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Abstract. The high volatility of the agricultural and energy commodity
prices in the international market is a concern due to their transmission
to regional prices, increasing instability in domestic markets. This paper
evaluates the performance of recurrent networks (RNN and LSTM) to
predict regional prices reactions under international shock simulations.
Experiments are run to soybean and corn regional prices in Argentina
by considering exogenous changes of the international oil price - both
agricultural commodities are inputs for biofuels’ production - and also of
their international prices. Results are in line with the econometric liter-
ature and consistent with the dynamic of regional prices in Argentina’s
markets. Thus, the RNNs could be a useful tool for timely economic
policy decisions that cushion external price shocks in domestic markets.

Keywords: Recurrent Neural Networks · Regional Commodities Prices
· Shock Simulations.

1 Introduction

The definition of new trade policy instruments for monitoring and stabilizing
agricultural commodities prices at borders must meet specific domestic socio-
economic objectives. Thus, it is essential to understand how changes in interna-
tional and internal prices propagate geographically within a country. Without an
accurate measurement of these effects, any quantitative analysis would be flawed,
and the calibration of contingency measures distorted. For example, assuming
perfect price transmission would be a risky simplification and would lead to an
overestimation of the corrective power of trade policy instruments (e.g. export
duties or subsidies).

The literature on price volatility focuses mainly on the cases of large exporters
(e.g. United States) and more recently on the case of countries with a high food
dependence on agricultural imports (e.g. Sub-Saharan African countries). The
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related economic and econometric literature evidences the inter-dependencies be-
tween the different agricultural products [22,12,19,18], and between agricultural
and energy markets [23,12], explaining the dynamics of price volatility between
markets. Most of these works use GARCH or MGARCH models [23,12] to assess
agricultural price volatility as a function of its history. The first one captures the
effects on short-term but also long-term price volatility between markets, and
the second analyzes the interdependence between them (e.g. spillover effects).

While econometric methods of Vector Auto-regressive (VAR) models remain
as the benchmark for price forecast, many research works are pointing to neural
networks as a more precise method. Wang et al. [25] use a Back Propagation
Neural Network (BPNN) to predict prices of agricultural commodities such as
wheat, soy, or corn, and conclude that their predictions are more accurate than
an econometric method used for comparison. Fang et al. [11] arrive at similar
conclusions using a traditional Neural Network (NN).

Most of the existing research uses NN static models to predict future prices;
however, they only use the state of the network in one period to predict values for
the next, losing all memory of the network for the next step [17]. For time series,
where each value is related to previous and next values, using static models
does not properly capture the dynamics. This is particularly true for series with
sudden movements or ”shocks” , where predictions for static models tend to
detach rapidly from real values. Conversely, a dynamic model could accurately
learn from shocks and consider their information for prediction.

Recurrent Neural Networks (RNN) are a potential accurate prediction model
for agricultural prices. RNNs are Neural Networks that link actual variables on
their prior states, giving them a ”dynamic memory” [10]. This is extremely useful
to predict within a time series, where each element fed to the model is related to
the previous and next values. Wang [28] uses an Echo State RNN to predict stock
prices from the S&P 500, while Boyko et al. [5] use Long-Short Term Memory
(LSTM), to predict upon the same database. Both papers arrive at satisfying
conclusions. Moreover, Wang and Wang [26] use an Elman RNN, similar to the
one used in our experiments, with a successful prediction to estimate future oil
price. It is worth noting that data harmonization before applying any Machine
or Deep Learning method can improve these RNN performance [27,11,25]. Fur-
thermore, this RNN literature makes predictions based only on one single input
(i.e., time lags of the same price). Nevertheless, a dynamic network could learn
and forecast based also on other elements (e.g., international oil price) strongly
related to the variable target.

This work implements RNN and LSTM architectures to simulate the dy-
namics of a closed system of prices (i.e., international prices of oil, soybean, and
corn and Argentina’s regional -Bahia Blanca, Rosario and Quequen - prices the
same agricultural products). We focus on the training and evaluation of these
models to estimate inter-dependencies between the inputs, and predict the dy-
namics of the regional prices. In our experiments, each international commodity
is stressed under a strong shock (i.e. international price of oil), and the evolu-
tion of the regional prices on each recurrent model is evaluated as a self-driven
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dynamic. Recurrent models’ results show good performance compared to econo-
metric analysis, validating the use of the RNN and LSTM as a realistic engine
for this application.

