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HIGHLIGHTS 

 The seasonal variation of the macrobenthic community of Caleta Valdés 

were reported 

 Highest abundance were found in Spring-Summer with a predominance of 

biodiffusors 

 A deeper advective sediment transport was demonstrated in Spring-

Summer 

 Ex situ and in situ sediment reworking measurements showed similar results 

 The experimental procedure for ex situ ecotoxicological studies was 

validated 
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Seasonal composition and activity of the intertidal macrobenthic 1 

community of Caleta Valdés (Patagonia, Argentina) applying in situ and ex 2 

situ experimental protocols 3 

 4 

Abstract 5 

Caleta Valdés (CV) is a coastal lagoon of the Patagonian Atlantic coast located 6 

in the Península de Valdés declared as Humanity Mundial Patrimony due to its 7 

remarkable biodiversity, ecosystemic richness, and pristine state. Marine 8 

mammal populations are well documented in this area but few studies have 9 

been carried out on the local macrobenthic communities. The goals of this study 10 

were (a) to evaluate for the first time the seasonal variation of the structure and 11 

activity (i.e., sediment reworking) of the intertidal macrobenthic communities of 12 

CV, and (b) to validate an ex situ experimental protocol for future 13 

ecotoxicological studies. To do so, sedimentary (granulometry, water content, 14 

and organic matter) and biological (macrobenthic assemblages, biodiffusive-like 15 

and advective sediment reworking components) parameters were analyzed 16 

using a combination of in situ and ex situ measurements. Overall, polychaete 17 

and crustacean dominated the macrobenthic community. The highest 18 

abundances were found in Spring-Summer along with a predominance of 19 

biodiffusors versus conveyors. Ex situ and in situ measurements demonstrated 20 

similar results, thus allowing validation of an ex situ experimental procedure for 21 

macrobenthic community and functioning studies. In addition, these results 22 

provide a first baseline of benthic information on CV that will be helpful to 23 

monitor the effects of potential pollution in Patagonian coastal systems. 24 

 25 
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Keywords 26 

Biodiversity, bioturbation, sedimentary matrix, soft-bottom macrofauna, 27 

protected areas. 28 

 29 

1. Introduction 30 

The Patagonian coast is about 3000 kilometers long with a high value in terms 31 

of biodiversity (Esteves and Arhex, 2009). This coast is used by migratory birds 32 

and marine mammals to rest, feeding and mating (Yorio, 2009). Moreover, it 33 

includes zones of reproduction and breeding of fish, crustaceans, and mollusks 34 

sustaining one of the most productive temperate marine ecosystems in the 35 

world (Vázquez, 2004). As in other marine coastal environments, the food webs 36 

are mainly sustained by phytoplankton (Smetacek, 1999). Particularly, in these 37 

coasts, upwelling phenomena increase primary production (Acha et al., 2004). 38 

Due to its remarkable biodiversity and ecosystemic richness, big areas of this 39 

coast have a special protection status (e.g. Península de Valdés was 40 

established as Humanity Mundial Patrimony in 1999, North Zone San Jorge gulf 41 

was defined as Patagonian Austral Inter-jurisdictional Marine Coastal Park in 42 

2007 and Punta Tombo as Natural Protected Area in 1979, among others). 43 

Despite these protection measures, there are diverse and growing 44 

anthropogenic activities constituting a direct threat to the ecosystem. Therefore, 45 

studies about the seasonal dynamics of the macrobenthic communities 46 

constituting a particular interest at ecological level but also for integrated coastal 47 

zone management purposes. 48 

 49 
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Indeed, the soft-bottom benthic organisms play a key role in nutrient cycles, 50 

pollutant metabolism, dispersion, and burial of the organic matter and 51 

secondary production processes (Hopkinson et al., 1999; Snelgrove, 1998). 52 

These organisms have reduced mobility (Pearson and Rosenberg, 1978; 53 

Teixeira et al., 2012) and therefore they are highly sensitive to the physical and 54 

chemical changes of the sediment matrix (Dauvin et al., 2010; Muniz et al., 55 

2005). For this reason, this group of organisms is useful as an indicator of 56 

ecological state in impacted sites and/or in monitoring programs (e.g. Teixeira 57 

et al., 2012). Through the excavation, burrow ventilation, and/or mud and 58 

organic matter ingestion (Taghon and Greene, 1992), they induce the transport 59 

of particles (sediment reworking) and fluids also known as bioturbation 60 

(Kristensen et al., 2012). Community bioturbation is a good integrator of 61 

macrofaunal functioning as it incorporates various aspects of behavior (e.g. 62 

feeding, locomotion, burrow building) and may vary depending on the 63 

community structure and local heterogeneity (Solan et al., 2019). Differences in 64 

bioturbation over time may also reflect the abiotic and/or biotic changes of not 65 

only the benthic but also the pelagic ecosystem. Particularly, bioturbation 66 

affects processes such denitrification (Gilbert et al., 2003), nitrification (Aller et 67 

al., 1998), sulfate reduction (Canavan et al., 2006), benthic fluxes (Aller and 68 

Aller, 1998; Mermillod-Blondin et al., 2005; Michaud et al., 2005; Mortimer et al., 69 

1999) and microbe dynamics (Goñi-Urriza et al., 1999; Papaspyrou et al., 70 

2006).  71 

 72 

Reworking organisms can be classified into functional groups based on the 73 

different ways in which the organisms behave and on the resulting transport of 74 
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particles within the sedimentary column. According to Kristensen et al. (2012), 75 

these organisms can be differentiated into biodiffusors, upwards and downward 76 

conveyors, and regenerators. Biodiffusors are species whose activities produce 77 

a local, constant, and random mixture of sediment over short distances. 78 

Upwards and downward conveyors are species vertically distributed that 79 

respectively feed head down and deposit its dregs in the surface of the 80 

sediment or inversely, and finally the regenerators, excavator species that 81 

transfer the sediment from the bottom to the surface. In ecosystems, the 82 

complex communities are then able to generate various patterns and intensities 83 

of sediment reworking depending on their functional composition (e.g. Duport et 84 

