 vertices two vertices in a common hyperedge

G = (V , E) notation vertices (hyper)edges

line graph L(G) edges two edges sharing a vertex
biclique line graph LG edges two edges in a common biclique
clique graph K(G) cliques two intersecting cliques
clique hypergraph K(G) vertices cliques
edge-biclique
hypergraph

EB(G) edges edge-sets of bicliques

We also refer the reader to Fig. 1 for an illustration of these concepts.
We say that a hypergraph H = (V , E) is reduced if there are no hyperedges X, X ′

∈ E with X $ X ′. In other words, a
hypergraphH is reduced if every hyperedge ofH is inclusion-wisemaximal among the hyperedges ofH . IfH is not reduced,
then the reduction of H is the partial hypergraph of H containing only the inclusion-wise maximal hyperedges of E . Note
that the reduction of H is always a reduced hypergraph. Also, observe that K(G) and EB(G) are reduced hypergraphs by
definition.

A hypergraph H = (V , E) is Helly if for every subcollection E ′
⊆ E satisfying X ∩ X ′

≠ ∅ for all X, X ′
∈ E ′, we

have


X∈E ′ X ≠ ∅. A hypergraph H is conformal if every clique of the 2-section of H is contained in a hyperedge of H . In
particular, if H is reduced, then H is conformal if and only if it is the clique hypergraph of its 2-section. Alternatively [3],
H is conformal if and only if the dual of H is Helly.

We say thatH is a line graph, or a clique graph, or a biclique line graph if, respectively,H = L(G), orH = K(G), orH = LG,
for some G. Note that where appropriate we shall refer to the vertices of LG and K(G) as edges and cliques, respectively, and
refer to the hyperedges of EB(G) as bicliques.

As usual, we shall denote by V (G) and E(G) the vertex set respectively the edge set of a graph G. For hypergraphs, we
shall not use special notation for vertices and hyperedges for simplicity.

We emphasize that, in this paper, cliques and bicliques are always maximal, and they are usually viewed as vertex sets,
rather than subgraphs. For any further terminology, please consult [3,20].
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Fig. 2. Adjacent edges in biclique line graphs.

3. The conformal property

In this section, we characterize graphs G whose edge-biclique hypergraph EB(G) is conformal. We do this by studying
the 2-section of EB(G). Recall that we use LG to denote the 2-section of EB(G) and call this graph the biclique line graph
of G. We start with some useful observations about LG. The following is a restatement of the definition.

Proposition 1. If e = uv and e′
= u′v′ are edges of G, then e and e′ are adjacent in LG if and only if either u = u′ and vv′

∉ E(G),
or v = v′ and uu′

∉ E(G), or u, v, u′, v′ induces a four-cycle in G (see Fig. 2). �

In the next lemma and subsequent statements, P3 denotes the complement of the path on 3 vertices.

Lemma 2. If e1 = ab and e2 = cd are edges of G such that G[a, b, c, d] contains a triangle or an induced P3, then e1e2 is not an
edge of LG.

Proof. Let ab, cd be such edges, and letH = G[a, b, c, d]. First, suppose thatH contains a triangle.Without loss of generality,
let a, b, c be a triangle of H . If {a, b} ∩ {c, d} ≠ ∅, then H itself is a triangle, and hence, by Proposition 1, the edges e1 = ab
and e2 = cd are not adjacent in LG. So {a, b} ∩ {c, d} = ∅, but then H is not a four-cycle implying again that e1e2 ∉ E(LG).

Now, suppose that H contains an induced P3. Without loss of generality, let a, b, c induce a P3 in H with ac, bc ∉ E(G).
This yields {a, b} ∩ {c, d} = ∅. Hence, if e1e2 ∈ E(LG), it follows from Proposition 1 that this can only be if a, b, c, d induces
a four-cycle. But this contradicts ac, bc ∉ E(G). �

Next, observe that the edge sets of bicliques of G are complete subgraphs of LG. In the following, we show that they are,
in fact, cliques of LG.

Lemma 3. The edge-biclique hypergraph of G is a partial hypergraph of the clique hypergraph of LG.

Proof. For the proof, we shall show that for every biclique of G, its edge set is a clique in LG. Consider a biclique B of G, and
let C denote the edges of G[B]. We shall show that C is a clique of LG.

