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ABSTRACT

A previous paper (Frazin et al. 2005b) introduced the concept of differential emission measure tomography (DEMT),
which is a three-dimensional (3D) extension of the classical differential emission measure technique for determining
the distribution of temperatures in a volume of plasma. The information for the reconstruction in the three spatial
dimensions is provided by solar rotation and/or multi-spacecraft views. This paper describes, quantitatively, the
procedure for implementing DEMT with data from NASA’s STEREO/EUVI instrument, including the radiometry,
line-of-sight geometry, and image preparation steps. An example of a quantitative, multiband, 3D reconstruction
and local differential emission measure curves are given, and it is demonstrated that, when applicable, DEMT is a
simple 3D analysis tool that obviates the need for structure-specific modeling.
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1. INTRODUCTION

Differential emission measure tomography (DEMT) is the
only three-dimensional (3D) technique for reconstructing the
differential emission measure (DEM) in the Sun’s corona, and
has the useful property of being global, i.e., reconstructing the
entire corona at once. The DEMT concept was introduced by
Frazin et al. (2005b; henceforth FKW05) and the first results
from applying DEMT to data were reported in Vásquez et al.
(2009), which discusses the coronal cavities overlying polar
crown filaments. These papers, as well as Frazin & Kamalabadi
(2005), review previous work on DEM as well as 3D recon-
struction of the extreme-ultraviolet (EUV) corona. The basic
theory of DEMT is explained and previous work is reviewed in
FKW05, however that work was theoretical and did not consider
the problem of combining measurements from different space-
craft or physically meaningful units. The purpose of this paper is
to explain the theoretical basis and full methodology of DEMT
with examples. We describe, quantitatively, the procedure for
implementing DEMT with data from NASA’s STEREO/EUVI
instrument.

The most important limitations of DEMT are as follows.

1. Temporal variations of the corona that occur on timescales
shorter than can be resolved by the tomography method,
which is roughly two weeks (although see Frazin et al.
(2005a) for a discussion of dynamic tomography with
Kalman filters). Using multiple spacecraft data sets can
greatly reduce this time period and lessen the problem.
Also, movies made from EUV or X-ray images can be
used to identify regions that have no observable dy-
namics on spatial scales resolved by the tomographic
grid.

2. The wings of the instrument point-spread function may
prevent the analysis of fainter regions such as coronal
holes or some objects above the limb, because an unknown
amount of the signal is from other structures located
elsewhere in the image. This issue has been addressed for
the TRACE instrument by DeForest et al. (2009).

3. A small number of EUV and/or X-ray bands can preclude a
unique DEM inversion (e.g., Schmelz et al. 2007), although
the fully 3D analysis may help because the DEM in a small
region, confined in height, may be narrower than the DEM
over a full LOS.

Of course, these last two items are equally problematic
for both standard DEM analysis and DEMT. Unlike other
3D reconstruction methods (e.g., Aschwanden et al. 2009),
this technique divides the corona into “small” volumes and
determines the average properties of the plasma inside those
volumes, so there is no need for background subtraction and
other modeling (which can be time consuming and complicated)
to interpret line-of-sight (LOS) effects.

2. RADIOMETRY

This section relates the signal measured by the Extreme
UltraViolet Imager (EUVI; Howard et al. 2008) to the desired
physical units of the solar radiation. Noise is also discussed.
Following the radiometry discussion in Born & Wolf (1999),
consider a region of solar plasma emitting light, some of
which is collected by an imaging telescope. A pixel on the
telescope’s detector has an area Ap which subtends a solid angle
Ωp = Ap/f 2, where f is the (effective) telescope focal length (in
the case of EUVI, Ap ≈ (0.0135 mm)2 and f ≈1750 mm). The
optical system places an image of a patch of solar plasma onto
the pixel. This patch subtends the same solid angle Ωp = As/d

2
s ,

where As is the projected area of the plasma patch (i.e., As
includes the cosine of the angle between the normal to the patch
and the direction toward the telescope), and ds is the distance of
the patch to the telescope. The telescope entrance aperture has
an area AT (AT = 6.7 cm2 for each EUVI quadrant). Since the
normal to the entrance aperture is assumed to be pointed at the
Sun, the telescope subtends a solid angle ΩT = AT /d2

s , as seen
from the patch. The specific intensity emerging from the patch
is J (λ) and has units (ph/cm2 sr s Å). The flux of photons from
the patch entering the telescope aperture is F (λ) = J (λ)AsΩT ,
which has units (ph/s Å). Using the above expressions for Ωp
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and ΩT , one can eliminate As and d2
s and obtain the photon flux

as

F (λ) = J (λ)ΩpAT . (1)

Thus, the incident photon flux has been expressed as a function
of only the specific intensity and telescope properties with no
dependence on the Sun–telescope distance.

The telescope has a wavelength-dependent optical efficiency
factor for the kth EUV or X-ray filter, which we will denote as
εk(λ). Let the telescope have K filters, so 0 � k � K − 1. The
efficiency factor is unitless and 0 � εk(λ) � 1. It is εk(λ) that
creates the sharply peaked wavelength response (see below for
the definition of the closely related bandpass functions). The
product of the optical efficiency and the telescope area, i.e.,
AT εk(λ) is called the effective area. The signal seen in the jth
detector pixel with the kth filter in the optical path, Ik,j , has
units of (dn/s) (“dn” is an instrument-specific unit and stands
for “digital number”). The detector has a wavelength-dependent
dn-to-photon conversion factor p(λ), which has units of (dn/ph).
For EUVI, p(λ) = (e[eV]/3.65) /15, where e[eV] is the photon
energy in electron volts. The signal seen in the jth detector pixel
with the kth filter is given by

Ik,j =
∫ ∞

0
dλ εk(λ)p(λ)Fj (λ) + nj,k, (2)

where nj,k represents noise in the data and the pixel index j
has been used to subscript F (λ) because the flux seen by the
detector varies from one pixel to the next, according the spatial
distribution of the coronal emission. Using Equation (1), this
becomes

Ik,j = Ωp

∫ ∞

0
dλ AT εk(λ)p(λ)Jj (λ) + nj,k . (3)

We now define the total instrument response as

Φk(λ) ≡ ΩpAT εk(λ)p(λ) , (4)

so that Equation (2) becomes

Ik,j =
∫ ∞

0
dλ Φk(λ)Jj (λ) + nk,j . (5)

It is convenient to rewrite the total instrument response in
normalized form as

Φk(λ) = Φk,0 φk(λ) , (6)

where the bandpass function φk(λ) is unitless and 0 � φk(λ) �
1, and Φk,0 is the maximum value of the function φk(λ). Figure 1
shows a plot of the EUVI bandpass functions for both spacecraft.
As can be seen, the differences between bandpass functions for
the two spacecraft are small. Explicitly, the normalization factor
is

Φk,0 ≡ ΩpAT εk(λ0)p(λ0) , (7)

where λ0 is the wavelength at which the product εk(λ)p(λ)
attains its maximum value. Note that Φk,0 has units (dn
sr cm2/ph). The constant Φk,0 depends on the sensitivity of the
specific instrument making the measurement. With the band-
pass function and normalization factor so defined, Equation (5)
becomes

Ik,j = Φk,0

∫ ∞

0
dλ φk(λ)Jj (λ) + nk,j . (8)

Figure 1. Laboratory measurements of the bandpass functions (see Equation (6))
for all four EUV bands of the EUVI instruments on STEREO A (solid) and B
(dotted) spacecraft. For each band, the differences between both spacecraft are
small, with the largest difference being near the peak of the 171 Å curves.
The differences between the curves have a negligible effect on the temperature
responses (see also Figure 2).

(A color version of this figure is available in the online journal.)

The noise in the EUVI instrument tends to be dominated
by photon statistics (a Poisson process), however, the CCD
produces a random number (∼11–19) of electrons per detected
photon (15 electrons/DN), and there is about 0.5 DN (1σ ) read
noise (on top of the constant bias, which is subtracted). Due
to the low temperature (200 K) of the CCD, the thermal noise
is thought to be negligible. The EUVI data are also altered
by the lossy on-board ICER compression (Kiely & Klimesh
2003), which introduces “noise” due to word truncation and
other artifacts (e.g., regions of constant intensity, especially
off the disk where count rates are lower; J.-P. Wuelser 2008,
private communication). Note that one of the properties of
lossy compression is the creation of statistical correlations
in the pixel-to-pixel noise properties. Deconvolution of the
EUVI point-spread function taking the ICER compression into
account currently is the subject of one of Frazin’s investigations.
Deconvolution of the TRACE instrument point-spread function
is treated in DeForest et al. (2009).

