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Abstract

In this paper, we discuss content and context for quantum properties. We give

some examples of why quantum properties are problematic: they depend on the

context in a non-trivial way. We then connect this difficulty with properties to the

indistinguishability of elementary particles. We argue that one could be in trou-

ble in applying the classical theory of identity to the quantum domain if we take

indiscernibility as a core and fundamental concept. Thus, in considering indistin-

guishability as such a fundamental notion, it implies, if taken earnestly, that one

should not apply standard logic to quantum objects. Consequently, we end with a

discussion about novel aspects this new mathematics brings and how it relates to

some issues associated with the quantum world’s ontology and the classical limit.

We emphasize that, despite several different ways of questioning classical logic

in the quantum domain, our approach is distinct. It involves one of the core con-

cepts of classical logic, namely, identity. So, we are in a different paradigm from

standard quantum logics.

1 Introduction

Quantum mechanics (QM) is a very successful theory. It is also a strange theory.

Though QM can calculate many experiments’ outcomes, there is no consensus about

what quantum models tell us about the microscopic world. In other words, it is unclear
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what is the relationship between QM and metaphysics. In this paper, we examine one

particular aspect of the quantum world: quantum particles seem to lack identity.

Under certain circumstances, two quantum systems of the same kind (e.g., two elec-

trons) become utterly indistinguishable by any empirical means. However, the lack of

identity comes from more than just the impossibility of distinguishing between two

quantum particles (e.g., two electrons). It derives from the fact that nothing changes

when we permutate two identical quantum particles, contrary to what happens in the

classical world. This invariance by permutation is at the core of the Bose-Einstein and

Fermi-Dirac statistics. In this way, the standard interpretation of the theory assumes

indistinguishability. Here, we argue that indistinguishability is an essential concept in

quantum theories (both non-relativistic and quantum field theories). Indistinguishabil-

ity should be thought of as at the same level as celebrated quantum concepts, such as

superposition (in particular, entanglement), contextuality, and nonlocality.

Some philosophers and physicists are reluctant to admit that indistinguishability,

also known as indiscernibility, plays a salient role in quantum physics’s ontology. Per-

haps, this reluctance comes from the notion that indistinguishability can be simulated

within a “classical” mathematical setting, as we shall see below. However, we find this

argument weak for several reasons.

First, just because we can do something does not mean that this is the best approach.

Consider, for example, the geometry of curved spaces. We may describe a curved space

using Riemannian geometry, where Euclid’s postulate of parallel lines is not valid. Al-

ternatively, we can describe the same space by embedding it in a higher-dimensional

space and keeping Euclid’s postulates. Both approaches yield the same results: all

geometry theorems on the curved space are valid in both descriptions. However, one

requires a more complicated ontological structure with extra dimensions. Should we

make our ontology unnecessarily complicated to accommodate our prejudices? We

believe not.

Second, when someone is interested in a theory’s foundations, the underlying logic

and mathematics become fundamental. We should not do away with an ontological

feature because we can use a mathematical trick to describe it. Instead, we argue that

the mathematical formalism used to cope with quantum systems’ description should

consider the ontological features that one aims to describe. Therefore, as we discuss

below in more detail, it is crucial to develop a mathematical framework that accommo-

dates indistinguishability in a natural way. In fact, we cannot cope with a contradictory

theory (as some claim is Bohr’s theory for the atom, yet this is disputable – see the dis-

cussion in [39]) within a “classical” framework such as in the mathematics developed

in a standard set theory such as the ZFC system, which we presuppose here.1

Thus, we wish to pursue a metaphysics of non-individuals. In this metaphysics,

quantum entities2 (here, quantum objects, independently of their proper characteriza-

tion) are seen as not following the standard notion of identity (to be discussed below).

1ZFC is the Zermelo-Fraenkel set theory with the Axiom of Choice. The reader can think of it as formal-

izing the intuitive notion of a set one learned in our math classes.
2The notion of a quantum object, or quantum system, varies from one approach to another. In orthodox

quantum mechanics, we have particles and waves. In the quantum field theories, the basic entities are fields,

and particles arise as particular configurations of the fields. Our claims in this paper apply to both particles

and fields.
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Therefore, we need to change logic and mathematics, unless we accept the physicists’

usual way of impersonating them within classical frameworks. These entities need to

be considered in most cases as absolutely indiscernible, something forbidden in the

classical settings.3

Nevertheless, the interpretational problem does not end with the indiscernibility of

quantum objects. Indistinguishability is not the only mystery of quantum theory. The

ontological status of properties of these objects is also relevant. Quantum properties

are tricky, and if we are not careful about how we deal with them, we may reach contra-

dictions. These contradictions arise from considering the possible results of multiple