Since all edges in the set C belong to a complete bipartite subgraph of G, the set C induces a complete subgraph of LG, as
observed above the claim, by the definition of LG. Suppose that C is not a clique of LG, that is, there exists an edge uv = e ∉ C
such that C∪{e} is a complete subgraph of LG. We show that G[B∪{u, v}] is a complete bipartite graph, whichwill contradict
our assumption that B is a biclique of G. If G[B ∪ {u, v}] is not a complete bipartite graph, then it contains a triangle or an
induced P3 whose at least one vertex is u or v. In particular, if u, v, a induces in G a triangle or a P3 for some a ∈ B, we
let b be any vertex of B adjacent to a (possibly b = u or b = v), and conclude that ab and uv are edges in C ∪ {e}. This,
however, contradicts Lemma 2, since then G[a, b, u, v] contains a triangle or an induced P3. If u, a, b or v, a, b is a triangle
or an induced P3 in G for a, b ∈ B where ab ∈ E(G), we again have edges ab, uv in C ∪ {e} contradicting Lemma 2. So, we
let a, b be non-adjacent vertices of B, and let c be any vertex of B adjacent to a (and hence to b). In particular, ac and bc are
edges in C , and u, v are not both in {a, b, c}, since a, b, c ∈ B and e ∉ C . If exactly one of u, v is in {a, b, c}, then we conclude
that neither u, a, b nor v, a, b induces a P3 in G, since otherwise we contradict Lemma 2 for the edges ac, uv or bc, uv. So,
{u, v} ∩ {a, b, c} = ∅, and we conclude, by Proposition 1, that both a, c, u, v and b, c, u, v induce a four-cycle in G. In other
words, vc ∈ E(G) if and only if va, vb ∉ E(G) if and only if ua, ub ∈ E(G). Hence, both u, a, b and v, a, b do not induce a P3
in G. Consequently, G[B ∪ {u, v}] is a complete bipartite graph, a contradiction. �

Now, assuming that G contains no induced subgraph isomorphic to the triangular prism (the graph in Fig. 1(a)) we show
that there are no other cliques in LG than the ones arising from bicliques of G.

Lemma 4. If G contains no induced subgraph isomorphic to the triangular prism, then the edge-biclique hypergraph of G is equal
to the clique hypergraph of LG.

Proof. Assume that G contains no induced subgraph isomorphic to the triangular prism. By Lemma 3 it remains to prove
that every clique of LG is the set of edges of some biclique of G. Consider a clique C of LG, and let B denote the vertices of G
incident to the edges in the set C . We show that B is a biclique of G, and C is precisely the set of edges of G[B] which will
prove the claim.

First, we show that the set of edges of G[B] is precisely C . Suppose otherwise, and let e = uv be an edge of G[B] that is
not in C . Since u, v ∈ B, we have, by the definition of B, edges au = e∗

∈ C and bv = e∗∗
∈ C . Clearly, a ≠ v and b ≠ u,

since e ∉ C . Also, a ≠ b, because otherwise G[a, b, u, v] contains a triangle contradicting Lemma 2 for e∗ and e∗∗ which are
adjacent in LG. Hence, we conclude that the vertices a, b, u, v induce a four-cycle. Now, recall that C is a clique of LG, that is,
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a maximal complete subgraph of LG. So, since e ∉ C , there must exist an edge xy = e′
∈ C such that e and e′ are not adjacent

in LG. In particular, e′ must be adjacent to both e∗ and e∗∗ in LG.
There are three possibilities.

Case 1: {x, y}∩ {a, b, u, v} = ∅. Since e∗ and e′ are adjacent in LG, the vertices a, u, x, y induce a four-cycle in G. Without loss
of generality, we may assume that ux, ay ∈ E(G) and uy, ax ∉ E(G). Suppose that vx ∈ E(G). Then it follows that yb ∈ E(G)
and xb, yv ∉ E(G), since the vertices b, v, x, y induce a four-cycle in G. Thus the vertices a, b, u, v, x, y induce the triangular
prism, a contradiction. Hence, vx ∉ E(G) and it follows that vy ∉ E(G), since otherwise u, v, y, x induce a four-cycle in G
contradicting the fact that e and e′ are not adjacent in LG. In particular,G[b, v, x, y] contains an induced P3. But then Lemma 2
implies that e′ and e∗∗ are not adjacent in LG, a contradiction.
Case 2: y ∈ {a, b, u, v} and x ∉ {a, b, u, v}. First, suppose that u = y. Since e′ is adjacent to e∗ but not to e in LG, we have
that ax ∉ E(G) and vx ∈ E(G). Thus G[b, v, x, y] contains a triangle which, by Lemma 2, contradicts the fact that e′ and e∗∗