al., 2007). Moreover, it can be modulated by the environmental conditions via 85 

changes in organisms behavior. For example, the burrowing polychaetes 86 

Hediste diversicolor can switch from deposit-feeding to filter-feeding if the 87 

phytoplankton concentration is high enough (Riisgård, 1994) and Alitta virens 88 

has been shown to have a temperature dependence of sediment reworking 89 

activity (Ouellette et al., 2004). 90 

 91 

The goals of this study were (a) to evaluate for the first time the seasonal 92 

variation of the structure and the activity (i.e., sediment reworking) of the 93 

intertidal macrobenthic communities of Caleta Valdés and, (b) to validate an ex 94 

situ experimental protocol for future ecotoxicological studies. 95 

 96 

2. Materials and methods 97 

2.1. Study area 98 
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Caleta Valdés (CV) is a north-south-oriented coastal lagoon located at the 99 

eastern side of Península Valdés. This is 30 km long and has its mouth at the 100 

southern end where the water exchange is produced at two and four nudes of 101 

velocity. A gravel bank limits the lagoon, generating a channel of 200 m width 102 

and a mean depth of 5 m. The enclosed north zone presents a marsh that cover 103 

a 25% of the total surficial of the system (Esteves et al., 1993). The tidal 104 

regimen is semidiurnal with a mean high of 5 m. The sampling site for the 105 

experimentation was chosen in the muddy north continental zone of CV 106 

(42°15′53″ S, 63°40′50″ W; Figure 1) due to its macrofauna richness and the 107 

absence of anthropogenic pollution. Currently, this natural reserve is protected 108 

of human activities so that strict control is carried out on touristic and smaller 109 

productive activities, which are developed in the area. 110 

 111 

2.2. Sampling 112 

Sediment cores were sampled by hand in autumn (April 2011), winter (July 113 

2011), spring (November 2011), and summer (February 2012) using 10 cm 114 

diameter and 25 cm length PVC cores, in agreement with previous bioturbation 115 

studies (Ferrando et al., 2015; Hedman et al., 2011; Quintana et al., 2007; 116 

Timmermann et al., 2002). At each season, at low tide, eight cores were 117 

vertically and randomly pushed down to 20 cm sediment depth approximately. 118 

Then, for ex situ experiments, four of them were immediately collected by hand 119 

and transported to the laboratory. The other four cores were embedded in the 120 

sediments for in situ assessments. In addition to sediment sampling, 60 L of 121 

seawater were also collected in plastic containers to be used for the ex situ 122 

experiments. This procedure was applied for each studied season. 123 
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 124 

2.3. Incubation conditions 125 

2.3.1. In situ experiments 126 

In order to assess biological reworking activity, in each sediment core, 4 g of 127 

luminophores (inert fluorescent particles, Duport et al., 2007) of two sizes and 128 

colors (pink: 65-125 μm; green: 125-355 μm) were homogeneously spread at 129 

the sediment surface at initial time (T=0 day). Luminophores sizes were 130 

selected according to the two major size distribution modes of sedimentary 131 

particles in the studied site (Sturla Lompré et al., 2018). After 13 days of in situ 132 

incubation, the cores were withdrawn and carried out to the laboratory. Then, 133 

the sediment cores were sliced to provide 0.5 cm thick sediment layers from the 134 

surface to 2 cm depth and 1 cm thick sediment layers from 2 to 17 cm depth. 135 

Each sediment slice was separated in four equal parts that were randomly 136 

distributed to perform the different analyses. 137 

 138 

2.3.2. Ex situ experiments 139 

Similarly, for each season, the four cores containing the sediments sampled at 140 

CV were distributed in a 56 L tank that was then filled until the cores were totally 141 

submerged with the seawater collected the same day in the same sampling 142 

station. To assess biological reworking activity in a no water flow system where 143 

no hydrodynamic loss of tracers could occur, in each sediment column, 2 g of 144 

the two types of luminophores (pink: 65-125 μm and green: 125-355 μm) were 145 

homogeneously spread at the sediment surface at the initial time (T=0 day). 146 

The system was kept continuously aerated (air bubbling). Sediment cores were 147 

incubated for 13 days at a similar ambient temperature to the in situ 148 
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assessment. Then, they were manually collected and processed identically as 149 

for the in situ experiments. 150 

 151 

2.4. Analytical procedures 152 

2.4.1. Sediment characterization 153 

A quarter of each sediment slice was used to determine sediment granulometry 154 

(only in autumn 2011) by laser beam diffraction (Partica LA-950; HORIBA 155 

Instruments, Inc.), and for the four seasons, water content and organic matter 156 

by oven drying at 105 °C during 24 h and muffle furnace ignition at 450 °C 157 

during 4 h, respectively. Eight granulometry fractions were obtained: fine silt < 6 158 

µm, medium silt 6-20 µm, coarse silt 20-60 µm, very fine sand 60-125 µm, fine 159 

sand 125-200 µm, medium sand 200-600 µm, coarse sand 600-1000 µm, and 160 

very coarse sand 1000-2000 µm.  161 

 162 

2.4.2. Macrobenthic communities 163 

The remaining three quarters of each sediment slice were fixed and dyed with a 164 

neutralized 4% formaldehyde solution and Rose Bengal colorant, respectively. 165 

Then, the samples were sieved, first with a 500 μm mesh and then with a 44 μm 166 

mesh. The sediment retained in the first mesh was preserved in ethanol 70% for 167 

the identification and counting of the macrobenthic organisms. The sorting of 168 

organisms (for the four seasons) was done to the lowest possible taxonomic 169 

level using stereoscopic and optic microscopes in the laboratory with reference 170 

material and dichotomous keys (Banse and Hobson, 1974; Blake and Ruff, 171 

2007;  Hartman, 1968, 1969; Orensanz et al., unpublished data, among others). 172 