(and incompatible) experiments over the same system. As we have stated elsewhere [9],

we never perform the same experiment twice. What we do is take a similar experiment,

so similar as to be indistinguishable. Since experiments are associated with properties,

we should consider indiscernible properties also. These indistinguishable properties

are also forbidden by classical logic. We need to go outside of standard mathematics

and use a different mathematical (and logical) setting as, for example, quasi-set theory,

to be sketched below. Given that we need to recreate indiscernible properties and sys-

tems, it is natural to use a mathematical setting that incorporates indistinguishability as

a primitive notion right from the start.

This paper is organized as follows. In Section 2, we first discuss the role of context

and content in classical and quantum physics. These two concepts play an essential role

in the difficulties physicists and metaphysicists face concerning quantum properties. In

Section 3, we consider the concepts of identity and indiscernibility and how they are

connected. Identity is a difficult concept, and we explore it both as it is connected to

classical physics and indiscernibility in logic. This discussion opens up to our investi-

gations outlined in Section 4. In this section, we argue that by intimately connecting

identity to context, we can solve some puzzling aspects of quantum physics. Finally,

in Section 6, we outline how to change mathematics to allow for the existence of in-

discernibility as a fundamental and primitive concept. This mathematics, grounded on

quasi-set theory, captures the idea that quantum objects are indistinguishable and lack a

classical identity. As a bonus, we included in Section 7 somewhat more detailed math-

ematical explanation of the structures discussed in Section 6. We hope the interested

reader will find this useful, but this section can be skipped by those readers not seeking

further mathematical details. We end the paper with some final remarks, conclusions,

and perspectives.

This article is written for a layperson with a strong mathematical background. The

reader is assumed to know enough mathematics to be comfortable with logic, set theory,

and orthodox quantum mechanics. It should be remarked that a paper dedicated to

foundations and aimed at a general reader requires many caveats, since the delicate

aspects can be quickly passed unsuspected. We try to warn the reader about those

details in between the text or in the footnotes. We ask the reader’s forgiveness in

advance for the numerous footnotes.

3For a defense of the non-individuals view, see [22].
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2 Content and context in quantum and classical physics

The idea of content and context comes from linguistics, specifically semantics and prag-

matics. Nevertheless, physics has straightforwardly borrowed those concepts. This

section will discuss how content and context translated from linguistics to physics, fo-

cusing on quantum mechanics. We organize this section in the following way. First,

we concisely review the concepts from linguistics. Then we explore how content and

context show up in classical semantics theories. Our discussion should not be thought

of as a detailed scholarly review of the linguistic literature on content and context, as

this topic is the object of intense research in philosophy of language and linguistics

for more than a century. Instead, we present a subset of linguistics that is relevant to

physics. With that in mind, we follow our linguistics discussion by examining some

physics examples. We see that contents may present context-dependency in both clas-

sical and quantum physics. However, we also argue that the context-dependency in

quantum physics is different.

Let us start with the concept of content. Roughly speaking, semantic content refers

to the meaning of a sentence.4 Consider the following statement, made by Vera’s friend,

Alice:

L1. Vera had a bad date.

Sentence L1 can be seen as a proposition referencing to an object. Assuming the cor-

respondence theory of truth,5 its truth value requires some metric, likely subjective, of

what constitutes a “bad date.” However, once such a metric exists, one could infer L1’s

truth value. The truth-value of L1, therefore, lies on its semantic content. In other

words, a sentence’s semantic content can be thought of as a function that takes the

sentence and outputs a truth-value.

Context, on the other hand, is the idea that some statements and utterances depend

on the circumstances surrounding it, such as time, place, speaker, hearer, and topic,

to name a few. For example, Alice’s claim that “Vera had a bad date” has different

meanings depending on whether their conversation revolved around the fruits of the

Phoenix dactylifera or romantic engagements. The context alters the meaning and the

functions that take the content to truth values.

However, context does not alter meaning only. Consider the case of indexicals.