3. THE FILTER BAND EMISSIVITY

In an optically thin plasma, the specific intensity is given
by an LOS integral of the emissivity η(r, λ), which has units
(ph/cm3 sr s Å)

Jj (λ) =
∫

LOS
dl η(rj (l), λ) , (9)

where l is the distance along the LOS and rj (l) is given by
Equation (E1) (evaluated in the third coordinate system in
Appendix E). Equations (8) and (9) can be combined into

Ik,j = Φk,0

∫
LOS

dl

∫ ∞

0
dλ φk(λ)η(rj (l), λ) + nj,k. (10)

The wavelength integral in Equation (10) can be used to
define an emissivity-type quantity that has the bandpass function
included. We will call this quantity the filter band emissivity
(FBE), defined to be

ζk(r) ≡
∫ ∞

0
dλ φk(λ)η(r, λ) , (11)
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with units (ph/cm3 sr s). Using Equation (11) in Equation (10),
we obtain the equation which forms the basis for tomographic
reconstruction:

Ik,j = Φk,0

∫
LOS

dl ζk(rj (l)) + nk,j . (12)

The aim of the tomography is to invert Equation (12) in order
to estimate ζk(r). One can learn about the physical properties of
the plasma in three dimensions after ζk(r) has been estimated
for a number of different filters, indexed by k.

When the electrons have a velocity distribution characterized
by a temperature T, the emissivity can be expressed as (Young
et al. 2003)

η(r, λ) = N2
e (r)ψ(Ne(r), a(r), T (r); λ) , (13)

where a is the vector of relevant elemental abundances and
ψ , which has units (cm3 ph/sr s Å), is an emission function
that depends on the atomic physics of the emission process.
We assume only collisionally excited emission. Resonantly
scattered components are discussed in Appendix D. Note that η
is approximately proportional to N2

e and the remaining density
sensitivity in ψ is quite weak in bands used by EUV and X-
ray images, although high-resolution spectra can be used to
identify spectral line pairs that make useful density diagnostics
(e.g., Mariska 1992; Landi & Feldman 2008). Note that all of the
spatial dependence is through Ne, a, and T. Using Equation (11),
we can rewrite the FBE in Equation (12) as

ζk(r) = N2
e (r)

∫ ∞

0
dλ φk(λ)ψ(Ne(r), a(r), T (r); λ). (14)

In Vásquez et al. (2009), we used the CHIANTI code (Young
et al. 2003) to calculate the emissivity. CHIANTI computes
the specific intensity in units of (ph/cm2 sr s Å). One must
specify the abundance mix, the electron density Ne, and the
emission measure EM = log10 N2

e L, where L is the column
length. Choosing L = 1 cm allows one to fix the density, and
also numerically equates the computed specific intensity to the
desired emissivity.

4. THE TOMOGRAPHIC PROBLEM

The first step in the tomographic process is to discretize the
volume of the corona (between, say, the coronal base at 1.0 and
1.25 Rs) on a computation grid. The computation grid contains M
volume elements {Vi} (called voxels), so 0 � i � M −1. Under
the assumption that the FBE is constant inside each volume
element, Equation (12) can be expressed as a discrete sum over
the FBEs in each voxel along the LOS:

Ik,j ≈
∑

i

Wk,j,i ζk,i + nk,j , (15)

where Ik,j and nk,j have been redefined (with the corresponding
change in units) as Ik,j → Ik,j /Φk,0 and nk,j → nk,j /Φk,0.
Here, ζk,i is the average value of the FBE ζk(r) for all r inside
voxel i (see Equation (C1)), Wk ≡ {Wk,j,i} is a J × M matrix,
with units (cm), corresponding to the length of the piece of the
jth LOS that lies within the ith voxel, and J is the total number
of pixels in all of the images (e.g., if each image has Q2 pixels
and there are P images then J = PQ2, and 0 � j � J − 1).
Specifically,

Wk,j,i = lk,j,i , (16)

Figure 2. DEM kernels (see Equation (22)) for the 171, 195, and 284 Å bands
of the EUVI instruments on STEREO A (solid) and B (dotted) spacecraft. The
differences between the corresponding A and B curves are small, with the largest
being observed around the peak of the 171 Å curves, for which discrepancies of
order 7% or less are seen. These differences follow from those in the bandpass
functions shown in Figure 1.

(A color version of this figure is available in the online journal.)

where lk,j,i is the path length of the jth LOS through the ith
volume element of the computation grid. Wk for this application
differs from its counterpart in white-light tomography because it
does not contain a Thomson scattering factor. Note that the vast
majority of the Wk,j,i will be zero since any particular LOS only
intersects a small fraction of the voxels, which allows sparse
matrix routines to be used (Frazin & Janzen 2002, henceforth
FJ02). For each filter band k, Equation (15) can be expressed as

Ik = Wkζ k + nk , (17)

where Ik is the vector of all intensity measurements for the kth
filter, ζ k ≡ {ζk,j } and the vector nk ≡ {nk,j }. Equation (17)
and the statistics of nk define an independent tomographic
inversion problem for each index value k. The multi-spacecraft
formulation of Equation (17) is given in Appendix B.

4.1. Tomographic Reconstruction

Inverting Equation (17) to obtain ζ k can be done under the
assumption that the corona is unchanging during data acquisition
period, which is called the static assumption. This premise can
be relaxed, allowing the reconstruction to be a function of time.
In that case, all of the intensity measurements need to be indexed
by their time bins t and the FBE vector also becomes a function
of time. Adding the time-bin subscripts to Equation (17), it
becomes

Ik,t = Wk,tζ k,t + nk,t . (18)

This must now be supplemented by an evolution equation

ζ k,t+1 = Fk,tζ k,t + νk,t , (19)

where Fk,t is a (possibly nonlinear) time-stepping operator and
νk,t is a random process that accounts for unknown and/or
poorly understood portion of the temporal evolution. Thus,
the solution of Equations (18) and (19) becomes a function
of time. Dynamic reconstruction in tomography of the corona
is discussed in Frazin et al. (2005a), Butala et al. (2008),
and Butala et al. (2009). The presently available solution
methods are based on stochastic approximations to the Kalman
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filter, so-called ensemble Kalman Filters (e.g., Evensen 2007;
Butala et al. 2009), and an optimization scheme called 4DVAR
(e.g., Daley 1991). This class of solution methods allows
both causal and noncausal estimation. M. D. Butala et al.
(2009, in preparation) have shown that dynamic solutions have
greatly reduced reconstruction artifacts when compared to static
solutions.

Under the static assumption, the inversion can be accom-
plished by minimizing the objective function

ζ̂ k = argmin
ζ k

{‖Ik − Wkζ k‖2 + G( pk; ζ k)}, (20)

where G( pk; •) is a regularization functional that suppresses
spurious high-frequency artifacts due to the poorly conditioned
or singular nature of Wk , and pk is a vector of parame-
ters that control the amplitude and form of G. Regulariza-
tion in the context of tomography is reviewed in Demoment
(1989), Frazin (2000), FJ02, Frazin et al. (2007) and refer-
ences therein. In Vásquez et al. (2009), we used the simple
quadratic form G( pk; ζ k) = p‖Rζ k‖2, where R is a finite dif-
ference matrix made to approximate second derivatives in the
angular directions and p is the sole regularization parameter
(controlling the amplitude in this case). The value of p, as-
sumed the same for all k, was chosen via a statistical procedure
called cross validation (Golub et al. 1979; FJ02). The redun-
dancy in multi-spacecraft observations (i.e., viewing the Sun
from the same angle at different times from different space-
craft), such as analyzed here, offers additional cross-validation
opportunities not available in with data sets from a single
spacecraft.