Only the whole organisms or anterior fragments of each taxon were recorded.  173 



Journal Pre-proof

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

8 
 

 174 

2.4.3. Bioturbation 175 

The sediments retained in the 44 μm mesh were used (see above) to quantify 176 

sediment reworking. The sediments were homogenized and subsampled to 177 

quantify the luminophores percentage using a microplate reader (Biotek, 178 

Synergy Mx) at λex/λem: 460/500 and 565/602 nm for the pink and green 179 

luminophores, respectively (Majdi et al., 2014). For each sediment column at 180 

the four seasons, we obtained the vertical luminophores profile at the 181 

experimental final time (13 days) from the percentage of luminophores found in 182 

each layer concerning the total amount in the core. The quantification of 183 

sediment reworking was then evaluated from the distributions of luminophores 184 

by the gallery-diffusor model (François et al., 2002). This model allows 185 

describing both the biodiffusion-like transport (Db coefficient) due to the 186 

continuous displacement of the tracers and the nonlocal advective displacement 187 

of the tracers (r coefficient). The best fit between observed and modeled tracer 188 

distribution with depth (i.e., producing the best Db and r coefficients couple) was 189 

estimated by the least-squares method (Gilbert et al., 2007). 190 

 191 

2.4.4. Statistical data analysis 192 

Variation between seasons (autumn, winter, spring and summer) and 193 

experimental conditions (I: in situ and E: ex situ) of water content and organic 194 

matter (OM) were evaluated by core through two-way ANOVA considering 195 

seasons and conditions as fixed factors (n=32) (Statistica, version 7). A square 196 

root transformation was applied to satisfy the homogeneity of variances 197 
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assumption. The differences between pairs of seasons and conditions were 198 

tested through Tukey test for multiple mean comparisons (Statistica, version 7).  199 

 200 

A comparison of the mean abundance by core of dominant taxa between 201 

seasons and I and E experimental conditions were evaluated through two-way 202 

ANOVA considering seasons and conditions as fixed factors (n=32) (Statistica, 203 

version 7). A square root transformation was applied to satisfy the homogeneity 204 

of variances assumption. The differences between pairs of seasons and 205 

conditions were tested through Tukey test for multiple mean comparisons 206 

(Statistica, version 7).  207 

 208 

Biological data analyses were performed using the software package PRIMER 209 

7.0 (Plymouth Marine Laboratory, UK). The sorting using the total abundance of 210 

each taxa by core recorded in the I and E experiments at the four seasons was 211 

carried out with a nonmetric multidimensional scaling (nMDS) analysis (Bray-212 

Curtis index; group average link; square root). In addition, a Permutational 213 

Multivariate Analysis of Variance (PERMANOVA) was applied to assess the 214 

effect of the seasons, I and E experimental conditions, and the interaction 215 

between both factors (Bray-Curtis index; fourth root and 9999 permutations) 216 

(PRIMER v7). A Pair-wise PERMANOVA was applied to analyze the significant 217 

differences between seasons and conditions (Bray-Curtis index; fourth root and 218 

9999 permutations) (Anderson et al. 2008). Moreover, Specific richness (S), 219 

total abundance (N), and the Shannon diversity index (H′) were calculated by 220 

layer and core (I and E) at the four seasons. Variation of each biological 221 

parameter between seasons and conditions was evaluated through two-way 222 
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ANOVA considering seasons and conditions as fixed factors (n=32) (Statistica, 223 

version 7). The differences between pairs of seasons and conditions were 224 

tested through Tukey test for multiple mean comparisons.  225 

 226 

A comparison of the depth distributions of the luminophores for the two particles 227 

range sizes (pink and green) and the bio-diffusion (Db) and bio-advection (r) 228 

coefficients calculated for each experimental condition (I and E) was performed 229 

through the non-parametric Kruskal-Wallis one-way analysis of variance by 230 

ranks (Kruskal and Wallis, 1952) (Statistica, version 7). Moreover, a one-way 231 

ANOVA was applied to test the differences between seasons (n=16). The 232 

differences between pairs of seasons were tested through Fisher LSD test for 233 

multiple mean comparisons (Statistica, version 7). A Kruskal-Wallis and Pair-234 

wise Multiple Comparisons analysis were carried out to test the differences as a 235 

non-parametric alternative due to lack of homogeneity of variances of data in 236 

some cases.  237 

 238 

3. Results 239 

3.1. Characterization of the sediment  240 

The granulometry profiles were similar for the in situ and the ex situ sediments 241 

showing a predominance of medium sand (200-600 µm) (Figure 2). Moreover, 242 

the fine fractions (< 200 µm) were highest at the first two centimeters of the 243 

sedimentary columns. Regards in situ sediments, the maximum percentages of 244 

water content (58.5 ± 8.2%) and organic matter (OM) (1.7 ± 0.1%) were 245 

recorded in the first layer (0-0.5 cm) in winter and autumn, respectively (Online 246 

Resource 1). In spring, the maximum percentages of water content (48.5 ± 247 
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19.6%) and OM (1.3 ± 0.2%) were found in the fourth layer (1.5-2 cm) and the 248 

first layer (0-0.5 cm), respectively. In summer, the maximum percentages of 249 

water content (33.3 ± 0.8%) and OM (0.9 ± 0.0%) were recorded in the second 250 

(0.5-1 cm) and second and third layers (0.5-1.5 cm), respectively. These 251 

patterns were similar to those recorded in ex situ conditions (Online Resource 252 

1). Comparing seasons and experimental conditions (I and E), percentages of 253 

water content did not show significant effect of the interaction of these factors 254 

(Two-way ANOVA, p = 0.15, n = 32) but highly significant effect of each factor 255 

(p < 0.01, n = 16). Percentages of water content recorded in I and E conditions 256 

for winter and summer were similar (Tukey test p = 0.23 and p = 0.06; n = 8, 257 

respectively). Contrary, in autumn and spring, this parameter was significantly 258 

higher I than E (Tukey test p < 0.01; n = 8) (Figure 3). Moreover, in I conditions, 259 

water content showed not significant differences (Tukey test p > 0.05; n = 16) 260 

among autumn, winter and spring, but did (Tukey test p < 0.01; n = 16) in 261 

summer compared to other seasons. By contrast, in E conditions, in winter 262 

water content was significantly higher (Tukey test p < 0.01; n = 16) than in other 263 

seasons (Figure 3). Percentages of OM showed significant effect of the 264 

interaction season and experimental condition (Two-way ANOVA, p = 0.01, n = 265 

32) and just significant effect of season (p < 0.01, n = 16). Only significant 266 

differences between I and E conditions were recorded in spring (p = 0.026, n = 267 