The statement “Acacio is hungry now” is contingent on when it is uttered and on the

particular subjective satiety state of the person named “Acacio.” In a sense, its meaning

does not change. Its referent, Acacio, is the same (assuming we are talking about the

same person, one of the co-authors of this paper), the concept of hunger is invariant,

and the meaning of now as the present moment is maintained. However, its truth value

4We shall assume this without further discussion, but things are not as straightforward as it may appear.

Meaning means “meaning for someone,” and there is no meaning tout court. Yuri Manin, in his great

book [25, pp. 34ff] mentions the case of Lev Alexandrovich Zasetsky, who suffered a brain injury in battle.

Zasetsky could write sentences with meaning, such as “An elephant is bigger than an ant,” and know that it

is true (semantically well defined). But his illness impeded him to understand the meaning of the terms “ant”

and “elephant.” He had semantics and truth, but not meaning.
5We also sustain that the correspondence theory of truth, for instance that treated by Tarski, is not suitable

for the empirical sciences, but this is something to be developed in another opportunity; here we take the

standard view.
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is variable. As we write this paragraph, it is false, as Acacio just had lunch. However,

the same statement was right about an hour ago. It will be true again several hours from

now, even though its meaning is seemingly unchanged.

To summarize, sentences have meanings given by their semantic contents. Some-

times the meanings are context-dependent, as in the case of dates. However, other

times, their truth-values vary with context, whereas their meanings seem to do not. We

shall see that physics has some correlates to those ideas.

Let us start with classical physics. A physically-relevant proposition about an ob-

ject is something empirically measurable. For example, we can have the following

statement:

P1. A billiard ball’s kinetic energy is between 0.1 kg · m2/s2 and 0.2 kg · m2/s2.

Similarly to linguistics, P1 has a meaning: if we measure the kinetic energy of a bil-

liard ball, perhaps by measuring its mass and speed and inferring the energy, we find

it to be in a certain range. Its meaning is given by an accompanying experimental pro-

cedure that yields a truth-value to the sentence. As importantly, this truth-value also

corresponds to the idea that the billiard ball, if P1 is true, has a specific property: its

kinetic energy.

As in linguistics, P1 refers to a subject (the billiard ball) and a truth-value asso-

ciated with some meaning-constructing procedure (the experiment). Accordingly, we

can think of any physics experiment as observing a physical system’s property. This

property itself has an associated proposition whose truth-value is assessed by an ex-

periment. So, in a certain sense, properties of physical systems, such as temperature,

momentum, energy, present an analogy with contents.

We may take the meaning of a statement as which experiment can yield a truth-

value to it. Consequently, expressions such as P1 attach a property to a physical object.

Of course, the property is the statement itself, and the experiment is a way to determine

its truth-value. To summarize, the properties of a physical system are the content of the

propositions.

What about context? Are classical properties context-dependent? Let us examine

an example from 18th-century physics. A group of Italian researchers in the 1700s,

known as the Experimenters, did not differentiate between heat and temperature but

combined both concepts into one (Wiser and Carey, 1983). This combined concept

of heat and temperature led to some puzzling results. For instance, the Experimenters

wondered about examples such as the following. Imagine we heat a 2 kg piece of iron

and immerse it in a container with room temperature water, subsequently measuring the

water’s temperature. Now, imagine that instead of iron, we use 2 kg of a 3:1 mixture of

nitric acid (1.5 kg) and tin (0.5 kg), immersing it in water, as we did with the piece of

iron. It was surprising to the Experimenters that even when the mixture of tin and acid

was not as hot as the iron, the latter would not raise the water’s temperature as much.

If both objects, iron and mixture, had the same amount of “hotness,” why would they

increase the water by different levels of “hotness?”

The answer to the above puzzle is straightforward in contemporary physics, as we

distinguish heat and temperature. Because of this distinction, we can measure how

much heat a substance holds as their temperature increases: what physicists call spe-

cific heat. With this concept, we can measure that iron has a specific heat of 0.44 J/kg
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K. In contrast, the specific heat of a 3:1 mixture of nitric acid and tin is 1.34 J/kg K.

This means that for every one-degree increase in temperature, the amount of heat held

by the 2-kg block of iron increases by 0.88 Joules and by 2.64 Joules for the 2-kg tin-

nitric acid mixture. In other words, at the same temperature, the mixture holds three

times the amount of heat as the iron. Because the Experimenters had a single concept

of heat and temperature, they could not even investigate the concept of specific heat,

nor could they understand the puzzle.