are adjacent in LG. Hence, u ≠ y and by symmetry, v ≠ y. Now, suppose that a = y. Again, xu, xv ∉ E(G) since e′ is adjacent
to e∗ and not adjacent to e in LG, respectively. Thus G[b, v, x, y] contains an induced P3 which, again by Lemma 2, leads to a
contradiction. So, a ≠ y and by symmetry, b ≠ y, contradicting y ∈ {a, b, u, v}.
Case 3: x, y ∈ {a, b, u, v}. This case again leads to a contradiction, since it is easy to see that all edges of G[a, b, u, v] are
adjacent to e in LG.

This proves that C is precisely the set of edges of G[B]. Next, we show that G[B] is a complete bipartite graph. Suppose
otherwise, that is, G[B] contains a triangle or an induced P3. If G[B] contains a triangle, then the edges of this triangle are in
C but at the same time they are pairwise not adjacent in LG, contradicting the fact that C is a clique of LG. Therefore, there
must be vertices u, v, w inducing a P3 in G[B] where uv ∈ E(G) and uw, vw ∉ E(G). In particular, uv is an edge in C , and
since w ∈ B, there exists, by the definition of B, an edge zw = e′

∈ C . We conclude that e and e′ are adjacent in LG, since C
is a clique of LG, which contradicts Lemma 2, because u, v, w is an induced P3 in G[u, v, z, w].

We conclude that G[B] is a complete bipartite graph, and hence, there exists a biclique B′ of G such that B′
⊇ B. However,

if C ′ is the set of edges of G[B′
], then C ′ is a complete subgraph of LG and we have C ′

⊇ C . So, we conclude C ′
= C which

yields B′
= B, and hence, B is a biclique of G.

That concludes the proof. �

Note that the assumption in the above theorem cannot be removed since if G is the triangular prism, the bicliques of G
and the cliques of LG are different (see Fig. 1). In fact, a stronger statement is true as it turns out that any graph with an
induced triangular prism similarly fails.

We prove this in the following theorem.

Theorem 5. For every graph G, the edge-biclique hypergraph of G is equal to the clique hypergraph of LG if and only if G contains
no induced subgraph isomorphic to the triangular prism.

Proof. The backward direction is proved as Lemma 4. For the forward direction, let G be a graph containing an induced
triangular prism on vertices a, b, c, d, e, f as depicted in Fig. 1. Consider the edges e1 = ad, e2 = be, and e3 = cf . Note that
e1, e2, e3 form a triangle in LG. So, there is a clique C in LG containing e1, e2, e3. However, we observe that there is no biclique
B in G where e1, e2, e3 are edges of G[B]. Indeed, any such B would contain the vertices a, b, c which induce a triangle in G,
and hence in G[B], which is impossible. Thus we conclude that C is a hyperedge of the clique hypergraph of LG but not a
hyperedge of the edge-biclique hypergraph of G. So, the two hypergraphs are not equal. �

Finally, we notice that EB(G) is a reduced hypergraph. Thus the above theorem also yields the following corollary which
characterizes those graphs Gwhose edge-biclique hypergraph is conformal.

Corollary 6. The edge-biclique hypergraph of a graph G is conformal if and only if G contains no induced subgraph isomorphic
to the triangular prism.

4. The Helly property

We now turn to investigating graphs whose edge sets of bicliques satisfy the Helly property. In particular, we show that
the edge-biclique hypergraph of G is Helly if and only if the clique hypergraph of LG is Helly. We start with the following
observation.

Lemma 7. If the edge-biclique hypergraph of G is Helly, then G does not contain the triangular prism as an induced subgraph.

Proof. Let G be a graph such that EB(G) is Helly. Suppose that G contains induced triangular prism on vertices a, b, c, d, e, f
as shown in Fig. 1(a). Let B1 be the biclique of G that contains {a, b, d, e}, let B2 be the biclique of G that contains {b, c, e, f },
and let B3 be the biclique of G that contains {a, c, d, f }. Clearly, c, f ∉ B1, a, d ∉ B2, and b, e ∉ B3. Since EB(G) is Helly and
the bicliques B1, B2, B3 pairwise intersect in an edge, there must exist an edge e = uv with u, v ∈ B1 ∩ B2 ∩ B3. Clearly,
u ≠ a since a ∉ B2. Similarly, u ∉ {a, b, c, d, e, f } and by symmetry we conclude that {u, v} ∩ {a, b, c, d, e, f } = ∅. Now,
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Fig. 3. Graph B of a B-template.