The paper is organized as follows. The next section states the problem, de-
picts the recurrent models, and details the training procedure. Experiments and
analysis are detailed in section 3. Section 4 concludes the paper and propose
future works.

2 Commodities Prices Prediction Models

2.1 Problem Formulation

The prediction model, represented by the R function, works with temporal series
corresponding to commodities prices. We define three kinds of price series:

– e(t) an exogenous price sequence dependent to i(t).
– i(t) a price sequence that it is related with e(t).
– r(t) a price sequence dependent to i(t) and e(t).

were (t) indicates the value of the price at time t. In our experiments, e(t)

is the international price of oil. The sequences i(t) are international prices of
agricultural commodities associated with bio-diesel (soybean) and bio-ethanol
(corn). Because these bio-fuels (partially) replace gasoline, we can state that
e(t) and i(t) are interdependent variables. Finally, r(t) corresponds to agricultural
commodities prices in different regions of Argentina. The dynamic of these prices
involves local factors, and (what we expect to prove) external ones such as the
i(t) sequences.

The R model, at each time step (t), estimates a future value of the com-
modities prices based on the present state of the prices, and the previous values
(memory).

The model, which simulates the behavior of the closed price system, could
capture variables’ inter-dependencies from the data at the learning process. This
dynamic can be evaluated using shocks. A shock is an abrupt change in the price
of one of the products in the system that could affect other products’ prices. For
instance, we are interested in evaluating prices’ inter-dependence when applying
an oil price shock. This kind of behavior happens in real life, due to political
changes, wars, pandemics, and more lastly, environmental concerns.

We choose the RNN model to learn the dynamics of the closed system and
predict the stationary values after the shock. Static models could not produce
this kind of results as it is needed a system that receives as inputs their precedent
outputs.

Modern RNN architectures introduce several improvements overcoming tra-
ditional training problems. Long-Short Term Memory model [14] (LSTM) is one
of the most successful networks widely employed on several applications, such
as natural language processing. LSTM deals with long-term dependencies incor-
porating gates to the recurrent cell.
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This work implements recurrent neural networks with both RNN-Elman and
LSTM cells with a forget gate. Also, we deploy a stacked RNN and LSTM
network [30]. In practice, an easy way to increase the depth of the recurrent
network is to stack the cells into L layers. This architecture has proved to improve
efficiency and performance in problems like vehicle-to-vehicle communication [8]
and French-English translation [24].

The next subsection introduces the RNN models.

2.2 Recurrent Neural Network Architecture

Fig. 1. System architecture and evolution.

Temporal series denoted as (x(1),x(2), ...,x(T )) are usually the inputs of RNN
models. In our case, x(t) is a vector containing the commodity prices at week
t including prices data from the three series (e(t), i(t), r(t)). Equivalently, the
target sequences corresponding to the expected commodity prices is stated as
(y(1),y(2), ...,y(T )). The predictions produced by the recurrent model are de-
noted as ŷ(t).

The forward pass of a simple recurrent network model [17] introduces h(t),
the hidden state of the network at time t and is defined by two equations:

h(t) = σ(Whxx(t) +Whhh(t−1) + bh) (1)

ŷ(t) = σ(W yhh(t) + by) (2)

Eq. 1 obtains h(t) as the combination of the input x(t) at time t and h(t−1),
which corresponds to the hidden previous state. These recurrent connections
are what give the model memory [10]. We express the estimation of target y of
equations 1 and 2 at time t as a dependent function R with internal parameters
{Whx,Whh,W yh, bh}:

ŷ(t) = R(x(t)|h = h(t−1)) (3)
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Fig. 1 depicts the architecture and introduces the dynamic of the proposed
model. In general the internal states h(0) at time t = 0 initiate with random
values. Following Eq. 2, this internal states updates their values using the in-
puts from the temporal series, and the precedent states. Using properly trained
parameters {Whx,Whh,W yh, bh} the recurrent system follows the dynamic of
the input sequence after some time steps. We denominate this step as warm-
up phase, where a fixed number of time steps from a temporal series of inputs
(x(0),x(1), ...,x(τ)) feeds the model.