8). Comparing seasons, at both conditions, the highest values were recorded in 268 

autumn with significant differences (Tukey test p < 0.01; n = 16) from the rest 269 

seasons. At I conditions, OM significant differences (p < 0.01; n = 16) were 270 

between winter and spring from summer; conversely, E conditions presented 271 
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significant differences (p < 0.01, n = 16) between winter from spring and 272 

summer (Figure 3).  273 

 274 

3.2. Macrobenthic communities 275 

A total of 27 taxa (I and E conditions) were found in CV including sixteen taxa of 276 

crustaceans, nine taxa of polychaetes, and one taxon of oligochaetes and 277 

nemerteans (Table 1). Mean abundance of the six most dominant taxa (> 4.8%) 278 

are shown in Figure 4. All taxa except Axiothella sp. were more abundant in the 279 

spring-summer period. This was pronounced in summer for the polychaete 280 

Exogone molesta (Syllidae), the most abundant species (37.4% of total 281 

macroinfauna). In addition, the two-way ANOVA showed only for Scoloplos sp. 282 

and E. molesta highly significant (p = 0.00, n = 32) and significant (p = 0.02, n = 283 

32) effect of the interaction (season and experimental condition) and I and E 284 

factor, respectively. On the contrary, all the dominant taxa showed a highly 285 

significant effect (p = 0.00, n = 32) of the season factor. Particularly, the 286 

differences between pairs of seasons showed not significant differences (Tukey 287 

test p > 0.05; n = 32) for Axiothella sp. and between autumn and winter all the 288 

cases (Tukey test p > 0.05; n = 32). Moreover, abundance recorded in these 289 

seasons showed highly significant differences (Tukey test p < 0.01; n = 32) with 290 

spring and summer, which were similar in most cases (Figure 4). Finally, only 291 

for E. molesta in spring were detected significant differences (Tukey test p < 292 

0.05; n = 32) between experimental conditions. 293 

 294 

The nMDS showed a good representation (stress = 0.15) and grouped spring 295 

and summer samples, which were located on the opposite side of winter 296 
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samples. Autumn samples were in an intermediate position close to spring-297 

summer it. In addition, I and E faunistic composition were similar all the seasons 298 

(Figure 5). Moreover, the interaction between the factors season and 299 

experimental condition (I and E) were not significant (PERMANOVA, p > 0.01) 300 

meanwhile the effect of each factor was it (p < 0.01) (Table 2). The Pair-wise 301 

PERMANOVA showed highly significant differences (p < 0.01) between all the 302 

seasons in both experimental conditions (I and E) meanwhile the differences 303 

between I and E were highly significant (p < 0.01) only in spring. 304 

 305 

Vertical profiles of the community parameters (S, N and H´) showed a similar 306 

trend for the four seasons with maximum values in the first five centimeters of 307 

the sedimentary columns and a decrease with depth (Figure 6). The two-way 308 

ANOVA for each community parameter showed only significant effect of the 309 

interaction (season and experimental condition) for H´, meanwhile the effect of 310 

both factors were significant for S and H´ (p < 0.01, n = 32) and just factor 311 

season for N (p < 0.11, n = 32). Regarding the differences between 312 

experimental conditions (I and E), significantly higher values I than E were 313 

recorded in spring H´ (Tukey test p = 0.023, n = 8, respectively). Particularly, at 314 

I condition, the highest S and N values were recorded in spring and summer 315 

while H´ values were relatively constant between seasons (Figure 7). Moreover, 316 

S and N showed strong differences between autumn and winter versus spring 317 

and summer (Tukey test p = 0.00 n =16), and were no differences between 318 

autumn versus winter (Tukey test p = 0.00; n = 18). Similarly, N showed strong 319 

differences between all the seasons (Tukey test p = 0.00; n = 16) except 320 

between autumn versus winter (Tukey test p = 0.15; n = 16). Regard to E 321 
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condition, S had no significant differences among autumn, winter and spring 322 

(Tukey test p > 0.05, n = 16) but did between winter and summer (Tukey test p 323 

= 0.029, n = 16). Total abundance were similar between autumn versus winter 324 

(Tukey test p = 0.17, n = 16) and spring (Tukey test p = 0.06, n = 16), and in 325 

summer was significantly higher than the other season (Tukey test p < 0.01, n = 326 

16). Likewise, H´ in autumn, spring and summer were similar (Tukey test p = 327 

0.99, n = 16), but in winter showed differences compared to spring and autumn 328 

(Tukey test p = 0.006 and p = 0.016; n = 16, respectively).   329 

 330 

Overall, the macrobenthic community was functionally composed of biodiffusors 331 

(surficial biodiffusors, epifaunal biodiffusors and gallery-biodiffusors), 332 

regenerators, and upward conveyors (Table 1). Upward conveyors 333 

predominated in autumn (61%) and winter (76%). Spring showed more 334 

balanced repartition between upward conveyors and biodiffusors, and this latter 335 

finally represented 81% of the functional groups in summer (Figure 8). 336 

 337 

3.3. Bioturbation 338 

The depth distributions of the luminophores for the two particles range sizes 339 