we observe that u is adjacent to exactly one of {a, b}, since otherwise G[B1] contains a triangle or an induced P3, and thus
B1 is not a biclique. Without loss of generality, suppose that ua ∈ E(G) and ub ∉ E(G). This implies that vb ∈ E(G) and
va ∉ E(G). Therefore, vc ∉ E(G), since otherwise G[B2] contains a triangle. Thus the vertices v, a, c induce a P3 in G[B3], a
contradiction. �

Theorem 8. The edge-biclique hypergraph of G is Helly if and only if the clique hypergraph of LG is Helly.

Proof. By Lemma 3, the edge sets of bicliques of G are the cliques of LG. Hence, if the cliques of LG satisfy the Helly property,
then the edge sets of bicliques of Gmust satisfy the Helly property. Conversely, if EB(G) is Helly, we conclude, by Lemma 7,
that G contains no induced triangular prism. Hence, by Lemma 4, the cliques of LG are the edge sets of bicliques of G. So, if
the edge sets of bicliques of G satisfy the Helly property, then the cliques of LG must satisfy the Helly property. �

Corollary 9. There is a polynomial time algorithm for the recognition of graphs whose edge-biclique hypergraph is Helly.

Proof. Clearly, the graph LG can be constructed in polynomial time. By [15], graphs whose clique hypergraph is Helly can
be recognized in polynomial time. This with Theorem 8 implies the claim. �

To be more precise, the complexity of the algorithm is O(|E(G)|4). This follows from O(|E(G)|2) complexity [15]
of recognizing graphs whose clique hypergraph is Helly. Since we apply this to the graph LG, the total complexity is
O(|E(LG)|2) = O(|E(G)|4). For this note that LG can have O(|E(G)|2) edges, and this is tight, for example, if G is a complete
bipartite graph. Finally, the construction of the biclique line graph LG from G can be realized in time O(|E(G)|2) by a
straightforward implementation.

We remark that Berge described in [3] a polynomial time condition for a family of sets to be Helly. However, we cannot
apply this condition directly, as a graph can have exponentially many bicliques.

5. The hereditary Helly property

In this section, we look at a hereditary version of the Helly property for edge-biclique hypergraphs. This is in a direct
analogy with similar classes of graphs based on the Helly property (e.g., clique-Helly, disk-Helly) whose corresponding
hereditary classes have been considered in the literature (cf. [12]).

We say that a hypergraphH is hereditary Helly if the reduction of every induced subhypergraph ofH is Helly.We require
only reductions of induced subhypergraphs to be Helly so that we obtain a more general notion also suitable for derived
hypergraphs (see below).

We study graphs G for which the edge-biclique hypergraph EB(G) is hereditary Helly. It can be seen from the definition
that EB(G) is hereditaryHelly if and only if for every induced subgraphH ofG, the hypergraph EB(H) is Helly. Using this, we
describe (in Theorem 11) a finite forbidden induced subgraph characterization of graphs whose edge-biclique hypergraph
is hereditary Helly.

A B-template is a graph H that consists of a complete bipartite graph B and three additional vertices x1, x2, x3 satisfying
one of the following:

1. V (B) = {1, 2, 3, z} and E(B) = {1z, 2z, 3z}, or V (B) = {1, 2, 3, y, z} and E(B) = {1y, 12, 13, yz, 2z, 3z} (see Fig. 3(a)
and (b)) and for each i ∈ {1, 2, 3}
(a) H[B \ {i} ∪ {xi}] is a complete bipartite graph,
(b) H[B ∪ {xi}] is not a complete bipartite graph,

2. V (B) = {1, 1′, 2, 2′, 3, 3′
} and E(B) = {11′, 12′, 13′, 21′, 22′, 23′, 31′, 32′, 33′

} (see Fig. 3(c)) and for each i ∈ {1, 2, 3}
(a) H[B \ {i, i′} ∪ {xi}] is a complete bipartite graph,
(b) H[B \ {i} ∪ {xi}] and H[B \ {i′} ∪ {xi}] are not complete bipartite graphs.

All possible B-templates are illustrated in Fig. 4. For the proof of our characterization, we shall need the following useful
lemma.