Let us examine the example above from a slightly different perspective. Imagine

we are observing a student who does not distinguish temperature from heat (as the

Experimenters) and thinks of both as the smorgasbord concept “hotness.” Consider

the following propositions observed to be empirically true for a specific experimental

setup involving three objects: X, Y, and W (as for instance X is iron, Y is the mixture

of nitric acid and tin, and W is water as in the example above).

A: If X has more heat than Y, then W will have a high temperature.

B: If X has a higher temperature than Y, then W will not have a high temperature.

Both propositions A and B can be true if we carefully chose X and Y’s masses, heat ca-

pacities, and how we define statements such as “low temperature,” “high temperature,”

and so on. However, let us rephrase A and B in terms of the student’s hotness concept.

We now have two new propositions, A′ and B′:

A′: If X has more hotness than Y, then W will have high hotness.

B′: If X has more hotness than Y, then W will not have high hotness.

A′ and B′ cannot be both true, as they are contradictory. The contradiction comes here

from identifying heat and temperature as a single concept: hotness.

There is an obvious, albeit silly, solution to this contradiction. The student might

say, ad hoc, that “hotness” in the context of an experiment observing A′ is different

from experiment B′, so they are not the same statement. To save their hotness concept,

the student makes things unnecessarily more complicated than they need to be. As

more experiments pile up, the more contexts and the more complicated their theory

becomes. Furthermore, such a move would lead to a theory incapable of making good

predictions in different situations.

Of course, this is not what scientists usually do. Scientists try to find appropri-

ate ways to describe a physical system that does not lead to contradictions or context

dependency. In the hotness case, they realized that differentiating between heat and

temperature was consistent and allowed for predictions and explanations of thermal

phenomena. When faced with contradictions, scientists realized that the best approach

is to face them and figure out ways to rethink our theories or experiments without

resorting to context-dependency.

The above example is interesting for historical reasons, but it also illustrates a type

of explicit contextuality. In the physics literature, this explicit contextuality is called

direct influences [13] or signaling [29]. When the student “explained” the differences

between A′ and B′ as context-dependent, he thought of explicit contextuality. Explicit

contextuality manifests when there is a direct contradiction between two statements or
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results, such as the contradiction between A′ and B′. When this happens, scientists

recognize a problem and try to solve it, as with the development of the concepts of heat

and temperature.

Let us now move from classical to quantum physics. Quantum physics, as far as

we know, forbids any type of properties that exhibit direct influences, i.e., signaling.

However, it allow another type of context-dependency (or contextuality): implicit con-

textuality. In the technical literature, this is called simply “contextuality.” We call it

implicit contextuality to emphasize its contrast with contextuality due to direct influ-

ences. From now on, when we talk about contextuality, we will refer solely to implicit

contextuality.

To understand contextuality in quantum physics, let us consider another example

[33]. Imagine a Simon-like-game device with three buttons (instead of the usual 4).

Each button on this device, when pushed, randomly emits red or green light. Turns

consists of multiple trials, where after observing their behavior, the player can try to

predict how each button will lit. For each trial of this game, the player can push at most

two buttons at the same time, for as many times as they want, and in any combination

of the three buttons they wish. If all three buttons are pushed at the same time, no light

is emitted. To win the turn, the player needs to correctly guess what color the unpressed

button would light in their last trial.

Let us consider a simple non-contextual example for this game. During her turn,

Alice notices the following.

• For trials when she only presses one key, they seem to yield either color randomly.

In other words, if Alice presses X, 50% of the time he observes green and 50%

red.

• For trials when Alice presses X and Y, she also gets 50% for each color for X or

Y, and the two colors are the same;

• For trials when Alice presses X and Z, she also gets 50% for each color for X

and Z trials colors are opposite;

• For trials when Alice presses Y and Z, she also gets 50% for each color for Y and

Z trials colors are also opposite.

So, after realizing that, if Alice presses X and Y and obtain “red” for both, she could

logically infer that Z would be “green.” This is because Z has the opposite color of

both X and Y. Guessing “green” would win Alice the turn.

Now, imagine that in another turn, Bob starts prodding different combinations of

pairs of X, Y, and Z, and observes the following.

• For trials when Bob only presses one key, they seem to yield either color ran-

domly. In other words, if Bob presses X, 50% of the time he observes green and

50% red.

• For trials when Bob presses X and Y, he also gets 50% for each color for X or Y,

but the two colors are the opposite;
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• For trials when Bob presses X and Z, he also gets 50% for each color for X and

Z trials colors are opposite;

• For trials when Bob presses Y and Z, he also gets 50% for each color for Y and

Z trials colors are also opposite.