Since Equation (17) does not account for the Sun’s temporal
variations, coronal dynamics in one voxel can cause artifacts in
neighboring voxels, including negative values of the statically
reconstructed emissivity ζ k (if the solution is not constrained to
be positive). Examples of this effect in typical EUVI reconstruc-
tions can be seen in Figure 3. They are identical in nature to the
zero-density artifacts (ZDAs) in white-light tomography (FJ02;
Frazin et al. 2007). The requirement for accurate static recon-
struction is that a given structure and its surroundings are stable
in the time that they are seen by the telescopes (this is about
two weeks in the single spacecraft case). Due to dynamics of
the corona and the fact that solar rotation is utilized to provide
the angular coverage, the issues of spatial resolution, tempo-
ral resolution, and artifacts are closely coupled. In the context
tomographic reconstruction of Ne from LASCO-C2 pB data,
Frazin et al. (2007) explored the effect of observation cadence
on the spatial resolution of the reconstruction. They showed
that as the cadence of pB images increases beyond 1 per day,
the spatial resolution of the reconstruction increases, but there
is a saturation point beyond which a higher cadence leads to
no improvement, because the resolution is ultimately limited by
smearing caused by the dynamics in the 14 day data acquisition
period. It is postulated that with more spacecraft reducing the
data acquisition time, the attainable spatial resolution improves,
requiring a higher observation cadence to achieve that resolution
(Frazin et al. 2007).

5. THE LOCAL DIFFERENTIAL EMISSION MEASURE

The FBE ζk,i in voxel i can be written in terms of the local
differential emission measure (LDEM) ξi(T ), which has units

Figure 3. Left column shows examples of the time-binned (see Section A)
EUVI-A images in the 171, 195, and 284 Å bands, taken near 20:00 UT on
2008 April 29. The right column displays the corresponding synthetic images
calculated by integrating the tomographic models along the LOS of each pixel.
In both cases, we show the logarithm of the intensity. The two columns use
a common color scale for each band (row). The black streaks seen in the
reconstructed images near some of the ARs (especially in the 284 Å band) are
artifacts caused by the Sun’s temporal variability. The thin black circles around
the limb in the data images (left column) indicate the limits of the rejected data
(see Appendix D), the black annuli (covering the region between 0.98 and 1.025
Rs) in the synthetic images (right column) block the rejected regions, where we
do not attempt to reproduce the observed intensities.

(A color version of this figure is available in the online journal.)

(cm−6 K−1), as follows:

ζk,i =
∫

dT Qk(T )ξi(T ) , (21)

where Qk(T ) is the DEM kernel function defined as

Qk(T ) =
∫

dλ φk(λ)ψ(Ne0, a0, T ; λ) , (22)

in which Ne0 is a reference density whose exact value is of
little importance (see Section 3), and a0 is a reference set of
abundances. Qk(T ) has units (cm3 ph/sr s). As explained in
Appendix C, where Equation (21) is derived, ξi(T ) is a function
of (electron) temperature and is a measure of the amount of
plasma within voxel i that is at temperature T. Thus, even
though the spatial resolution of the tomographic reconstruction
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is limited by the grid size, the LDEM gives information about the
distribution of flux tube temperatures at subgrid spatial scales.
The (spatial) mean square electron density in voxel i can be
obtained by integrating the LDEM over temperature, i.e.,

〈
N2

e

〉
i
=

∫
dT ξi(T ) (23)

as shown in Equation (C19). Note that this density is inversely
proportional to the assumed Fe abundance for bands dominated
by Fe lines.

The emission function ψ most sensitively depends on the
electron temperature T, largely due to the ionization equilibrium.
While the dependence on Ne is quite weak, the emission
of any particular spectral line is directly proportional to the
abundance of the emitting species, making the dependence on
the abundance vector a0 nontrivial. Coronal abundances tend to
vary by a factor of several (e.g., Raymond et al. 1997), while
the temperature sensitivity is more exponential in character.
The emissivity can be computed based on an optically thin
plasma emission model such as CHIANTI (Young et al. 2003).
Such calculations rely in turn on an assumed ion-equilibrium
model. In the case of EUVI, EIT, and Atmospheric Imaging
Assembly (AIA), the bands sensitive to coronal temperatures are
dominated by Fe lines, greatly reducing the complexity of the
abundance dependence. In those cases, the LDEM and the rms
electron density (see below), will be inversely proportional to the
assumed Fe abundance. Nevertheless, distinguishing abundance
gradients from temperature gradients remains an issue. Ball
et al. (2005) and Garcı́a-Alvarez et al. (2006) considered
DEM and abundances simultaneously in the context of stellar
coronae.

Figure 2 shows the DEM kernel functions for the three Fe
bands (171, 195, and 284 Å). The plots for the 304 Å band
are not included, as its tomographic reconstructions have no
simple quantitative interpretation, due to optical depth effects.
The DEM kernel functions were computed as in Equation (22),
using the bandpass functions φk(λ) shown in Figure 1, and com-
puting the emissivity N2

e0ψ(Ne0, a0, T ; λ) with the CHIANTI
model. As in Vásquez et al. (2009), we assumed a constant Fe
abundance of [Fe]/[H] = 1.26 × 10−4 (Feldman et al. 1992), a
low first ionization potential (FIP) element abundance enhanced
by a factor of about 4 respect to typical photospheric values
(Grevesse & Sauval 1998). We also assume for the Fe ions
the results given by the ionization equilibrium calculations of
Arnaud & Raymond (1992). The small differences between the
bandpass functions for each band between the A and B space-
craft (see Figure 1) yield even smaller differences between the
corresponding DEM kernel functions shown in Figure 2. This
similarity is then what justifies the simultaneous use of data from
both spacecraft to generate a common reconstruction for a given
band.

Finally, Equation (21) can be inserted into Equation (15) to
obtain the full forward problem

Ik,j =
∑

i

Wk,j,i

∫
dT Qk(T )ξi(T ) + nk,j (24)

≈
∑

i

Wk,j,i

∑
l

Qk,lξi,l + nk,j , (25)

where Qk,l and ξi,l are representations of Qk(T ) and ξi(T ) on
a discrete temperature grid, i.e., the integral Equation (21) has
been approximated with a sum.

5.1. LDEM Inverse Problem

Using Kronecker matrix products, Butala et al. (2008) showed
how to represent Equation (25) in the standard matrix-vector
form (i.e., with a single summation). However, treating the
tomography step separately for each band is computationally
convenient (FKW05) and the FBEs are useful products in their
own right. The LDEM ξi(T ) can be estimated from the estimates
of FBEs in voxel i determined from the tomographic step (e.g.,
Equation (20)). For example, in the case of EUVI, there are
three FBE estimates (one for each of the 171, 195, and 284 Å
bands), denoted as ζ̂0,i , ζ̂1,i , and ζ̂2,i . We define the vector
ζ̂

′
i ≡ {ζ̂k,i , 1 � k � K}. Note that this vector contains only

the FBE estimates in voxel i, in contrast to the vector ζ k , which
represents the FBEs in band k for all M voxels. The LDEM
in voxel i be estimated by inverting Equation (21). Written in
discrete form it becomes

ζ̂
′
i = Qξ i + n′

i , (26)

where Q ≡ {Qk,l}, ξ i ≡ {ξi,l ∀ l}, and the statistics of n′
i

represent the uncertainty in ζ̂
′
i .

Pottasch (1963) seems to be the first to consider the problem
of DEM inversion, and since then a wide variety of solutions
have been proposed (e.g., Harrison & Thompson 1991; Landi &
Landini 1997; FKW05; Prato et al. 2006). In the case of triple
filter data such as that obtained from EUVI, TRACE, and EIT,
the information is quite limited (Schmelz et al. 2007). However,
it is enough to fit a Gaussian to the (L)DEM and to determine its
three parameters (center, width, and area) via a best-fit criteria
between the synthetic and the measured FBEs (Aschwanden
et al. 2009; Vásquez et al. 2009). A new instrument called the
AIA, to be launched on the Solar Dynamics Observatory (SDO),
will have six Fe bands and dramatically improve the situation
(Weber et al. 2004; FKW05).

The most complete description of the solution to the inversion
of Equation (26) is given by Bayesian analysis in which a
solution vector ξ i is valued according to its posterior probability

P (ξ i |ζ̂ i

′
) = P (ξ i)

P (ζ̂
′
i |ξ i)

P (ζ̂
′
i)

, (27)

where P (ξ i) is the assumed prior distribution, P (ζ̂ i |ξ ′
i) is the

likelihood (easily evaluated when n′
i has Gaussian statistics),

and P (ζ̂
′
i) is a normalization factor (not a distribution since ζ̂

′
i

is fixed) to ensure that the posterior distribution integrates to
unity. Kashyap & Drake (1998) and Schmelz et al. (2007) used
a Markov chain Monte Carlo (Metropolis) algorithm to estimate
posterior distributions in the DEM analysis of coronal plasma.