Lemma 10. Let G be a graph with a vertex x and sets of vertices B1 ⊆ V (G), B2 ⊆ V (G) such that
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Fig. 4. List of all B-templates (excluding the edges between x1, x2, x3).

(i) B1 ∩ B2 ≠ ∅,
(ii) B1 ∪ B2 induces in G a complete bipartite graph, and
(iii) B1 ∪ {x} and B2 ∪ {x} induce in G complete bipartite graphs.

Then B1 ∪ B2 ∪ {x} induces in G a complete bipartite graph.

Proof. Suppose that G[B1 ∪ B2 ∪ {x}] is not a complete bipartite graph. It follows that there must be vertices a ∈ B1 \ B2 and
b ∈ B2 \ B1 such that x, a, b induce in G either a triangle or a P3.

Let z be any vertex of B1∩B2. First, suppose that x, a, b induce a triangle inG. SinceG[B1∪B2] is a complete bipartite graph,
the vertices a, b, z induce neither a triangle nor a P3, and hence, up to symmetry, we must have az ∉ E(G) and bz ∈ E(G).
It follows that xz ∈ E(G), since otherwise x, a, z induce a P3 contradicting the fact that G[B1 ∪ {x}] is a complete bipartite
graph. Thus x, b, z induce a triangle contradicting the fact that G[B2 ∪ {x}] is a complete bipartite graph.

Hence, we conclude that x, a, b induce a P3. If ab ∈ E(G), we may again assume az ∉ E(G) and bz ∈ E(G). This yields
xz ∈ E(G), since otherwise x, b, z induce a P3. Thus x, a, z induce a P3, a contradiction. Therefore, ab ∉ E(G), and up to
symmetry, we may assume ax ∈ E(G), and bx ∉ E(G). Yet again, we conclude xz ∈ E(G), since otherwise bz ∉ E(G) which
implies az ∉ E(G) and x, a, z induce a P3. Consequently, we have bz ∈ E(G), since otherwise x, b, z induce a P3. This implies
az ∈ E(G), since otherwise a, b, z induce a P3. But now x, a, z induce a triangle, a contradiction. �
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Theorem 11. For every graph G, the edge-biclique hypergraph of G is hereditary Helly if and only if G contains no triangular
prism and no B-template as an induced subgraph.
Proof. For the forward direction, it suffices to verify that the edge-biclique hypergraph of neither the triangular prism nor
any B-template is Helly. This is left for the reader as an exercise.

For the converse, let G be a graph such that EB(G) is not Helly, and let B = {B1, B2, . . . , Bk} be a minimal family of
pairwise edge intersecting bicliques of Gwithout a common edge. Define Bi = B \ {Bi} for i ∈ {1, 2, 3}. Since the family B
is minimal, the bicliques in Bi have a common edge ei for each i ∈ {1, 2, 3}. In addition, ei is not an edge of G[Bi], since the
bicliques in B have no common edge. In particular, for each i ∈ {1, 2, 3}, we have that ei is an edge of G[Bj] iff j ≠ i.

There are only three possible cases: the edges e1, e2, e3 have a common vertex, or two of the edges, say e2, e3 have a
common vertex not in e1, or the three edges share no vertices.

Case 1: the edges e1, e2, e3 have a common vertex z. It follows that the edges induce a complete bipartite graphwith vertices
{z, 1, 2, 3} where e1 = (1, z), e3 = (2, z), and e3 = (3, z) as depicted in Fig. 3(a). By definition, we have {z, 2, 3} ⊆

B1, {z, 1, 3} ⊆ B2, {z, 1, 2} ⊆ B3, and 1 ∉ B1, 2 ∉ B2, 3 ∉ B3. However, {z, 1, 2, 3} induces a complete bipartite graph,
and therefore there must exist vertices x1 ∈ B1, x2 ∈ B2, and x3 ∈ B3 such that none of {x1, z, 1, 2, 3}, {x2, z, 1, 2, 3} and
{x3, z, 1, 2, 3} induces a complete bipartite graph. In fact, the three vertices x1, x2, x3 must be different. Suppose otherwise,
and say x1 = x2. Then {x2, z, 1, 3} = {x1, z, 1, 3}, and hence, {x1, z, 1, 3}, {x1, z, 2, 3}, and {z, 1, 2, 3} induce complete
bipartite graphs whereas their union {x1, z, 1, 2, 3} does not. This contradicts Lemma 10 when applied to {z, 1, 3}, {z, 2, 3}
and x1. Hence, the vertices x1, x2, x3 are all distinct yielding a B-template {x1, x2, x3, z, 1, 2, 3} induced in G.