In other words, when two buttons are pushed simultaneously, they randomly emit red

or green light, but in opposite colors. This example exhibits implicit contextuality. To

see this contextuality, imagine we start with X emitting green and Y red. Bob can

reason that if he pushed X and Z instead, then Z would be red. However, he could also

argue that if he pushed Y and Z, since Y was red, Z would be green. Here we reach

a logical contradiction: Z would be both red and green, and impossibility in the game.

To avoid such contradiction, we need to either assume that Z has no possible color, or

that its color changes with the “context” of being seen with X or with Y. To convince

themselves that Z changes with which other buttons it is pushed, we urge the readers

to think about possible mechanisms that could yield the outcomes we described. The

reader will quickly see that any mechanism that generates the outcomes for X and Y

needs to be physically different from one generating X and Z (for an example using a

firefly in a box, see [8]).

The above example of contextuality is contrived. But contextuality shows up in

quantum mechanics. One such example comes from the Greenberger-Horne-Zeilinger

state [17], also known as GHZ. Without going into the details of where the following

relations are derived, the GHZ state predicts the existence of six observable properties,

X1, X2, X3, Y1, Y2, and Y3, satisfying the following properties. First, the properties Xi

and Yi take values +1 or −1. Second, whenever we observe each of those properties

separately, they look completely random, i.e., their average value is zero. The same is

true for when we observe them in pairs: they look completely uncorrelated. Third, we

can observe them in triples, and when we do, we see the following relationship between

the triplets.

Y1Y2Y3 = 1, (1)

Y1X2X3 = X1Y2X3 = X1X2Y3 = −1. (2)

The above correlations are experimentally observed [7, 4]. Finally, we cannot observe

all six properties at the same time. In fact, we can only observe at most three of them

simultaneously. For example, quantum mechanics forbids us to see Y1, X1,X2, and X3 at

the same time. Contextuality manifests in a similar way as the previous three-variable

example.

To see how contextuality manifests itself, let us assume that the six properties are

not contextual. Then, we can use (1) and (2) and write the following.

(Y1X2X3)(X1Y2X3)(X1X2Y3) = (−1)(−1)(−1) = −1. (3)

But we can regroup the above product, and get

Y1Y2Y3(X2X3)(X1X3)(X1X2) = Y1Y2Y3(X2
2)(X2

1)(X2
3). (4)
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However, because Xi is ±1 valued, their square is 1, i.e., X2
i
= 1. Therefore, it follows

that

(Y1X2X3)(X1Y2X3)(X1X2Y3) = Y1Y2Y3. (5)

But this is a mathematical contradiction! The first term in the above equation is −1

whereas the second term is +1, and (5) is telling us that 1 = −1.

Where is the contradiction coming from? It does not come from a mathematical

mistake, but from an assumption of non-contextuality. When we wrote that X1
1 = 1,

we implicitly assumed that X1 observed together with Y2 and X3 is the same as when

observed together with X2 and Y3. This turns out to be false. If we, instead, call each

Xi by a different name depending on the context, no contradiction is obtained. What

happens in quantum mechanics is similar to the simple color game we discussed before.

The reader may now be thinking about whether we could make a move similar to

the contextual classical case. Namely, can we redefine properties such that no such

kind of contradictions arise in quantum physics? The answer is yes. Unfortunately,

there are many different ways to do so, and there is no consensus among the physics

community as to which answer is even acceptable. So, let us end this section with two

possible ways around this contradiction.

One move is to assume that properties depend on the context. This is the idea

behind Bohm’s interpretation of quantum mechanics [3, 19]. In Bohm’s theory, the

famous duality wave/particle is resolved by assuming both wave and particle existence.

The wave fills out the whole of space, and this wave guides the particle. How the wave

directs the particle in one direction or another depends on its form. For example, in

the two-slit experiment, the wave goes through both slits simultaneously, and due to

its interference pattern, it guides the particle toward certain areas and away from oth-

ers. The result is different if one or two slits are open [19]. Since the wave depends

on the context dictated by the physical experiment, Bohm’s theory tells us that parti-

cles’ reality and their properties are contextual. However, Bohm’s theory presents a

problem: for two or more particles, their waves are affected by their corresponding

particle’s positions. This theory implies the existence of instantaneous interactions be-

tween physical systems. Instantaneous interactions present a difficulty to the causal

structure in Bohm’s quantum world. As Einstein showed, to have cause and effect,

we cannot have instantaneous interactions. This difficulty between Bohm’s theory and

Einstein’s special relativity is the main reason for many physicists to reject it.