(pink and green) were similar (Kruskal-Wallis test p > 0.05; n = 32). Although 340 

the main bioturbation activity was recorded until 2 cm depth, both tracers were 341 

found buried down to 13 to 17 cm depth within the different sediment cores and 342 

seasons (Figure 9). The shapes of the tracer's distribution were also the same 343 

whatever the tracers and seasons showing a combination between a 344 

biodiffusive-like distribution from the surface completed by the presence of 345 

tracers deeper down. Thus, all tracers (pink and green) data were pooled 346 
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together and the gallery-diffusor model (François et al., 2002) was used to 347 

calculate the apparent bio-diffusion (Db) and bio-advection (r) coefficients within 348 

each core. Like previously observed for the majority of physical, chemical, and 349 

biological parameters, whatever the season the calculated coefficients did not 350 

show differences between the sediments incubated in situ and ex situ 351 

conditions (Kruskal-Wallis test p > 0.05; n = 16). In I conditions, nor Db nor r 352 

showed season effect (Kruskal-Wallis test p = 0.5 and one-way ANOVA p = 353 

0.05; n = 16, respectively). Contrary, in E conditions, highly significant 354 

differences were found for the Db coefficient between autumn versus spring and 355 

summer versus autumn and winter (Fisher LSD test p < 0.01; n = 16). 356 

Moreover, the r coefficient showed significant differences between spring 357 

versus winter (Multiple comparisons test p < 0.01; n = 16) (Figure 10). 358 

Particularly, the Db highest average values were found in autumn and winter 359 

(1.71 ± 0.14 and 1.49 ± 0.31 cm2 year−1, respectively). Nevertheless, the results 360 

were highly variable in spring and summer. Finally, maximum values of r were 361 

recorded in spring and summer (Figure 10). 362 

 363 

4. Discussion  364 

The seasonal composition and functioning (sediment reworking activity) of the 365 

intertidal macrobenthic community of Caleta Valdés (CV) applying an in situ and 366 

ex situ experimental protocol were evaluated. The macrofaunal invertebrates (> 367 

0.5 mm) occupy almost every trophic level in marine ecosystems and influence 368 

the physical, chemical, and biological structure surroundings (Lenihan and 369 

Micheli, 2001). Moreover, it is recognized that soft-sediment ecosystems are 370 

driven by complex interactions between water column processes, organic 371 



Journal Pre-proof

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

16 
 

matter inputs and their utilization by benthic populations, and the hydrodynamic 372 

and sedimentary conditions (Barry and Dayton, 1991; Snelgrove and Butman, 373 

1994). The coastal sediments of shallow environments play a key role in 374 

nutrient recycling because they can provide even greater fluxes to the water 375 

column than those from the continent (Clavero et al., 2000; Niencheski and 376 

Jahnke, 2002). Moreover, numerous studies highlight the importance of 377 

physical processes such as the velocity and intensity currents as the main 378 

environmental factors that influence the benthic systems (Pastor de Ward, 379 

2000). These factors determine the granulometry of the sediment (Brown and 380 

McLachlan, 2010; Dauvin et al., 2004; Muniz and Pires, 2000, among others) 381 

and food availability (Brown and McLachlan, 2010; McLachlan and Dorvlo, 382 

2005), modifying the composition of the communities. In the present study, the 383 

superficial layers (0-2 cm) were enriched in fine-grained particles with a 384 

relatively high percentage of water content and organic matter, meanwhile in 385 

the sandy deeper sediment, these parameters decreased to lower and almost 386 

uniform values. Similar results were recorded in sediments from Caleta Sara 387 

(San Jorge gulf, Patagonia Argentina), applying a similar methodology 388 

(Romanut, 2019). Particularly, the benthic organisms are able to change the 389 

local geochemical conditions through the reworking of sediment particles and 390 

irrigation during feeding, excretion, and locomotion within and through different 391 

sediment layers (Flach and Heip, 1996; Kristensen and Holmer, 2001; Venturini 392 

et al., 2011). Therefore, it is not surprising that in our study the bioturbation 393 

activity was concentrated mainly in the first centimeters of the sedimentary 394 

columns, i.e., 50% of the luminophores were finally retained (Gambi et al., 395 

1998; Gambi and Bussotti, 1999; Jorein, 1999; Venturini et al., 2011) where the 396 
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higher densities of macroorganisms were observed. In fact, the water-sediment 397 

interface, considered as a large sink of organic matter and oxygen, is an area of 398 

intense biological activity and remineralization (Nixon, 1981). Particularly, the 399 

combined effect of particulate and fluid transport on sediment biogeochemical 400 

processes is reflected in the vertical color transition (from brown to olive 401 

green/black) of the sediment profile (Lyle, 1983). This color transition is dictated 402 

by the change from iron (oxyhydr)oxides at the surface to black sulphidic 403 

phases at depth (Statham et al., 2017) correlating with a variety of 404 

environmental drivers (Solan et al., 2019). Moreover, depending on the 405 

biogeochemical transformations developed in this zone by the benthic 406 

communities, the sediment may be source of some nutrients and sink for others 407 

(Cabrita and Brotas, 2000). 408 

 409 

Macrobenthic fauna is a key element of many marine and estuarine monitoring 410 

programs but those usually do not (or cannot) take into account distribution 411 

patterns at different spatial-temporal scales (Ysebaert and Herman, 2002). In 412 

the present study, the abundance of the dominant taxa and the bioturbation 413 

activity (especially in depth) were globally higher in spring-summer (Db = 1.04 ± 414 

0.59 cm-2 y−1 and r = 12.60 ± 3.22 y−1) than in the rest of the seasons (Db = 1.59 415 

± 0.26 cm-2 y−1 and r = 4.81 ± 5.85 y−1). The Db and r values recorded at CV 416 

were in the range of those measured in Mediterranean Sea lagoons, the Thau 417 

lagoon, and the Carteau Cove by Duport et al. (2007) and Gilbert et al. (2015), 418 

respectively. Nevertheless, we can go no further in the comparison between 419 

sites because the sediment mixing intensity is mainly driven by population 420 

biomass (Matisoff, 1982; Reible et al., 1996), density (Duport et al., 2006; 421 
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Ingalls et al., 2000; Mermillod-Blondin et al., 2001; Sun et al., 1999), and 422 

interspecific variability within functional groups (François et al., 1999). 423 

Moreover, it can be modulated by environmental conditions (e.g. Gilbert et al., 424 

2021; Hollertz and Duchêne, 2001; Maire et al., 2007; Nogaro et al., 2008; 425 

Orvain and Sauriau, 2002; Ouellette et al., 2004).  426 

 427 

The maximum of macrofauna abundance recorded in spring-summer in this 428 

study were similar to those found at Cerro Avanzado (Golfo Nuevo, Patagonia 429 

Argentina) which was associated with higher juvenile occurrence and primary 430 

productivity (Lizarralde et al., unpublished data). This increase could be also 431 

influenced by the closeness to the Península Valdés frontal system, which is 432 

one of the best-known tidal fronts on the northern Patagonian continental shelf 433 