6. EXAMPLES

The data we analyzed consist of a 23.5 day time series of
EUVI images from both the “ahead” (A) and “behind” (B)
spacecraft, taken between 2008 April 16 and May 9, which is
a time period corresponding to Carrington Rotation 2069. This
is the same data set analyzed in Vásquez et al. (2009). During
this time period, the A and B spacecraft were separated by
a heliocentric angle of about 50◦. This allowed 360◦ of view
angles in 23.5 days, as opposed to 28 days as would be required
for a single spacecraft. We took one image every 2 hr from
the 171, 195, 284, and 304 Å bands (i.e., eight images in total
every 2 hr) and, remarkably, there were no data gaps in either
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Figure 4. Maps of the (Carrington Rotation 2069) FBE (ph cm−3 sr−1s−1) reconstructions in the bands of 171 (top left), 195 (top right), and 284 Å (bottom left), at a
height r = 1.075 Rs . Maps are thresholded for display. The 304 Å reconstruction (bottom right), shown at the height r = 1.045 Rs , was made using only above limb
data. Due to optical depth effects, the 304 Å reconstruction does not have a straightforward quantitative interpretation, but it is useful for mapping filaments, two of
which can be seen spanning (roughly) the longitudes between 200◦ and 300◦. The properties of these filament cavities are the subject of the paper by Vásquez et al.
(2009). The regions I, II, III, IV, NorthBox, and SouthBox, as discussed in the text (see also Figure 5), are indicated.

(A color version of this figure is available in the online journal.)

spacecraft or any band for the entire observation period (due to
the high cadence, we used only about 5% of the available data).

Appendix A details all of the image preprocessing steps
required to put the data in a final state appropriate to be used
to perform the tomographic reconstructions. In particular, we
computed time-binned images from the original ones. We divide
each 24 hr period into four 6 hr bins. As we took images every
2 hr from the database, each binned image was the average
of three original images. This average was performed pixel by
pixel (see Appendix A), which greatly reduced the number of
missing blocks (which were rare in the original images anyway).
In Figure 3, the first column shows an example of such time-
binned images from the EUVI-A instrument in the 171, 195,
and 284 Å bands, taken around 20:00 UT on 2008 April 29. The
second column is the corresponding synthetic images calculated
by integrating the tomographic models along the LOS using
Equation (12). In all cases, we show the logarithm of the
intensity. The two columns use a common color scale for each
band (row). The black streaks seen in the reconstructed images
(specially in the 284 Å band) near some of the active regions
(ARs) are ZDAs caused by the Sun’s temporal variability.

The computation grid is spherical with voxels that are
regularly spaced in radius, latitude, and longitude (thus, the
volume of the voxels increases as the radius squared) and it
contains the entire volume between 1.0 and 1.26 Rs . The grid
has 26 radial bins, 90 latitude bins, and 180 longitude bins,
so each voxel is 0.01 Rs in height (7000 km) and is 2◦ × 2◦
((2.44 × 104 km)2 at the equator at 1.0 Rs). The reconstruction
procedure assumed a static corona (i.e., we used Equation (20)
instead of Equations (18), (19), and a Kalman filter).

Figure 4 shows reconstructed FBE (ph cm−3 sr−1s−1) maps
of the 171, 195, and 284 Å bands, at a height of r = 1.075 Rs .
A reconstruction of the emission in the 304 Å band at r =
1.045 Rs , is also displayed, but this serves only qualitative
analysis purposes (e.g., mapping filaments) since optical depth

effects can be dominant in this band. This reconstruction was
made only using the portion of the 304 Å band images above
the limb (1.004 Rs). The boxed regions labeled I, II, III, and IV,
each of which is 2 voxels by 2 voxels (4◦×4◦), indicate different
types of coronal features. They were chosen within zones that
exhibited very little temporal variability, as qualitatively (and
subjectively) judged from the EUVI movies. These regions
correspond to low-density subpolar “quiet Sun” (I), high-density
subpolar “quiet Sun” (II), equatorial “quiet Sun” (III), and AR
(IV, NOAA 0996).

For each of these regions, I through IV at r = 1.075 Rs , we
averaged each band’s reconstructed FBE over the 4 voxels to
obtain a value representative of each region. Using the three
FBE values, we computed the LDEM in each region with the
best-fit Gaussian criterion described in Section 5.1 to invert
Equation (21). This procedure was also used by Vásquez et
al. (2009), where it is explained in more detail. In Figure 5,
we show the average LDEM for each region. The curves have
different areas because they must integrate to the electron rms
density (see Equation (23)), which is different for each one. The
error bars in Figure 5 do not reflect the nonuniqueness inherent
in inverting Equation (21) with limited information, rather they
are derived from the intensities that are uncertain due to the
range of acceptable values of the regularization parameter p
(see the discussion after Equation (20)).4 The range of solutions
depicted in the error bars in Figure 5 is derived from the best-
fit Gaussians to the FBEs from the solutions with the optimal
value of p ± (one standard deviation), and the error bars depict
average uncertainties in the LDEM curves.

Figure 6 shows a map of the rms electron density at a height of
r = 1.075Rs . The average rms densities in regions I, II, III, and
IV are 0.6% ± 5.5%, 0.9% ± 9.0%, 1.2% ± 1.5%, and 2.0% ±
4 The range of values of the regularization parameter p is the standard
deviation of its values derived from cross-validation trials (FJ02), adapted to
the dual-spacecraft situation encountered here.
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Figure 5. LDEM curves (assuming a Gaussian functional form) for regions I,
II, III, and IV (at 1.075 Rs) in Figure 4. Regions I and II are subpolar “quiet
Sun,” of low and high density, respectively. Region III is equatorial “quiet Sun”
and region IV is an AR.

(A color version of this figure is available in the online journal.)

2.2%×108cm−3, respectively. The uncertainty values are inher-
ited from the error bars of the corresponding LDEM distribu-
tions. Since the emissivities in the EUVI bands (except 304 Å)
are dominated by Fe lines, the derived electron rms density
value is inversely proportional to the assumed Fe abundance. In
this work, we set the constant value [Fe]/[H] = 1.26 × 10−4

(Feldman et al. 1992), a low-FIP element abundance enhanced
by a factor of about 4 with respect to typical photospheric values
(Grevesse & Sauval 1998).

We selected two subpolar “quiet-Sun” regions (I and II).
Inspecting the density map in Figures 5 and 6, it can be seen
that the less dense region I exhibits a much cooler (referring
to the center of the Gaussian curve) and broader temperature
distribution than the denser region II. The LDEM distributions
of the selected equatorial “quiet-Sun” region (III) and the AR
(IV) also reveal very different plasmas, with the AR being much
hotter and broader. This kind of LDEM is typical of the ARs we
inspected. The particular AR reported here (NOAA 0996) has
been chosen due to its isolation from other ARs and temporal
stability, which is reflected by the lack of ZDAs, as explained in
Section 4.1, that are present around most of the rest of the ARs.

6.1. 2D Versus 3D

Since the tomographic method presented here is limited to
structures that are stable on the ≈2 week timescale, there is
some debate as to the utility of our DEMT method compared to
standard DEM techniques. Clearly, for transient phenomena one
must use only data taken within a short time span. In addition,
DEM can be performed with high-resolution spectra containing
many lines (e.g., Brosius et al. 1996), while having such spectral
coverage in full-disk time series images for DEMT would
require a dedicated mission. These limitations not withstanding,
the value of 3D tomographic analysis is perhaps best illustrated
through example.