Then, in the second phase referred as self-driven, the input of the model at
time t+ τ + 1 is now the model output at the previous time step y(t−1):

ŷ(t) = R(ŷ(t−1)|h = h(t−1))t>τ (4)

It means that the dynamic of the model is disentangled from the input time
series x(t). Thus, their evolution only depends on the internal states values at the
warm-up phase (memory) without any kind of input from outside the system.
The self-driven phase should have a behavior as close as possible to the real
system for at least β time steps. During this phase, the model is considered a
closed system.

2.3 Self-driven training procedure

In order to train the recurrent neural network to follow a dynamic after in-
ternational prices shock, we consider a partially closed model. This mean that
the system is not completely closed and will have an external input during the
self-driven phase. This input is the shocked commodity price.

The training follows a mini-sequences batch procedure. We split the training
dataset into mini-sequences of τ length (x(t), ...,x(t+τ−1)), referred as X(t,τ).
The target Y(t,β) is also a sequence that consists of the price values of interest
from τ + 1 to β: (x(t+τ+1), ...,x(t+τ+β)). They are the “future” prices that the
model should predict within the self-driven phase.

More precisely, the inputs always correspond to all the agricultural prices
x(t) = (e(t), i(t), r(t)), while outputs exclude the variable receiving the shock. For
example, if the shock is applied on the international oil price e(t), the output
target only predicts the future value of i(t) and r(t): ŷ(t) = (̂i(t), r̂(t)).

ŷ(t) = R((e(t), i(t), r(t))|h = h(t−1))t≤τ (5)

Similar to equation 4, after the warm-up phase, the next β time steps the output
target ŷ becomes the input of the system, concatenated with the shocked variable
(e(t) for our example):

ŷ(t) = R((e(t), ŷ(t−1))|h = h(t−1))t>τ (6)

It generates the output sequence Ŷ(t+τ+1,t+τ+β) = (ŷ(t+τ+1), ..., ŷ(t+τ+β)).
The model R seeks to predict the future value of the prices within y. It

is for that reason that the target shifts the input by one time step. The loss
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function computes the error made by R predicting these future values. Then,
during the training process the internal parameters of the neural network are
adjusted to minimize this error. Formally, the RNN loss function is defined as a
mean squared error between the desired output Y and the estimated sequence
sequence Ŷ:

L =
∑
β

1

β
||Ŷ −Y|| (7)

3 Experiments

3.1 Data description and econometric tests

Fig. 2. International and Regional Commodities Prices data series from 2005 to 2019.

We have built a database of weekly prices in US dollars between January
2005 and August 2019, leading to a sample of 772 observations for each price.

Prices considered in the database are: Soybean and corn prices per ton in
three regional markets in Argentina (Bahia Blanca - BB, Rosario - Ros, Quequén,
QQ, the latter only for soybean) from GRANAR[2]; Soybean and corn interna-
tional prices per ton from FAOSTAT[1]; Oil international price per barrel from
the Western Texas Intermediate, WTI.

Before testing the RNN models, we have analysed the data in order to evalu-
ate the presence of a stable long-term relationship between regional, international
prices of each agricultural commodity and the international price of oil.

From an econometric standpoint, the relationship between oil and agricul-
tural prices has been extensively studied in the literature. [7], [4], [13] and [20]
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are some of the first works that try to study the long run relationship between
the prices of these commodities. Even though, [20] follows a panel data ap-
proach, [7], [4] and [13] tackle this issue from a time series perpective. In this
sense, they perform unit root tests such as the Augmented Dickey-Fuller (ADF),
the Phillips-Perron (PP) and the Kwiatkoswski-Phillips-Schmidt-Shin (KPSS)
to verify if the price series of both oil and grains are first order integrated pro-
cesses or I(1). Since their results verify such assumptions, they later perform
cointegration test like the Johanssen approach proposed by [16]. Additionally,
[7] and [13] use a two step procedure based on dynamic ordinary least squares
(DOLS) and the Engle-Granger approach.