Case 2: the edges e2, e3 share a common vertex z not in e1. It follows that the edges induce a complete bipartite graph
with vertices {y, z, 1, 2, 3} where e1 = (1, y), e2 = (2, z), and e3 = (3, z) as depicted in Fig. 3(b). In particular, we have
{z, 2, 3} ⊆ B1, {y, z, 1, 3} ⊆ B2, and {y, z, 1, 2} ⊆ B3. Also, 2 ∉ B2 and 3 ∉ B3. For B1, we have two possibilities: y ∉ B1
or 1 ∉ B1. If y ∉ B1, we can replace the edge e1 with e′

1 = (y, z) to obtain edges e′

1, e2, e3 satisfying the conditions of
Case 1. Hence, we may assume y ∈ B1 and 1 ∉ B1. Now, since {y, z, 1, 2, 3} induces a complete bipartite graph, we again
have vertices x1 ∈ B1, x2 ∈ B2, and x3 ∈ B3 such that none of {x1, y, z, 1, 2, 3}, {x2, y, z, 1, 2, 3}, {x3, y, z, 1, 2, 3} induces
a complete bipartite graph. We also conclude that the vertices x1, x2, x3 are distinct. Indeed, if say x1 = x2, we contradict
Lemma 10 for {y, z, 1, 3}, {y, z, 2, 3} and x1. Hence, we obtain a B-template {x1, x2, x3, y, z, 1, 2, 3} induced in G.

Case 3: the edges e1, e2, e3 share no vertices. It is not difficult to verify that, unless G contains the triangular prism as an
induced subgraph, the edges e1, e2, e3 induce a complete bipartite graphwith vertices {1, 1

′

, 2, 2
′

, 3, 3
′

}where e1 = (1, 1′),
e2 = (2, 2′), and e3 = (3, 3′) as depicted in Fig. 3(c). Namely, {2, 2′, 3, 3′

} ⊆ B1, {1, 1′, 3, 3′
} ⊆ B2, and {1, 1′, 2, 2′

}

⊆ B3.
We show that we may also assume 1, 1′

∉ B1, 2, 2′
∉ B2, and 3, 3′

∉ B3. Suppose otherwise, say 1 ∈ B1. Then 1′
∉ B1,

since e1 is not an edge of G[B1]. If 2 ∈ B2, then we can replace e1 with e′

1 = (1′, 2) to obtain edges e′

1, e2, e3 satisfying Case 2.
Hence, 2 ∉ B2. Moreover, 3′

∉ B3, since otherwise we can replace e2 with e′

2 = (2, 3′) to obtain edges e1, e′

2, e3 satisfying
Case 2. However, now we can replace e3 with e′

3 = (1, 3′) to obtain edges e1, e2, e′

3 satisfying Case 2. Therefore, we may
conclude 1 ∉ B1, and by symmetry, we have 1, 1′

∉ B1, 2, 2′
∉ B2, and 3, 3′

∉ B3.
Now, since {1, 1

′

, 2, 2
′

, 3, 3
′

} induces a complete bipartite graph, there are again x1 ∈ B1, x2 ∈ B2, x3 ∈ B3 such that
none of X1 = {x1, 1, 1′, 2, 2′, 3, 3′

}, X2 = {x1, 1, 1′, 2, 2′, 3, 3′
}, X3 = {x3, 1, 1′, 2, 2′, 3, 3′

} induces a complete bipartite
graph. In fact, if X1 \ {1} induces a complete bipartite graph, we may replace B1 with a biclique B′

1 containing X1 \ {1} to
obtain bicliques B′

1, B2, B3 satisfying Case 3 for edges e1, e2, e3. However, 1′
∈ B′

1 implies that the argument from the above
paragraph reduces this situation again to Case 2. Therefore, wemay assume that X1\{1} does induce not a complete bipartite
graph, and by symmetry, none of X1 \ {1}, X1 \ {1′

}, X2 \ {2}, X2 \ {2′
}, X3 \ {3}, X3 \ {3′

} induces a complete bipartite graph.
It remains to observe that the three vertices x1, x2, x3 are all distinct. Indeed, if say x1 = x2, we again contradict Lemma 10

for {1, 1
′

, 3, 3
′

}, {2, 2
′

, 3, 3
′

} and x1. Hence, {x1, x2, x3, 1, 1′, 2, 2′, 3, 3′
} yields a B-template induced inG, and that concludes

the proof. �

Since all forbidden induced subgraphs in the above theoremhave atmost 9 vertices, we immediately obtain the following
consequence.