For this purpose, we have revisited our already published
3D analysis of coronal cavities overlying polar crown filaments
(Vásquez et al. 2009). In that paper, we analyzed two filament
cavities, one located in the northern hemisphere and another
one located in the southern hemisphere. In Figure 4, the
regions analyzed are indicated as two boxes. The northern one
(“NorthBox”) is centered at 226◦ and covers 32◦ in longitude,
and the southern one (“SouthBox”) is centered at 208◦ and
covers 28◦ in longitude. Both cavities are roughly east–west
oriented, and can be readily seen in the images during their
disk transits, as in the two left panels of Figure 7. This figure
shows two boxes that lie inside NorthBox and SouthBox. The
northern box is centered at 224◦ and the southern box at 210.◦5,
and both cover roughly 16◦ in longitude. Due to projection
effects, it is impossible to make the boxes in the images match
NorthBox and SouthBox exactly, except at a single height. We
have opted to center the boxes on the projected centers of
NorthBox and SouthBox assuming a height of 1.075 Rs, and
Figure 7 confirms that this choice corresponds to the cavity as
seen in the images. Furthermore, the boxes cover about 1/2 of
the longitudinal extension of NorthBox and SouthBox, making
the projection effects roughly homogeneous within each box.
For these boxes, we analyzed the intensity along the north–south
direction, averaged in the east–west direction. The right panel
of Figure 7 shows an image for which CL 218.◦5 lies roughly
along the West limb, a longitude that is common to both boxes.
Unlike the southern filament cavity, the northern filament cavity
is never seen clearly on the limb (making it difficult to even
identify the latitude of structure from the images alone) and
hence no height information is available without tomographic
analysis, which clearly shows the cavity is most pronounced
around 1.075 Rs. The southern filament cavity is sometimes
clearly visible above the limb, so a specialized, model-based

Figure 6. Map of the estimated electron density
〈
N2

e

〉1/2
at a height r = 1.075 Rs , in units of 108 cm−3. The color scale has been thresholded for display.

(A color version of this figure is available in the online journal.)
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Figure 7. EUVI-A 171 Å images of the selected regions for study. Left
panels: the northern and southern cavities during their disk transit. The northern
selection is centered at 224◦ and the southern box at 210.◦5 and both cover
roughly 16◦ in longitude. Right panel: longitude 218.◦5 lies roughly along the
West limb, a longitude that is common to both selected cavity boxes. The upper
left, lower left, and right images were taken in 2008 at 04.28.14:00, 04.29.14:00,
and 05.05.20:00 UT, respectively.

(A color version of this figure is available in the online journal.)

3D analysis based on images is possible. For these reasons, it
is hard to compare the north and south filament cavities from
the images alone, however, our 3D tomographic analysis readily
shows that these two filament cavities have essentially the same
structure.

In order to simplify the analysis and see the structure as only
a function latitude and height, we averaged the NorthBox and
SouthBox reconstructions over all their longitude bins (32◦ and
28◦, respectively). For the southern cavity, Figure 8 shows each
band’s reconstructed FBE as a function of latitude for several
heights. Of particular interest is the fact that the 171 Å FBE
(ζ171, and similarly for the other bands) is greater than that of
ζ195 at 1.035 Rs for all latitudes. At 1.055 Rs, ζ171 and ζ195 are
comparable, and above that ζ195 is greater than ζ171. Also, note
that ζ284 remains well below ζ171 and ζ195 at all heights shown
in the figure. Lending credibility to these results is that identical
trends are seen for the northern cavity (results not shown here).

To make a direct comparison between the image intensities
and these FBE results, we have averaged the intensities in the
east–west direction for the two boxes indicated in the left panels
of Figure 7. The resulting north–south average cuts for the
southern box are shown in Figure 9. On the disk, the 171 Å
band intensity (I171, and similarly for the other bands) is greater
than I195 at all latitudes. In Figure 10, we show the southern
cavity intensity latitudinal dependence at several heights when
longitude 218.◦5 was approximately on the limb. It can be seen
that at 1.035 Rs, I171 and I195 are comparable and above that
height I195 is greater at all latitudes. Our interpretation is that
LOS integration, essentially height mixing, plays a significant
role in all of the intensities seen in Figures 9 and 10, making
the trend of the ratio ζ195/ζ171 increasing with height much
less clear in images than it is the tomographic reconstructions.
A more serious LOS effect is seen at 1.075 and 1.095Rs in

Figure 10, where I284 surpasses I171 in the core of the cavity
(while no similar phenomenon is seen in the FBEs). This
difference will dramatically alter the DEM results with respect
to those from the LDEM analysis. We point out that the northern
cavity had no clear presence above the limb and the intensity
profiles there were useless for studying this structure, making
a 3D analysis without tomographic methods difficult. The
tomographic analysis of these filament cavities only required
extracting the correct portion of the global solution. Without this
tomographic analysis, interpreting the effects of LOS integration
requires specialized modeling, perhaps along the lines of Fuller
et al. (2008) for filaments.

7. SUMMARY AND DISCUSSION

We reviewed the quantitative theory of DEMT and dealt with
many practical aspects of its implementation. We presented the
first EUV tomographic reconstructions of the Sun’s corona, as
well as the first multi-spacecraft tomographic reconstructions.
We created 3D tomographic reconstructions of the EUVI 171,
195, and 284 Å band emissivities (FBEs) using data from
both STEREO spacecraft taken for 23.5 days during Carrington
rotation 2069 in 2008 April and May. To reduce the undesirable
effects of optical depth on the tomographic reconstruction
process, we ignored all the data in the images between projected
radii of 0.98 and 1.025 Rs. This choice of rejection radii,
indicated in Figure 3, was determined via the statistical test
described in Appendix D. As a demonstration of the utility
of the method and the relative ease of interpreting the results,
we compared the tomographic reconstructions of the filament
cavities studied in Vásquez et al. (2009) to intensity profiles from
images of the structures both on the disk and above the limb.
Our analysis shows that the LOS contamination is a significant
or dominant effect for all of image intensities examined and that
tomographic analysis leads easily and unambiguously to results
without relying on ad hoc modeling procedures.

Figure 4 shows a spherical shell of the reconstructed emis-
sivity (FBE) maps at a height of r = 1.075 Rs , for the four
EUV bands. The 304 Å band reconstruction serves qualitative
purposes due to optical depth effects. We also made a 3D recon-
struction of the rms electron density Ne (cm−3), a slice of which
at the same height is shown in Figure 6. Figure 5 shows the
LDEMs in the four distinct coronal regions, I through IV, that
are indicated in Figure 3 and described in Section 6. The LDEM
distributions (see Figure 5) were estimated under the assump-
tion that they are Gaussian. While a Gaussian is a reasonable
functional form to fit to most unimodal distributions, clearly it
is not adequate for more complex distributions. Furthermore,
the Gaussian fits shown here are just the minimum of a cost
function, and there are other admissible solutions (including
non-Gaussian ones) also within the uncertainties of the tomo-
graphic FBEs (which, in turn, are dominated by uncertainty in
the regularization parameter p). In a later paper, we will use
Markov chain Monte Carlo methods to find the set of admis-
sible solutions (see Section 5). This will be especially useful
with data from AIA’s six Fe bands after SDO is launched. DEM
inversion ambiguities not withstanding, the following features
stand out.

1. At the resolution of the tomographic analysis (the voxels
are 7000 km in height and roughly (2 × 104 km)2 in basal
area near the equator), the plasmas in the four selected
regions are strongly nonisothermal (the Gaussian curve-fit
is capable of recognizing an isothermal distribution). This
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Figure 8. Longitude-averaged FBEs for SouthBox. The blue, green, and orange lines represent the 171, 195, and 284 Å bands, respectively. The NorthBox results are
almost identical.

(A color version of this figure is available in the online journal.)

Figure 9. North–south intensity cuts for the southern box averaged in the east–
west direction. See Figure 8 for colors.

(A color version of this figure is available in the online journal.)

means that flux tubes of differing temperatures are passing
through the voxels.

2. Unlike previous DEM analyses, which were applied to
images and had to make assumptions about foreground and
background structures, this 3D tomographic analysis does
not suffer from LOS confusion. Therefore, the conclusions
drawn about temperature distributions cannot be ascribed
such effects.

3. The 3D LDEM analysis here presented allows for the com-
putation of estimated electron density Ne 3D maps down
to very low heights. This complements the tomographic
reconstructions based on white light coronagraph images,
that usually cover much larger heights (e.g., Frazin et al.
2007; Vásquez et al 2008).