Even though the aforementioned papers are able to successfully establish a
long run relationship between these prices, their analysis ignores the potential
effects of structural breaks in the data. Specifically, traditional unit root tests
may fail to perform in the presence of such phenomena since they may induce a
bias that ultimately reduces the ability to reject a false unit root null hypothesis.
For this reason, the recent literature ([6], [21], [15], [29] and [3]) use different unit
root test that are able to overcome these difficulties.

Since this paper considers a time frame from 2005 to 2019, the question of
whether there are structural breaks in the data is of utmost importance. For this
reason, we have performed both the traditional unit root testing procedures as
well as an additional one which is able to account for structural breaks. Following
[9], we have performed a Breakeven Augmented Dickey Fuller test. The p-values
corresponding to such test can be viewed in table 2 in the Annexes. As it can be
appreciated, notwithstanding structural breaks, results indicate that all variables
considered in the analysis are first order integrated processes.

Given the results, we later follow the Johansen’s approach for an appropri-
ate cointegration analysis. Tables 3 and 4 in the Annexes show that there is
evidence of up to 3 cointegration relations between international oil prices, the
U.S. soybean price and the Argentine soybean prices of Bahia Blanca, Quequen
and Rosario. Additionally, such relationships where further confirmed by using a
DOLS approach. On the contrary, tables 5 and 6 indicate that there are no coin-
tegration relation between international oil prices, U.S corn prices and Argentine
corn prices.

For the specific case of Soybean and Oil prices a 5 lag VECM was estimated. 5

Table 7 shows the Impulse Response functions generated through this estimation.
Results show that Argentine Soybean prices tend to have a mild negative reaction
to innovational shocks in international oil prices. However, such reaction seems
to persist overtime. On the other hand, local soybean prices have a positive and
persistent reaction to innovations in the price of U.S. Soybean. Lastly, responses
to shocks of Soybean prices of Bahia Blanca are not significant.

In contrast, since there is not compelling evidence towards cointegration when
it comes to Corn prices, we followed a VAR in difference approach.6 Conse-

5 The order of the VECM was selected following standard Lag-exclusion tests.
6 In other words, we performed a first order differentiation so as to achieve stationarity.
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quently, a 4 lag VAR was estimated.7 Table 8 provides the impulse response
functions for this model. Argentine Corn prices seem to have a short run posi-
tive reaction to innovations in the U.S. Corn prices. On the contrary, responses
to a one time change in oil prices have little to no impact both in the short and
long run.

These econometric estimations provide a reference for regional price behav-
iors under the recurrent network architectures.

3.2 Hyperparameters selection

Four recurrent architectures are implemented: RNN-1c, RNN-2c, LSTM-1c and
LSTM-2c. Two of them consist of a single RNN and an LSTM cell. The hidden
states h for RNN and (h, c) for LSTM, have H hidden units. The other archi-
tectures stack a second recurrent cell to the network with the same number of
hidden units H.

We run a K-fold cross validation training, with K = 5, using the following set
of values for H = [4, 8, 12, 16, 20, 24, 28, 32]. Moreover, the training is controlled
by τ (warm-up) and β (self-driven) variables. Thus, the set of values for each
variable are τ = [6, 7, 8, 9, 10] and β = [1, 2, 3, 4]. Note that β = 1 corresponds
to a classical single prediction of the t+ 1 output value, while β > 1 applies the
loss function of eq. 7 to a sequence of targets.

Each K-fold is evaluated by two means squared error indices on the target
prices of the validation split: a MSE(t+1) prediction, and a MSE(t+N) predic-
tion. Let be x(t) the model input, MSE(t+1) is computed by the mean squared
error between ŷ(t) and x(t+1). MSE(t+N) is obtained by using eq. 4 for a self-
driven estimation for N steps. Then, the error is computed between prediction
ŷ(t+N−1) and x(t+N), and measures how well the recurrent model adjusts the
self-driven dynamic after N steps to the real values. In this work, we fix N = 4
which means a month of self-driven evolution. We employ an SGD optimizer with
an initial learning rate of 10−2. After 20 epochs, the learning rate is reduced by
half.