(Derisio et al., 2014). These fronts are generated usually within the same water 434 

mass where the boundary between stratified (offshore) and coastal vertically 435 

mixed water is found (Sabatini and Martos, 2002). In temperate climates, 436 

seasonal thermoclines are established near the surface during late spring and 437 

summer. This structure is maintained until autumn when stratification breaks 438 

down (Acha et al., 2004; Carreto et al., 1986; Glorioso, 1987). The fronts are 439 

zones where the lateral and vertical mixes are increased producing an increase 440 

of the primary and secondary production (Mann and Lazier, 2005; Olson and 441 

Backus, 1985; Yamamoto et al., 2000). The vertical circulation not only 442 

promotes the fertilization by nutrients in the surface (Mann and Lazier, 2005) 443 

but also the sinking water with the exportation of particles and organisms to the 444 

deepest strata facilitating the persistence of big invertebrates and vertebrates 445 

benthic populations (Sournia, 1994; Turley et al., 2000). The highest 446 
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concentrations of Zygochlamys patagonica found in the region have also been 447 

related to the formation of this front (Bogazzi et al., 2005). Viñas and Ramírez 448 

(1996) have reported previously eggs and nauplii of copepods peaking in frontal 449 

waters off Península Valdés at highest chlorophyll “a” concentration zones. The 450 

importance of the fronts to the benthic communities lies not only on the high 451 

primary production but also by vertical fluxes that transport food particles to the 452 

bottom and by the weakening of the vertical stratification that allowing 453 

increasing the particulate material sink rate. This material rich in labile OM is 454 

consumed and incorporated into the benthic biomass. Particularly, all dominant 455 

taxa recorded in CV except Axiothella sp. were more abundant in the spring-456 

summer period. The feeding modes are not defined specifically for Exogone 457 

molesta (Syllidae), Cerathocephale sp. (Nereididae), Scoloplos sp. (Orbiniidae), 458 

Oligochaeta sp. (Oligochaeta), and Leuroleberis poulseni (Crustacea). 459 

Nevertheless, the members of the studied taxa generally are identifying as 460 

carnivores, filters, selective or no selective sediment feeders and scavengers, 461 

respectively. Therefore, these taxa could tend to move from the surface to the 462 

most depth zone of the sedimentary column, producing an increase of the 463 

bioturbation activity in the whole column at this period. 464 

 465 

From a functional point of view, the overall high activity of the spring-summer 466 

community (i.e., increased Db and r coefficients) produced a higher deep 467 

repartition of particles than those recorded in autumn and winter, even when in 468 

summer the community was dominated by biodiffusors meanwhile in autumn 469 

and winter predominated upwards conveyors. This clearly demonstrates that 470 

the repartition of particles within sediments is strongly dependent of the 471 
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interactions between the different functional groups rather than the presence of 472 

a dominant group and that we cannot simply assume that the dominance of one 473 

functional group automatically produces a dominant sediment reworking 474 

process within a community. In spring-summer period in CV by example, the 475 

increase of subsurface biodiffusive transport may have feed the deeper 476 

advective process resulting in a global deeper burying of surface particles by 477 

the community. 478 

 479 

Regarding in situ and ex situ comparing, in general terms, the community 480 

parameters profiles did not differ between the sediment incubated in field 481 

conditions versus those incubated in the laboratory. Moreover, there was a high 482 

similarity in the faunistic composition in both experiments. Consistently, there 483 

were no differences in the bioturbation activity of macrobenthic organisms for 484 

both experimental conditions. Thus allowing validation of an ex situ 485 

experimental protocol for macrobenthic community and functioning studies. To 486 

the best of our knowledge, there are no previous studies allowing such protocol 487 

to be validated. These results are particularly useful as a reliable alternative for 488 

ecotoxicological studies in protected environments where in situ addition of 489 

pollutants to the sedimentary matrix won’t be feasible (see Ferrando et al., 490 

2015, 2019; Sturla Lompré et al., 2018; Romanut, 2019; among others).  491 

 492 

5. Conclusions 493 

The seasonal composition and functioning of the intertidal macrobenthic 494 

community of CV were reported for the first time, contributing to the knowledge 495 

of this vulnerable ecosystem threatened by anthropogenic activities. In addition, 496 
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ex situ and in situ measurements demonstrated similar results, thus allowing 497 

validation of an ex situ experimental protocol for macrobenthic community and 498 

functioning studies. The information generated will allow assessing pollutant 499 

effects on macrobenthic communities inhabiting sediments from a natural 500 

environment without disturbing the ecosystem. In addition, these results provide 501 

a first baseline of benthic information on CV that will be helpful to monitor the 502 

effects of potential pollution in Patagonian coastal systems. 503 

 504 
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Tables 872 

Table 1 Macrobenthic species mean abundance (n=4) in in situ and ex situ 873 

sediments for the four seasons. I: In situ; E: Ex situ 874 

    Autumn Winter Spring Summer 

  F.G.a I E I E I E I E 

Polychaeta                   

Exogone molesta GB 13.8 14.0 3.3 0.3 47.5 1.8 210.5 198.0 

Ceratocephale sp. GB 1.8 1.5     41.5 19.5 34.3 29.3 

Axiothella sp. UC 16.3 21.8 13.5 17.3 18.8 19.0 6.5 9.0 

Scoloplos sp. GB 0.5 2.3 0.3   31.0 19.8 4.8 5.3 

Levinsenia gracilis SB 1.5 5.8 0.3   0.8     0.3 

Pionosyllis sp. GB         2.3   4.8 1.5 

Capitella "capitata" UC     2.5 5.8         

Chone mollis SB 0.8 2.5     1.3 0.3 0.8 0.8 

Brania sp. GB 0.3               

Oligochaeta                   

Oligochaeta sp. GB 15.5 16.0 1.0 6.5 28.5 32.5 37.5 58.8 

Crustacea                   

Leuroleberis poulseni SB 8.3 10.8 0.8 0.5 31.5 23.0 26.5 34.5 

Ostracoda sp. 1  SB 2.8 2.5 17.8 8.0 15.5 8.0 6.0 5.3 

Phoxocephalopsis sp. SB 1.3 2.8 4.8 2.3   1.5 0.8 0.8 

Ostracoda sp. 2 SB     5.8 2.5   0.5 0.5 4.0 
Anacalliax 
argentinensis GB 1.5 2.8 3.0 0.8 0.8 0.3 2.0 0.8 