The main limitation of the DEMT technique applied here
is the assumption that the corona is static during the data
acquisition period. The method is capable of resolving structures
that are stable throughout their disk transits during the studied
period, and the DEMT results provide a kind of statistically
averaged description, which could be advantageous for some
types of analysis. The use of the twin EUVI A and B instruments,

and the extension of the tomographic technique to handle
simultaneous multi-spacecraft data sets, has allowed us to gather
the needed data in less time than a complete solar rotation. With
the ∼50◦ angular separation of the A and B STEREO spacecraft
during the studied period, we decreased the data acquisition time
by about 4 days. Comparison of the two columns in Figure 3
exemplifies how time-independent tomography can reproduce
much of the Sun’s observed structure. With the continuing
separation of the STEREO spacecraft we plan to perform new
global reconstructions in even less time in the near future,
improving capabilities of the method. These methods will be
enhanced by the application of Kalman filtering to create time-
dependent tomographic reconstructions (Frazin et al. 2005a;
Frazin & Kamalabadi 2005; Butala et al. 2008). Future work also
will involve the analysis of different types of coronal structures,
and coordinated coronal global modeling efforts (e.g., Vásquez
et al. 2008). However, the full promise of DEMT will not be
realized until it is used to improve our understanding of how the
Sun fills and heats the corona. Particularly desirable would be
constraints on chromospheric processes, which are the origin of
coronal structure.
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Figure 10. Off-limb, latitudinal intensity cuts for the southern box measured at longitude 218.◦5. See Figure 8 for colors.

(A color version of this figure is available in the online journal.)
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APPENDIX A

IMAGE PREPROCESSING

To perform the EUV tomographic reconstructions presented
here and in Vásquez et al. (2009), we selected one EUVI/
STEREO (FITS format) image every 2 hr, for each band and
spacecraft. The time interval spanned by the data must allow for
360◦ of coronal view angles, and depends on the spacecraft
separation (it equals one solar rotational time for a single
spacecraft, and less time using the two STEREO spacecraft).
All selected images cover the full Sun and are of 20482 pixels in
size. Here we describe the main aspects of data preprocessing
required prior to performing the tomographic reconstructions.

The first step is the photometric calibration of the raw
data and cleaning of cosmic ray hits. This can be accomplished
using three IDL routines belonging to the Solar Soft5 SECCHI/
STEREO software package, namely, secchi_prep.pro,
despike_gen.pro, and euvi_correction.pro. First,
secchi_prep.pro is used with flags set to calibrate the image
into DN units, no exposure-time normalization or any other nor-
malization is performed at this point. Specifically, the following
flags are set: /DN2P_OFF (do not transform DN to PHOTONS),
/CALIMG_OFF (do not flatfield, as is recommended as of ar-
ticle submission; J.-P. Wuelser 2008, private communication),
/NORMAL_OFF (do not normalize intensities to OPEN filter posi-
tion), and /EXPTIME_OFF (do not normalize by exposure time).
Then, despike_gen.pro is used to clean the image of cosmic
ray hits. This routine implements a selective median filter: if
the difference between each image pixel and its 3 × 3 neigh-
bors median exceeds a given threshold, then that image pixel is
replaced by another value. The threshold used to evaluate this

5 http://www.lmsal.com/solarsoft/

decision is controlled by the value of a variable TN that can be
set by the user. Based on our experience, and guidance from
the EUVI team, we set TN=8 for the 171 and 195 Å bands, and
TN=4 for the 284 Å band. Also, we have used the /low3 flag,
which picks as replacement value the third lowest value of the
3 × 3 pixel neighborhood (while the usual 3 × 3 median filter
would pick the fifth lowest). This feature, along with running
of despike_gen.pro repeatedly, proves to be efficient when
cosmic ray hits cause pixel bleeding, as well as in the removal
of artifacts significantly larger than one pixel. Typically, more
than 99% of the pixels remain unchanged after the despiking
filter is applied. Finally, the euvi_correction.pro is used
to perform the tasks needed to complete the calibration, set-
ting the flags /DN2P_OFF, /CALIMG_OFF, and /NORMAL_OFF
(same as explained above). All the above steps generate fi-
nal images in units of (dn/s). We have also generated images
in units of (PHOTONS) for statistical studies. The process to
achieve this is the same as explained above, but canceling the
flag /DN2P_OFF and setting the flag /EXPTIME_OFFwhen using
the euvi_correction.pro routine in the last step. The dn/s
calibrated images go through further preprocessing, specifically
oriented to the tomographic reconstruction. In the following list,
we itemize its most important aspects.

1. We pixel-rebin the images, for consistency with the grid
size set for the reconstruction and to decrease the memory
requirements. The EUVI images are originally 20482 pixels
in size, and in our previous papers we currently rebin the
images down to 10242 pixels, decreasing their size by a
factor of 4 (in turn, the tomography code adds four LOS
sums, corresponding to 2 × 2 bins of the 10242 images,
together for further reduction).

2. We rotate the images to align the north pole up. Strictly,
this is not required by the tomographic code, as it properly
identifies the image orientation from its header information,
but it proves to be useful for producing movies of the data
time series, for both inspection and display purposes.

3. We apply to the images the correction factors αk and the
renormalization factors Φk,0, as in Equation (B2).

http://www.lmsal.com/solarsoft/
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4. Using the FITS file header information, during all this
preprocessing the pixels that belong to missing blocks are
properly identified. A key value “−999.0” is assigned to
those pixels for their posterior rejection by the tomographic
code.

5. Finally, we compute time-binned images out of the original
ones. Currently, we divide each 24 hr period into four bins of
6 hr, so that each binned image is an average of three original
ones. Specifically, each pixel in the binned image is the
average of the corresponding pixel in the original images,
excluding any pixels that belong to blocks of missing
data. As missing blocks are unlikely to occur in the same
location of the detector in two different images, this time-
binning greatly reduces the number of missing blocks in the
binned images (that were very rare in the original images
already).

6. All the relevant FITS file header information is modified to
properly document all steps mentioned above.

After applying these tasks to a time series of images allowing
for 360◦ of coronal view angles, a set of images suitable to
perform a tomographic reconstruction is obtained.

APPENDIX B

MULTI-SPACECRAFT FORMULATION

In this era of the dual-spacecraft STEREO mission, we have
the opportunity to combine simultaneous observations of the
corona from multiple viewpoints. This combination of multi-
instrument data is only useful for our purposes if the individual
temperature response functions Qk(T ), derived from the band-
pass functions φk(λ), are similar enough for the STEREO A and
B spacecraft. Otherwise the measurements from different instru-
ments would weigh the plasma temperature distribution differ-
ently. Figure 1 shows laboratory measurements of the bandpass
functions for all four bands of the EUVI/STEREO instruments.
As can be seen, for each band the differences between the two
spacecraft curves are small. The largest discrepancy is observed
around the peak of the 171 Å band, but even that discrepancy
implies a quite negligible difference in the corresponding DEM
kernel function Q171 (see Section 5), as shown in Figure 2.
Since the measurements show that the EUVI instruments on the
STEREO A and B spacecraft have very similar bandpasses, and
we ignore the small differences both here and in Vásquez et al.
(2009).

Our analysis of in-flight data shows that the two instrument
calibrations exhibit a small-scale difference (which manifests
as the Φk,0 factor in Equation (7)) that must be resolved before
combining their data in the tomographic inversion. Detailed
comparisons of measurements from EUVI A and B were made
in 2007 January, just after launch, when the two spacecraft
were close to the Earth and separated by much less than 1◦
in heliocentric angle. Because the separation was so small,
they were seeing almost exactly the same face of the Sun.
These data show that the measured intensities (which have been
processed from the raw data in accordance with Appendix A)
in the 171, 195, and 284 Å bands in the EUVI A instrument
are several percent lower than those in EUVI B. We used those
data to compute the correction factors (αk) required to bring
the A and B intensities into agreement. The following variant of
Equation (17) defines the dual spacecraft tomographic inversion
problem, taking correction factors into account (see the change

Table 1
The EUVI Calibration Values (as of the 2008 February 19) of the

Normalization Constants Φk,0/Ωp (dn cm2/ph) for the STEREO A and B
Spacecraft, Each Bandpass (“open” filter), and the Values of Associated αk

(dimensionless) Required to Reconcile Intensity Differences Observed in 2007
January (see Appendix B)

Band ΦA
k,0/Ωp ΦB

k,0/Ωp αA
k αB

k

171 2.833 × 10−1 2.430 × 10−1 1.027 0.975

195 1.420 × 10−1 1.230 × 10−1 1.038 0.965

284 2.827 × 10−2 2.491 × 10−2 1.051 0.953

304 4.242 × 10−2 4.435 × 10−2

Notes. We did not calculate the αk values for the 304 Å band since we did not
use those images for quantitative purposes.

of variables after Equation (15))[
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, (B1)

where αA
k and αB

k are the correction factors, and IA
k and IB

k

are the measured intensities from A and B, respectively. If the
different values of Φk,0 for A and B explained any observed
intensity differences, the αA

k and αB
k correction factors would

not be necessary. In Table 1, we show the numerical values of
these factors, for both spacecraft and all bands.