Table 1 shows the best results of each architecture sorted by the MSE(t+N)

index. As can be seen, recurrent cells with a high number of hidden units H get
the lowest errors. In the case of τ , warm-up phase seems more important for RNN
cells. LSTM cells incorporate additional gates, then, this is a normal conclusion.

7 We followed the Final Prediction Error criteria to choose the order of the VAR.

Architecture H τ β MSE(t+1) MSE(t+N)

RNN-1c 32 10 2 0.159±0.093 0.195±0.156
RNN-2c 32 10 4 0.426±0.182 0.207±0.156

LSTM-1c 32 8 2 0.124±0.083 0.247±0.135
LSTM-2c 32 6 1 0.196±0.182 0.288±0.214

Table 1. Hyperparameters with the best results of the K-Fold Cross Validation.
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This is expected for models like LSTM having several gates to remember/forget
input data. Increasing τ also increases the temporal drift of the system itself.
In the case of β parameter, the best results for RNN are obtained using values
greater than one. On the other hand, LSTM prefers lower values of β.

Fig. 3. System architecture and evolution.

Fig. 3 samples the t + 1 predictions of the four models on a portion of the
soybean times series prices from Rosario port. We can appreciate different be-
haviors for each model. RNN-1c model predicts the series values with a low error
but a rapid dynamic. RNN-2c, on the other hand, seems to have a sinusoidal dy-
namic near the series values, but sometimes the error is high, which is consistent
with the high value of their MSE(t+1) index on table 1. LSTM-1c and LSTM-2c
predict accurately the average of the series values but have a very low dynamic.
This smoothing effect is more remarkable on the LSTM-2c predictions.

3.3 International shock simulation

The experiments seek to validate the self-driven evolution of the recurrent net-
works when a permanent exogenous change (an increase of 100 US$) is intro-
duced in each of international prices (own commodity and oil).

The tests are conducted as follows. For example, to test soybean exogenous
change shock, we train the four models with all the commodities prices as inputs
and a target that does not predict international soybean. Thus, we split the
data sequences into temporal frames of T = 35 weeks. The first τ = 20 weeks
are employed as warm-up, and at t = 20, the value of the international soybean
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Fig. 4. Shock prediction results.

price is increased by 100 US$, keeping this value until the end of the test. At
this point, the system uses both the new value of the international soybean price
and the self-prediction of other prices as input.

For example, Fig. 4 depicts in black line the international variable employed
to perform the shock and in colors (red, blue, green) the evolution of the regional
prices. In solid lines, the picture draws the regional prices without the shock, and
the dashed lines depict the self-driven dynamic of the system. The chosen time-
frames in Fig. 4 are in line with the regional prices behaviors in the Impulse-
Response function based on econometric models considered as reference. It is
worth mentioning that we need to train a different model each time we change
the international price to perform the shock.

According to the results in Fig. 4, when considering an exogenous increase of
the international oil price, soybean prices in regional markets of Argentina are
immediately impacted, but the reaction depends on the model considered, e.g.
the RNN-2c displays greater volatility. Nevertheless, the decreasing convergence
paths of all models (consistent with econometric estimations) lead to the same
new stationary state.
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While the regional soybean prices in Argentina recover stability near to the
path without shock, the regional corn prices show greater volatility facing the
same exogenous shock. Except for the LSTM-2c, regional corn prices display a
great difficulty to recover the path without shock, and Bahia Blanca and Rosario
corn markets show different behaviors between them and across models. Their
different paths of convergence increase the price-gap between regions (supported
by the econometric estimations).

Finally, when assuming an exogenous increase in the international price of
their agricultural commodity, regional markets prices display greater positive
reactions (particularly for corn) and convergence towards higher values compared
to their values without shock. Regional soybean prices converge to a higher
price in the new stationary state, except under the LSTM-2c, which brings the
price back to the path without shock. Reactions of regional corn prices to their
international price increase are greater than in the case of soybean and tend to
converge close to the new level of the international price of corn.

The difference between the reactions of soybean and corn regional prices to
their own international prices is due to Argentina’s soybean and corn markets
particularities. These results are in line with the role of Argentina as a big
soybean producer in the international market, so it is considered as a price
maker. Conversely, in the international corn market Argentina is a relatively
small player being a price-taker, so a change in the international price of corn is
strongly transmitted to regional prices.