Corollary 12. There is a polynomial time algorithm for the recognition of graphs whose edge-biclique hypergraph is hereditary
Helly.

6. Biclique line graphs

Finally, we discuss some additional interesting properties of biclique line graphs. A word on notation used in this section.
By Kℓ and K ℓ we denote the complete graph on ℓ vertices and its complement, respectively, and Cℓ denotes the cycle on ℓ
vertices. Other special graphs we use are shown in Fig. 6.

First, we have the following property directly from the definition of LG.

Lemma 13. If G has no triangle and no induced C4, then LG = L(G). �

Lemma 14. If LG has no induced K 3 and no K4, then LG = L(G).
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Fig. 5. Conditions (i) and (ii) of Theorem 15.

Fig. 6. The graphs claw, C4, diamond, and paw.

Proof. Clearly, if LG contains no K4, then G contains no induced C4, since the edges of any induced C4 in G are always pairwise
adjacent in LG. Also, if G contains a triangle, then LG contains a K 3, that is, a triple of pairwise non-adjacent vertices, which
correspond to the three edges of the triangle. Consequently, if LG contains no K4 and no induced K 3, then G has no induced
C4 and no triangle. Hence, LG = L(G) by Lemma 13. �

If we only disallow triangles in G, then L(G) becomes a subgraph of LG, and moreover, we obtain the following
characterization.

Theorem 15. Let H be a graph. Then H = LG where G is a triangle-free graph if and only if there exists a set F ⊆ E(H) such that
H − F = L(G) and
(i) if H − F contains an induced four-cycle with vertices a, b, c, d and edges ab, bc, cd, ad, then ac, bd ∈ F ,
(ii) if ac ∈ F , then there exist vertices b, d with bd ∈ F such that a, b, c, d induces a four-cycle in H − F (see Fig. 5).

Proof. Suppose that H = LG where G is a triangle-free graph. Since G is triangle-free, we have E(H) ⊇ E(L(G)). Thus, we
choose F to be the set F = E(H) \ E(L(G)). Clearly, we have H − F = L(G).

For the condition (i), let a, b, c, d be an induced four-cycle of H − F with edges ab, bc, cd, ad. Since H − F is the line graph
of G, it is easy to observe that G contains a four-cycle whose edges are a, b, c, d. Moreover, since G is triangle-free, this cycle
is induced. Thus a, b, c, d induce a complete subgraph in H , and therefore, ac, bd ∈ F . For the condition (ii), if ac ∈ F , then
G contains an induced four-cycle such that a, c are two opposite edges of this cycle. Thus, if b, d are the other two edge of
this cycle, we have that a, b, c, d induce a complete subgraph in H , and hence, bd ∈ F .

For the other direction, let F be a set of edges of H satisfying the conditions (i), (ii), and such that H − F = L(G) for some
triangle-free graph G.

We show thatH = LG. Suppose that there is an edge ac ∈ E(H) such that ac ∉ E(LG). Since G is triangle-free, we conclude
ac ∉ E(L(G)). Hence, ac ∈ F , and by (ii), there exist b, d such that a, b, c, d induce a four-cycle in H − F and bd ∈ F . Since
H − F is a line graph, we again observe that G contains an induced four-cycle whose edges are a, b, c, d. Thus ac ∈ E(LG),
a contradiction. Conversely, suppose that there is an edge ac ∈ E(LG) with ac ∉ E(H). Since H − F = L(G), we have
ac ∉ E(L(G)). Hence, G contains an induced four-cycle whose two opposite edges are a, c . If b, d are the other two edges of
this cycle, we have that a, b, c, d induce a four-cycle in L(G), and therefore, also in H − F . Thus, by (i), we have ac, bd ∈ F ,
and hence, ac ∈ E(H), a contradiction. �

Note that the above characterization does not directly imply a polynomial time algorithm for recognizing biclique line
graphs of triangle-free graphs, nor it rules out such possibility. It also does not provide any idea about the complexity of
recognizing biclique line graphs of arbitrary graphs. We remark that the corresponding problem for line graphs can be
solved in polynomial time as follows from the characterization of [14] and from amore general result of [2]. In these results,
polynomial time algorithms are a consequence of a finite forbidden induced subgraph characterization of line graphs. This
is possible, in particular, because line graphs are closed under vertex removal. In other words, every induced subgraph of
a line graph is again a line graph. Unfortunately, this is not so for biclique line graphs. In fact, biclique line graphs are not
closed under any of the standard graph operations (edge, vertex removal, contraction), and hence, it is harder to properly
characterize their structure. Furthermore, any arbitrary graph can be made to be an induced subgraph of a biclique line
graph as shown in the following claim.