Paranthura sp. SB 0.5 0.8         2.0 2.5 

Gammaridae sp. 1  SB 3.3   0.3     0.3 0.3   

Paranebalia sp. GB     1.8 0.8       1.3 

Caprella scaura SB 0.5 0.5 1.0           

Pseudocumatidae sp.  SB       0.8   1.0     
Cyrtograpsus 
angulatus R 0.8     0.3         

Cirolanidae sp. SB     0.3   0.3 0.3 0.3   

Gammaridae sp. 2  SB   0.5   0.3         
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Corophioidea sp. SB             0.5   

Leptostraca sp. EB     0.3           

Anthuroidea sp. SB           0.3     

Nemertea                   

Nemertea sp. GB       1.5   0.5     

 875 

a F.G.: Functional group; Biodiffusors species presented in three sub-groups as 876 

EB: Epifaunal biodiffusors; SB: Surficial biodiffusors and GB: Gallery 877 

biodiffusors; R: Regenerators; UC: Upward conveyors. For a complete 878 

description of the different functional groups, see Kristensen et al. (2012). 879 

 880 

Table 2 Summary PERMANOVA. Res: Residuals; df: Degrees of freedom; SS: 881 

Sum of squares; MS: Middle squares; mc: Monte Carlo simulation; ** p (mc) < 882 

0.01  883 

Source df     SS     MS Pseudo-F p (mc) 

Experimental condition 1 2013.5 2013.5 5.9166 0.001** 

Season 3 15226 5075.4 14.914 0.0001** 

Experimental condition x Season 3 1240.5 413.51 1.2151 0.2721 

Res 24 8167.5 340.31                 

Total 31 26648       

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 
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Figures captions 893 

Figure 1. Sampling site in Caleta Valdés (CV; Península de Valdés, Patagonia 894 

Argentina). Ex situ cores sampled and in situ cores embedded in the intertidal 895 

zone. 896 

Figure 2. Mean contribution percentage of each granulometry fraction with 897 

depth (n = 4) in Caleta Valdés sediments  898 

Figure 3. Water content and organic matter (OM) by core (mean ± SD; n = 4) 899 

measured in Caleta Valdés sediments for the four different seasons. I: In situ; E: 900 

Ex situ. Significant differences (p < 0.05) tested between conditions are 901 

represented with different letters (uppercase for in situ, and lowercase for ex 902 

situ). For each season, significant differences (p < 0.05) between in situ and ex 903 

situ are represented with an asterisk  904 

Figure 4. Abundance of the dominant species by core (mean + SD; n = 4) in 905 

Caleta Valdés sediments for the four seasons. I: In situ; E: Ex situ. Significant 906 

differences (p < 0.05) tested between conditions are represented with different 907 

letters (uppercase for in situ, and lowercase for ex situ). For each season, 908 

significant differences (p < 0.05) between in situ and ex situ are represented 909 

with an asterisk  910 

Figure 5. Nonmetric multidimensional scaling (nMDS) analysis (Bray-Curtis 911 

index; group average link; square root) of total abundance by core (n = 4) in 912 

Caleta Valdés sediments for the different four seasons. I: In situ; E: Ex situ 913 

Figure 6. Macrobenthic community parameters by layer (mean + SD; n = 4) in 914 

the in situ and ex situ Caleta Valdés sediments for the four seasons. S:  Specific 915 

richness; N: Total abundance; H´: Shannon diversity I: In situ; E: Ex situ.  916 
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Figure 7. Macrobenthic community parameters by core (mean + SD; n = 4) in 917 

Caleta Valdés sediments for the four seasons. I: In situ; E: Ex situ. Significant 918 

differences (p < 0.05) tested between conditions are represented with different 919 

letters (uppercase for in situ, and lowercase for ex situ). For each season, 920 

significant differences (p < 0.05) between in situ and ex situ are represented 921 

with an asterisk  922 

Figure 8. Functional groups in Caleta Valdés sediments (pooled data between 923 

in situ and ex situ sediments) (n = 8) for the four seasons. Biodiffusors species 924 

presented in three sub-groups as EB: Epifaunal biodiffusors; SB: Surficial 925 

biodiffusors and GB: Gallery biodiffusors; R: Regenerators; UC: Upward 926 

conveyors. For a complete description of the different functional groups, see 927 

Kristensen et al. (2012) 928 

Figure 9. Luminophores percentage (pooled data between both size of 929 

luminophores particles) in each layer (mean + SD; n = 8) for the in situ and ex 930 

situ Caleta Valdés sediments by season  931 

Figure 10. Bio-diffusion (Db) and bio-advection (r) coefficients in Caleta Valdés 932 

sediments (pooled data between both size of luminophores particles) by season 933 

and experimental condition (mean ± SD; n = 8) Significant differences (p < 0.05) 934 

tested between conditions are represented with different letters (uppercase for 935 

in situ, and lowercase for ex situ). For each season, significant differences (p < 936 

0.05) between in situ and ex situ are represented with an asterisk  937 

 938 



Journal Pre-proof

Title page Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

Seasonal composition and activity of the intertidal macrobenthic community 

of Caleta Valdés (Patagonia, Argentina) applying in situ and ex situ 

experimental protocols 

 

Agustina Ferrando1*; Julieta Sturla Lompré1,2; Emilia Gonzalez2; Marcos Franco3,4; 

Marta Commendatore3; Marina Nievas4,5; Cécile Militon7; Georges Stora7; José 

Luis Esteves3; Philippe Cuny7; Franck Gilbert8 

 

1 Laboratorio de Química Ambiental y Ecotoxicología (LAQUIAE), Centro para el 

Estudio de Sistemas Marinos (CESIMAR) (CCT CONICET-CENPAT), Boulevard 

Brown 2915, U9120ACF, Puerto Madryn, Chubut, Argentina. 