4 Conclusions

In this paper, we have trained four recurrent networks to forecast the reaction
of regional commodity prices when an exogenous variable (i.e., an international
price) is shocked. Results have been validated since they are in line with esti-
mations from econometric auto-regressive models. The self-driven dynamic of
recurrent networks has been demonstrated to be consistent with the behavior of
Argentina’s soybean and corn markets. To reduce regional price volatility, RNNs
become a new tool to predict domestic prices’ reactions to international changes
and provide relevant insights for policy-makers decisions.

Further works should consider more complex recurrent networks, including
other variables related to these agricultural and energy prices (e.g., bio-ethanol
and bio-diesel prices) and also other regional variables that condition regional
price path-through (e.g., transport costs).
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5 Annex

Table 2. P-values from unit root test for all variables-Levels and first difference

Level First Difference

ADF PP
ADF with
Breakeven

ADF PP
ADF with
Breakeven

Oil 0.27 0.13 0.21 0.00 0.00 0.00
Soybean-USA 0.18 0.18 0.52 0.00 0.00 0.00
Soybean-Bahia Blanca 0.17* 0.23 * 0.20 0.00 0.00 0.00
Soybean-Rosario 0.10 0.11 0.56 0.00 0.00 0.00
Soybean-Quequen 0.12 0.13 0.46 0.00 0.00 0.00
Corn-USA 0.12 0.17 0.81 0.00 0.00 0.00
Corn- Bahia Blanca 0.22 0.22 0.90 0.00 0.00 0.00
Corn- Rosario 0.16 0.17 0.81 0.00 0.00 0.00

The null hypothesis for all test was that the series has unit root.
*A trend was added in the specification of the test.
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Table 3. Johanssen Test for Cointegration between Oil prices, Soybean-USA, Soybean-
Bahia Blanca, Soybean-Quequen and Soybean-Rosario-Trace

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.095647 148.7163 69.81889 0.0000
At most 1 * 0.046889 71.70606 47.85613 0.0001
At most 2 * 0.027860 34.91937 29.79707 0.0118
At most 3 0.010779 13.27600 15.49471 0.1051
At most 4 * 0.006473 4.974404 3.841465 0.0257

Trace test indicates 3 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values
A VECM with 5 lags was estimated to perform this test

Table 4. Johanssen Test for Cointegration between Oil prices, Soybean-USA, Soybean-
Bahia Blanca, Soybean-Quequen and Soybean-Rosario-Eigenvalue

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.095647 77.01028 33.87687 0.0000
At most 1 * 0.046889 36.78669 27.58434 0.0025
At most 2 * 0.027860 21.64338 21.13162 0.0424
At most 3 0.010779 8.301591 14.26460 0.3489
At most 4 * 0.006473 4.974404 3.841465 0.0257

Max-eigenvalue test indicates 3 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values

A VECM with 5 lags was estimated to perform this test
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Table 5. Johanssen Test for Cointegration between Oil prices, Corn-USA, Corn-Bahia
Blanca and Corn-Rosario- Trace

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None 0.030020 46.19916 47.85613 0.0710
At most 1 0.012702 22.82100 29.79707 0.2550
At most 2 0.009599 13.01601 15.49471 0.1142
At most 3 * 0.007298 5.618261 3.841465 0.0178

Trace test indicates no cointegration at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values

A VECM with 4 lags was estimated to perform this test

Table 6. Johanssen Test for Cointegration between Oil prices, Corn-USA, Corn-Bahia
Blanca and Corn-Rosario- Eigenvalue

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None 0.030020 23.37816 27.58434 0.1579
At most 1 0.012702 9.804997 21.13162 0.7627
At most 2 0.009599 7.397746 14.26460 0.4432
At most 3 * 0.007298 5.618261 3.841465 0.0178

Max-eigenvalue test indicates no cointegration at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values
A VECM with 4 lags was estimated to perform this test
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Table 7. Impulse response functions of the VECM for Soybean and Oil Prices

The impulse response functions provided where the result of a VECM estimation
with 5 lags. Cholesky decomposition method was used.
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Table 8. Impulse response functions of the VAR for Corn and Oil Prices