Proposition 16. For every graph G, there exists a graph G′ such that G is an induced subgraph of LG′ .

Proof. We present two constructions. For the first construction, we let G′ denote the graph we obtain by adding to the
complement G of G a new vertex v which we make adjacent to all vertices of G. We note that xy ∈ E(G) if and only if
xy ∉ E(G) if and only if the vertices corresponding to the edges xv, yv are adjacent in LG′ . In other words, the vertices of LG′

corresponding to the edges incident to v induce in LG′ precisely the graph G.
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For the second construction, we let G1 and G2 denote two disjoint copies of G, and for every vertex u of G, we let u1 and
u2 denote the copies of u in G1 and G2, respectively. We construct the graph G′ by taking the disjoint union of G1 and G2, and
adding the edge u1u2 for each vertex u of G. The graph G′ in Fig. 1(a) illustrates this construction for G = K3. Now, we let
eu denote the vertex of LG′ corresponding to the edge u1u2 of G′. By Proposition 1, euev ∈ E(LG′) implies that u1, u2, v1, v2
is an induced four-cycle of G′. This implies u1v1 ∈ E(G′), and hence, uv ∈ E(G). On the other hand, if uv ∈ E(G), then
u1v1, u2v2 ∈ E(G′), and hence, euev ∈ E(LG′), because u1, u2, v1, v2 induce a four-cycle in G′. Consequently, the subgraph of
LG′ induced on {eu | u ∈ V (G)} is precisely the graph G. �

In order to show that biclique line graphs are not closed under standard operations, we describe some graphs that are
not biclique line graphs.

Proposition 17. C4, diamond, and claw are not biclique line graphs.

Proof. Clearly, C4 contains no K4 and no triple of pairwise non-adjacent vertices. Therefore, if C4 = LG for some graph G, we
have LG = L(G) by Lemma 14, and G contains no triangle and no induced C4. However, we must conclude G = C4, since C4
is the only graph whose line graph is C4, and hence, G contains an induced C4, a contradiction.

Similarly, if H = diamond and G is a graph with H = LG, then LG = L(G) by Lemma 14, since H contains no K4 and no
K 3. We must conclude that G = paw (see Fig. 6), which is the only simple graph whose line graph is H . Thus G contains a
triangle, a contradiction.

Finally, let H = claw and G be a graph such that H = LG. Since H is not a line graph, we conclude, by Lemma 14, that G
contains a triangle or an induced C4. In fact, G contains a triangle, since H has no K4, and the edges of this triangle form a K 3
in H . Since there is only one K 3 in H , we conclude that G consists of a triangle and an edge that shares a vertex with every
edge of the triangle. However, this is not possible. �

Now, we see that biclique line graphs are not closed under edge removal, since C4 is a subgraph of K4 ∼= LC4 . Similarly,
they are not closed under edge contraction, since C5 ∼= LC5 contracts to C4. Moreover, they are not closed under vertex
removal, since, by Proposition 16, there exists a graph G such that LG contains C4 as an induced subgraph.

Finally, we conclude with the following result. A graph H is a hereditary biclique line graph, if every induced subgraph of
H is a biclique line graph.

Theorem 18. A graph H is a hereditary biclique line graph if and only if H contains no induced claw, diamond, or C4.

Proof. Clearly, claw, diamond, and C4 are not biclique line graphs by Proposition 17. Hence, it follows that ifH is a hereditary
biclique line graph, then H contains no induced claw, diamond, or C4.

Conversely, let H be a graph with no induced claw, diamond, or C4, and suppose that H is not a hereditary biclique line
graph. This implies that H contains an induced subgraph H ′ that is not a biclique line graph. Clearly, H ′ also contains no
induced claw, diamond, or C4. In [14], it is shown that if H ′ does not contain these induced subgraphs, then it must be the
line graph of some triangle-free graph G. Therefore, since H ′ contains no induced C4, we can apply Theorem 15 to H ′ with
F = ∅ to conclude that H ′ is also the biclique line graph of G, a contradiction. �
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