Finally, we define several aggregate vectors and matrices in
order to unify the notation:[

αA
k IA

k

/
ΦA

k,0
αB

k IB
k

/
ΦB

k,0

]
→ Ik (B2)

[
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k

WB
k

]
→ Wk (B3)

[
αA

k nA
k

/
ΦA

k,0
αB

k nB
k

/
ΦB

k

]
→ nk . (B4)

With these definitions, Equation (B1) can be rewritten as
Equation (17). Of course, generalization to three or more
spacecraft is straightforward.

APPENDIX C

LEVEL-SET FORMALISM AND THE LDEM

The goal of this appendix is the derivation of Equation (21),
which relates the LDEM to the FBE, and to show that the
mean-square density can be obtained by integrating the LDEM.
A similar equation that relates the DEM to intensity of a spectral
line or an image point can be found, e.g., in Brown et al.
(1991). While most derivations of relationship of the DEM to the
intensity involve complicated integrals over isothermal surfaces,
our development uses levels sets and is more straightforward.
This appears to the be the first use of the level set formalism for
this application. Essentially, the same methodology can be used
to relate intensity measurements to the DEM.

Equation (14) defines ζk(r), the FBE in the kth band at a
given point in the corona r , however, the tomographic inversion
assumes a discrete corona in which the FBE is assumed to
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be constant in the interior volume of each voxel. Let Ri be
the (closed) set of points defining the volume of the ith voxel.
Equation (15) is the inverse problem from which the ζk,i , the
FBE for the kth band ith voxel, can be determined. We take ζk,i

to be the volume average of ζk(r) in the ith voxel, i.e.,

ζk,i ≡ 1

Vi

∫
Ri

d3r ζk(r) , (C1)

where Vi is the volume of the ith voxel. Using Equation (14),
Equation (C1) becomes

ζk,i ≡ 1

Vi

∫
Ri

d3r N2
e (r)Qk(T (r)) , (C2)

where, as in Equation (22), Qk(r) ≡ ∫
dλ φk(λ)ψ(Ne0, a0, T (r)),

in which Ne0 and a0, are fixed, appropriate values of the electron
density (which is not critical here since most of the dependence
on it has been factored out, as described in Section 5) and the
elemental abundances.

The set of points L(T0) defined as

L(T0) ≡ {r : T (r) = T0 and r ∈ Ri} (C3)

specifies a set of points within Ri and is known as a level
set. The sets L and Λ (see below) should have voxel subscripts,
since they only pertain to points within the ith voxel, but we drop
this notation for convenience. Since there is no finite volume of
plasma with a temperature of exactly T0 (i.e., there is no open set
satisfying Equation (C3)), L(T0) has measure 0. Now consider
a (closed) set of points composed of a family of level sets

Λ(T0, ΔT ) ≡ {r : T0 � T (r) � T0 + ΔT , r ∈ Ri} . (C4)

Because T (r) is piecewise continuous, for finite ΔT , if any of the
plasma falls within the range (T0, T0 + ΔT ), Λ(T0, ΔT ) will have
nonzero measure (volume). In the limit ΔT → 0 the measure is

d{Λ(T , dT )} = (dT )3

|∂T /∂x1||∂T /∂x2||∂T /∂x3| = d3r , (C5)

where r = (x1, x2, x3), and the derivatives are evaluated at the
location r0 (which satisfies T (r0) = T0). If there is more than
one location at which T (r) = T0, the measures need to be added.
Since all of the points in the volume Ri are at some temperature
between 0 and ∞, Vi must satisfy∫ ∞

0
dT d{Λ(T , dT )}/dT =

∫
Ri

d3r = Vi . (C6)

Next, we define an indicator function

HΛ(T ,ΔT )(r) ≡
{

1/ΔT if r ∈ Λ(T , ΔT )
0 if r /∈ Λ(T , ΔT )

}
, (C7)

which has units of (K−1) and satisfies∫ ∞

0
dT HΛ(T ,dT )(r) = 1, (C8)

meaning that the plasma at any given location is at one
temperature. Integrating Equation (C8) over the voxel volume,
the condition given by Equation (C6) can be rewritten as the
double integral∫

Ri

d3r =
∫ ∞

0
dT

∫
Ri

d3r HΛ(T ,dT )(r) . (C9)

Similarly, the voxel-volume integral of any function f (r) will
satisfy the condition∫

Ri

d3r f (r) =
∫ ∞

0
dT

∫
Ri

d3r f (r) HΛ(T ,dT )(r) . (C10)

The LDEM, which has units (cm−6 K−1), can now be defined
as

ξi(T ) ≡ 1

Vi

∫
Ri

d3r N2
e (r) HΛ(T ,dT )(r) , (C11)

meaning that ζi(T ) is the voxel-volume integral of N2
e , but the

integral is only taken over the volume in which the plasma as
a temperature between T and T + dT . We can now use Equa-
tions (C10) and (C11) to rewrite the integral in Equation (C2)
as

ζk,i ≡ 1
Vi

∫
Ri

d3r N2
e (r) Qk(T (r)) (C12)

= 1
Vi

∫ ∞
0 dT

∫
Ri

d3r N2
e (r) Qk(T (r)) HΛ(T ,dT )(r) (C13)

= 1
Vi

∫ ∞
0 dT Qk(T )

∫
Ri

d3r N2
e (r) HΛ(T ,dT )(r) (C14)

= ∫ ∞
0 dT Qk(T ) ξi(T ) , (C15)

where Qk(T (r)) factors out of the interior integral in Equa-
tion (C13), because the temperature is constant where the indi-
cator function is nonzero. Thus, Equation (21) is proved.

The local emission measure (LEM), which has units (cm−6),
is the mean-square density and can (in principle) be determined
by integrating the LDEM as follows:

μi ≡ 1

Vi

∫
Ri

d3r N2
e (r) (C16)

= 1

Vi

∫ ∞

0
dT

∫
Ri

d3r HΛ(T ,dT )(r)N2
e (r) (C17)

=
∫ ∞

0
dT ξi(T ) . (C18)

The rms electron density (in cm−3 units) at each voxel can be
determined via 〈

N2
e

〉1/2

i
≡ √

μi (C19)

Essentially identical arguments can be applied in standard
DEM analysis to the relationship between the intensity and the
DEM. The only difference is that line integrals are used instead
of volume integrals, and the other quantities must be defined
accordingly.

APPENDIX D

THE χ2 TEST FOR DATA REJECTION

The effects of optical depth on the tomographic reconstruction
can be mitigated by rejecting the EUVI image pixels correspond-
ing to the most optically thick part of the image. The data to be
rejected are located between projected radii ri and ro, chosen to
be slightly less than and greater than 1.0 Rs , respectively. Of the
three EUVI Fe bands, the 171 Å band is the most susceptible
to optical depth effects due to the oscillator strength and max-
imum ion fraction of the Fe X 171.08 Å line, which are much
greater than those of the Fe XII 195.12 and Fe XV 284.15 Å
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Table 2
Table of ri and ro, and the Associated χ2

r Values for the 171 Å Band
Reconstruction

ri (Rs ) ro (Rs ) χ2
r

0.97 1.09 30.6
0.97 1.045 31.7
0.98 1.045 32.2
0.98 1.025 36.9
0.99 1.065 32.9
0.99 1.025 39.1
· · · · · · 106

lines dominating the other two bands (e.g., Schrijver et al. 1994).
In Vásquez et al. (2009), as well here, we choose the values of
ri and ro with the χ2 test described in this appendix.