The impulse response functions provided where the result of a VAR estimation with 4
lags. Cholesky decomposition method was used.
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Table 9. Output estimation for a 4 lag VAR in difference- Oil prices, Argentine and
U.S. corn prices

Corn-Bahia Blanca Corn-USA Corn-Rosario Oil

Corn-Bahia Blanca(-1) −0.049734 −0.005439 −0.013203 0.041909
(0.03724) (0.03123) (0.03269) (0.02896)
[-1.33559] [-0.17418] [-0.40387] [ 1.44730]

Corn-Bahia Blanca(-2) −0.007916 0.019804 0.040087 −0.013059
(0.03722) (0.03121) (0.03268) (0.02894)
[-0.21269] [ 0.63448] [ 1.22680] [-0.45120]

Corn-Bahia Blanca(-3) 0.028498 0.031768 0.013974 −0.014518
(0.03707) (0.03108) (0.03254) (0.02882)
[ 0.76883] [ 1.02198] [ 0.42942] [-0.50369]

Corn-Bahia Blanca(-4) 0.142204 0.020360 0.008832 0.002734
(0.03698) (0.03101) (0.03247) (0.02876)
[ 3.84518] [ 0.65650] [ 0.27203] [ 0.09507]

Corn-USA(-1) 0.090591 −0.160724 0.153632 0.122152
(0.04385) (0.03678) (0.03850) (0.03410)
[ 2.06578] [-4.37042] [ 3.99051] [ 3.58213]

Corn-USA(-2) −0.041323 −0.011095 0.008257 −0.030047
(0.04524) (0.03794) (0.03972) (0.03518)
[-0.91332] [-0.29242] [ 0.20788] [-0.85403]

Corn-USA(-3) 0.085522 −0.029218 0.008481 0.116797
(0.04508) (0.03781) (0.03958) (0.03506)
[ 1.89691] [-0.77280] [ 0.21428] [ 3.33151]

Corn-USA(-4) 0.074425 −0.013683 0.111594 0.017445
(0.04467) (0.03746) (0.03922) (0.03474)
[ 1.66601] [-0.36525] [ 2.84544] [ 0.50220]

Corn-Rosario(-1) −0.029280 0.093583 −0.044147 −0.015067
(0.04278) (0.03588) (0.03756) (0.03327)
[-0.68444] [ 2.60857] [-1.17548] [-0.45292]

Corn-Rosario(-2) −0.073137 0.089494 −0.039108 0.047010
(0.04271) (0.03582) (0.03750) (0.03321)
[-1.71239] [ 2.49864] [-1.04298] [ 1.41546]

Corn-Rosario(-3) −0.041473 0.020818 −0.073958 0.029108
(0.04291) (0.03599) (0.03767) (0.03337)
[-0.96645] [ 0.57849] [-1.96311] [ 0.87231]

Corn-Rosario(-4) −0.024197 0.024966 0.055063 −0.048385
(0.04255) (0.03568) (0.03735) (0.03309)
[-0.56870] [ 0.69970] [ 1.47409] [-1.46240]

Oil(-1) −0.050457 −0.094393 −0.039450 0.209716
(0.04713) (0.03953) (0.04138) (0.03665)
[-1.07050] [-2.38807] [-0.95336] [ 5.72184]

Oil(-2) 0.060901 0.044062 −0.075754 −0.074614
(0.04773) (0.04002) (0.04190) (0.03711)
[ 1.27604] [ 1.10088] [-1.80798] [-2.01049]

Oil(-3) 0.010265 −0.039755 0.091957 0.106661
(0.04793) (0.04019) (0.04208) (0.03727)
[ 0.21418] [-0.98912] [ 2.18551] [ 2.86196]

Oil(-4) 0.053707 −0.006631 0.012808 −0.013941
(0.04660) (0.03908) (0.04091) (0.03623)
[ 1.15262] [-0.16970] [ 0.31309] [-0.38476]

Constant 0.000886 0.000683 0.000800 −5.94E − 05
(0.00185) (0.00155) (0.00162) (0.00144)
[ 0.47919] [ 0.44059] [ 0.49303] [-0.04134]

Standard errors in ( ) & t-statistics in [ ]