2 Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Bvd. Brown 

3000, U9120ACF, Puerto Madryn, Argentina. 

3 Centro Nacional Patagónico (CCT CONICET-CENPAT), Boulevard Brown 2915, 

U9120ACF, Puerto Madryn, Argentina. 

4 Facultad Regional Chubut (UTN- FRCH), Universidad Tecnológica Nacional 

(UTN), Av. del trabajo 1536, U9120QGQ, Puerto Madryn, Chubut, Argentina. 

5 Laboratorio de Oceanografía Química y Contaminación de Aguas (LOQyCA), 

Centro para el Estudio de Sistemas Marinos (CESIMAR) (CCT CONICET-

CENPAT), Boulevard Brown 2915, U9120ACF, Puerto Madryn, Chubut, Argentina. 

7 Aix-Marseille Univ., Toulon Univ., CNRS, IRD, Mediterranean Institute of 

Oceanography (MIO), UM 110, Marseille, France. 

8 Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, 

CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS), Toulouse, 

France. 

 

*Corresponding author: ferrando@cenpat-conicet.gob.ar 

 

 



Journal Pre-proof

Figure 1 errando_etal.tif

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
Jo
ur

na
l P

re
-p

ro
ofClick here to access/download;Figure;Fig.1_new_F



Journal Pre-proof

Figure 2 errando_etal.tif

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
Jo
ur

na
l P

re
-p

ro
ofClick here to access/download;Figure;Fig.2_corrected_F



Journal Pre-proof

Figure 3 errando_etal.tif

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
Jo
ur

na
l P

re
-p

ro
ofClick here to access/download;Figure;Fig.3_new_F



Journal Pre-proof

Figure 4 Click here to
al.tif

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

access/download;Figure;Fig.4_corrected_Ferrando_et



Journal Pre-proof

Figure 5 errando_etal.tif

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
Jo
ur

na
l P

re
-p

ro
ofClick here to access/download;Figure;Fig.5_new_F



Journal Pre-proof

Figure 6 errando_etal.tif

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
Jo
ur

na
l P

re
-p

ro
ofClick here to access/download;Figure;Fig.6_corrected_F



Journal Pre-proof

Figure 7 Click here to

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

access/download;Figure;Fig.7_new_Ferrando_etal.tif



Journal Pre-proof

Figure 8 errando_etal.tif

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
Jo
ur

na
l P

re
-p

ro
ofClick here to access/download;Figure;Fig.8_corrected_F



Journal Pre-proof

Figure 9 Click here to
l.tif

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

access/download;Figure;Fig9_renamed_Ferrando_eta



Journal Pre-proof
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Table 1 Macrobenthic species mean abundance (n=4) in in situ and ex situ 

sediments for the four seasons. I: In situ; E: Ex situ 

    Autumn Winter Spring Summer 

  F.G.a I E I E I E I E 

Polychaeta                   

Exogone molesta GB 13.8 14.0 3.3 0.3 47.5 1.8 210.5 198.0 

Ceratocephale sp. GB 1.8 1.5     41.5 19.5 34.3 29.3 

Axiothella sp. UC 16.3 21.8 13.5 17.3 18.8 19.0 6.5 9.0 

Scoloplos sp. GB 0.5 2.3 0.3   31.0 19.8 4.8 5.3 

Levinsenia gracilis SB 1.5 5.8 0.3   0.8     0.3 

Pionosyllis sp. GB         2.3   4.8 1.5 

Capitella "capitata" UC     2.5 5.8         

Chone mollis SB 0.8 2.5     1.3 0.3 0.8 0.8 

Brania sp. GB 0.3               

Oligochaeta                   

Oligochaeta sp. GB 15.5 16.0 1.0 6.5 28.5 32.5 37.5 58.8 

Crustacea                   

Leuroleberis poulseni SB 8.3 10.8 0.8 0.5 31.5 23.0 26.5 34.5 

Ostracoda sp. 1  SB 2.8 2.5 17.8 8.0 15.5 8.0 6.0 5.3 

Phoxocephalopsis sp. SB 1.3 2.8 4.8 2.3   1.5 0.8 0.8 

Ostracoda sp. 2 SB     5.8 2.5   0.5 0.5 4.0 
Anacalliax 
argentinensis GB 1.5 2.8 3.0 0.8 0.8 0.3 2.0 0.8 

Paranthura sp. SB 0.5 0.8         2.0 2.5 

Gammaridae sp. 1  SB 3.3   0.3     0.3 0.3   

Paranebalia sp. GB     1.8 0.8       1.3 

Caprella scaura SB 0.5 0.5 1.0           

Pseudocumatidae sp.  SB       0.8   1.0     
Cyrtograpsus 
angulatus R 0.8     0.3         

Cirolanidae sp. SB     0.3   0.3 0.3 0.3   

access/download;Table;Tables_corrected_Ferrando_e
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Gammaridae sp. 2  SB   0.5   0.3         

Corophioidea sp. SB             0.5   

Leptostraca sp. EB     0.3           

Anthuroidea sp. SB           0.3     

Nemertea                   

Nemertea sp. GB       1.5   0.5     

 

a F.G.: Biodiffusors species presented in three sub-groups as EB: Epifaunal 

biodiffusors; SB: Surficial biodiffusors and GB: Gallery biodiffusors; R: 

Regenerators; UC: Upward conveyors. For a complete description of the different 

functional groups, see Kristensen et al. (2012). 

 

Table 2 Summary PERMANOVA. Res: Residuals; df: Degrees of freedom; SS: 

Sum of squares; MS: Middle squares; mc: Monte Carlo simulation; ** p (mc) < 0.01  

Source df     SS     MS Pseudo-F p (mc) 

Experimental condition 1 2013.5 2013.5 5.9166 0.001** 

Season 3 15226 5075.4 14.914 0.0001** 

Experimental condition x Season 3 1240.5 413.51 1.2151 0.2721 

Res 24 8167.5 340.31                 

Total 31 26648       
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