For this purpose, the reduced χ2 statistic (χ2
r ), which is a

measure of “goodness-of-fit,” is defined as

χ2
r ≡ 1

N − P

N∑
k=1

(ŷk − yk)2

σ 2
k

, (D1)

where {yk, k = 1, . . . , N} are the data points to be fitted by
{ŷk, k = 1, . . . , N}, which are linear functions of a vector
with P elements, and σk are the standard deviations of the data
points (assumed to be statistically independent) due to noise. Of
course, we require 0 < P < N . For example, consider least-
squares fitting a polynomial of degree P − 1 to N data points
{yk} (located, say, at the first N integers along the real line)
with normally distributed with variances {σ 2

k }. The vector with
P elements contains the values of the polynomial coefficients to
be determined via the weighted least-squares fitting procedure,
and {ŷk} are the values of the fitted polynomial. Then, for the
expectation we have 〈χ2

r 〉 = 1.
In this case, {yk} are pixel intensity values from the EUVI

images used as input for a tomographic reconstruction, {σk} are
given by Poisson photon statistics, and P is the number of voxels
in the reconstruction (for the 13 × 60 × 120 grid, P = 93, 600).
The functions ŷk are the synthetic intensity values determined
from LOS integration of the tomographic reconstruction, as
in Equation (12) and shown in the right column of Figure 3.
The value of N depends on the amount of data that is rejected
(i.e., ri and ro), but for no data rejection and the EUVI images
binned down to 256 × 256, the value was about 3.3 × 106.
Table 2 gives the χ2

r value for various values ri and ro. The
last line corresponds to no data rejection. We have assumed that
rejecting all of the data between 0.97 and 1.09 Rs removes most
of the optically thick LOSs and represents something close to
the minimum value that could be achieved in this way. As the
table shows, the value of χ2

r for these rejection radii is 30.6.
The fact that χ2

r never approaches unity is most likely due to
the small amount of Poisson noise (large number of counts) and
the effects of the corona’s temporal variability. Note that in the
case of no data rejection the value of χ2

r is much greater (106)
and that any of chosen values of ri and ro in the table give a vast
improvement. We chose the values of 0.98 and 1.025 Rs because
it seemed to be a reasonable compromise between having more
usable bottom layers in the reconstruction (the layers below ro
were not usable) and a lower χ2

r value. Very similar trends were
seen in the 195 and 284 Å bands, but reduction in the value of
χ2

r caused by the data rejection were much less dramatic due to
the lesser importance of optical depth effects in these bands.

APPENDIX E

LINE-OF-SIGHT GEOMETRY

The specific intensity measured by pixel j, Jj (λ), is given by
an LOS integral through the corona (Equation (9)). Tomographic
reconstruction requires specification of the locus of points that
define this LOS so that one can determine the volume elements
of the computation grid that the LOS passes through and the
path length through each such element (see the Wk matrix
in Equation (16)). In order to do this calculation, one must
determine the equation of the LOS in the appropriate reference
frame, i.e., a frame rotates with the Sun. The discussion in this
appendix is similar to that presented by FJ02 in the context of
white-light tomography, but has several additions. The present
discussion also corrects an error (Equation (10) of FJ02, and
Equation (E2) here) which had no practical consequences for the
reconstructions previously published by Frazin and colleagues.

We will refer to three coordinate systems, numbered 1, 2, and
3. All three coordinate systems are right handed and heliocentric.
ex , ey , and ez are the unit vectors associated with the coordinate
axes. The symbols o, p̂, q, and l̂ represent the origin-observer
vector, the solar pole unit vector, the point of closest approach
to the Sun (the near point) of the LOS, and the unit vector
parallel to the LOS, respectively. o, p̂, q, l̂ , ex , ey , and ez are
column vectors with three elements. The numerical subscript on
any vector denotes the coordinate system to which it belongs;
for example, p̂2 is the solar pole unit vector in the second
coordinate system. R12 and R23 are the matrices which transform
vectors from coordinate system 1 to 2 and 2 to 3, respectively.
Rx(ϑ), Ry(ϑ), and Rz(ϑ) represent the standard matrices for
counterclockwise rotation through an angle ϑ about the x, y,
and z axes, respectively.6

In the coordinate system specified by index v (v = 1, 2, or 3),
the locus of points along the LOS corresponding to image pixel
j is given by the expression

rj (l) = qj,v + l l̂j,v, lmin,j < l < lmax,j , (E1)

where lmin,j and lmax,j are where the LOS enters and exits the
computation grid, respectively. Note that qj,v and l̂j,v are per-

pendicular, so their inner product qT
j,v l̂j,v = 0 (the superscript T

indicates transpose). The goal of this appendix is to show how
qj,3 and l̂j,3 are calculated.

The three coordinate systems and the associated vectors and
transformation matrices are as follows.

1. The first coordinate system, called heliocentric inertial
(HCI) coordinates, differs from geocentric inertial coor-
dinates (GCI) only by the choice of origin. The GCI co-
ordinate system is closely related to the J2000 Earth equa-
torial coordinate system, which is the standard system of
celestial coordinates in which the right ascension and dec-
lination of objects are specified.7 This coordinate system is
useful because the solar pole unit vector p̂1 is known a pri-
ori (the J2000 right ascension and declination of the solar
pole are approximately 286.◦11 and +63.◦85, respectively).

6 For example,Rx (ϑ) =
[

1 0 0
0 cos ϑ − sin ϑ
0 sin ϑ cos ϑ

]
, with the same ordering for

Ry and Rz.
7 If α and δ are the J2000 right ascension and declination of an object, then
the associated unit vector (GCI coordinates) pointing to it is
[cos δ cos α, cos δ sin α, sin δ]T.
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For SOHO data, there are orbit files that contain the GCI
Earth–Sun vector and the GCI Earth--SOHO vector, from
which one may determine the HCI Sun–observer vector
o1. In the case of STEREO, the FITS files (which contain
the images) give the spacecraft coordinates in heliocentric
Aries ecliptic (HAE) coordinates. The HAE to HCI coordi-
nate transformation matrix is Rx(ϕ), where ϕ is the J2000
obliquity of the ecliptic 23◦26′21.′′4119 (Allen 1976).

2. The second coordinate system is convenient for calculating
the LOS associated with each pixel in the images. In this
system, the x-axis is coincident with the origin–observer
vector, so ex2 = o2/‖o2‖ = R12o1/‖o1‖ (length invariance
under rotation implies ‖o2‖ = ‖o1‖). As images are often
displayed with the north pole at the top, it is convenient
to set the y-component of the solar pole unit vector to
0; thus, p̂2 = R12 p̂1 = [sin χ, 0, cos χ ]T, where χ is
the tilt-angle of the solar pole with respect to the plane
of the sky (the so-called “B angle”). These conditions are
sufficient to specify R12. We have R12 = Rx(c)Ry(b)Rz(a),
in which Rz(a) zeros the y-component of o1, Ry(b) zeros the
z-component of Rz(a)o1, and Rx(c) zeros the y-component
of Ry(b)Rz(a) p̂1. The near point vector is given by8

qj,2 = d Rx(ηj )[sin ρj tan ρj , 0, sin ρj ]T , (E2)

where d is the origin–observer distance, and ηj and ρj are
the position angle (measured counterclockwise from north
in the image) and projected radius (in radians) of the image
pixel j, respectively. Similarly, the unit vector in the LOS
direction is given by

l̂j,2 = Rx(ηj )[−cos ρj , 0, sin ρj ]T . (E3)

3. The third coordinate system, also known as Carrington
heliographic coordinates (Thompson 2006), rotates with
the Sun and is the domain in which the tomographic
computation grid is defined. In this coordinate system,
the z-axis is parallel to the solar pole unit vector, so
ez3 = p̂3 = R23R12 p̂1. The vectors ex3 and ey3 therefore
span the equatorial plane, and we take ex3 to point toward
the meridian of 0◦ Carrington longitude. ey3 is chosen to
complete a right-handed coordinate system, so it points
toward the meridian of 90◦ Carrington longitude. The
above conditions are enough to specify R23. Thus, R23 =
Rz(−ψ)Ry(χ ), where χ is the polar tilt angle given above
and ψ is the Carrington longitude of the observer. Ry(χ )
zeros the x-component of p̂2 and Rz(ψ) accounts for the
solar rotation. While the STEREO FITS files contain the
value of ψ , in the case of SOHO, the angle ψ can be
calculated as described in FJ02.

Note that while d, ψ , and χ are constant within each image,
they change from one image to the next as the observer moves
and the Sun rotates.

The locus of points along the LOS in the third coordinate
system is given by Equation (E1), with l̂j,3 = R23 l̂j,2 and
qj,3 = R23qj,2, using Equations (E2) and (E3). The length

8 Equation (9) of Frazin & Janzen (2002) is incorrect. The correct version is
given here in Equation (E2). Since the error is a factor of cos ρ and ρ has been
less than 1.◦6 in everything published by Frazin and colleagues so far, this error
has had no practical consequences.

of this LOS though a given volume element of the computa-
tion grid (compared to Equation (16)) can now be calculated
with straightforward trigonometric computations once the grid
structure has been defined.
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