Bohm’s theory gets into trouble with special relativity because it assumes that prop-

erties exist, whether we choose to measure them or not. When we measure, we affect

the wave function and, consequently, the physical system. However, the property exists

independent of an observer. In other words, Bohm’s theory assumes that reality exists,

whether we observe it or not.

Another possible solution to the problem of contextuality, particularly to contextu-

ality at a distance (also called non-locality), is to assume quantum properties do not

have values before a measurement and that the measurement process “creates” such

values. This position was held by Bohr and is the core of the Copenhagen interpre-

tation of quantum mechanics [21]. In this interpretation, saying that an electron has

spin ~/2 in the direction z is meaningless unless we perform a measurement of spin in

the direction z and find it to be ~/2. However, before such a measurement, we cannot
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say anything about the spin. Furthermore, when we afterward make a measurement

of spin in an orthogonal direction, say x, because z and x spins are incompatible (i.e.,

cannot be measured simultaneously), we cannot say anything anymore about the spin

in the z direction; such “property” becomes meaningless. So, Bohr solves the prob-

lem of properties in quantum physics by merely denying their “existence” prior to a

measurement.

We shall not cover all possible solutions to defining properties in quantum theory,

as they abound. We just wanted to present to the reader two possible paths on how

to deal with it and emphasize that the choices we have are not necessarily great. In

Bohm’s theory, we need to re-think the concepts of causality and space-time, two well-

established tenets of special relativity, to accommodate faster-than-light signaling. In

the Copenhagen interpretation, it becomes problematic to talk about a reality indepen-

dent of a measurement apparatus (and the observer behind it). Either solution present

metaphysical difficulties that have troubled physicists for more than a century. These

puzzles all boil down to the problem of having properties that depend on the context.

To summarize, in this section, we discussed the idea of content and context. We

started with its origins from linguistics and presented an interpretation that allows us

to apply these concepts to physical phenomena. We saw that contextual dependencies

appear in classical physics, but they are resolved by resorting to reinterpretations and

refinements of the theory. We then discussed another contextual dependency that ap-

pears in quantum mechanics, such as the GHZ-state example. We then presented some

of the proposed solutions to the problems and their corresponding metaphysical issues.

In the following sections, we will show that those issues are intimately related to the

concept of identity in the quantum world.

3 Identity and indiscernibility

Identity is an old and difficult notion to be dealt with. Usually, the discussions have

focused on personal identity and identity through time. Here, we shall be concerned

with particular applications of this notion to the identity of objects and properties. By

“identity of objects,” or individuals as we prefer to call them,6 we mean identity of those

entities which are dealt with by the theories of physics7. For a more detailed discussion

about the origins of the term “object,” see [37, pp.13ff]; here we review briefly some

aspects of the argumentation given in [14, Chap.1].

We have an intuitive idea of what it means to say that two objects, or individuals,

are identical: they are the same. However, to say this is to say nothing, for we also

do not know what is to be “the same,” something reported equivalent to identity. Thus,

we go to the opposite side: we judge individuals as being different and, therefore, not

6The word “individual,” according to the Oxford Online Etymological Dictionary, means “one and in-

divisible.” Hence our preference for the term. However, as it is common practice, we relax the idea of

‘indivisible’ and keep “one,” adding that it can always be distinguished in other contexts, at least in princi-

ple, from any other individual as being that individual. This distinguishability cannot occur with quantum

entities, even those trapped by some device.
7The standard quantum formalism is developed within a mathematical structure called “Hilbert-space for-

malism,” although there are alternatives ([34] mentions nine different ways of developing orthodox quantum

mechanics).
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identical, hence not the same. Nevertheless, in virtue of what should individuals be

different? Usually, we look for their differences; although quite similar, two peas show

differences, maybe some small scratch or a slightly different color. At least, that is

what we tend to think.

Still, in virtue of what two objects would be different? Are they so? Is it possible

to have two (or more) objects perfectly alike, with no differences at all? Put in other

words, what makes an object an individual, distinct from any other? Is there some Prin-

ciple of Individuation we can use to specify an individual’s individuality? Theories

of individuation are generally divided up in two main lines: substratum theories and

theories of bundles of properties. According to the first group, beyond the properties of

an object and the relations it can share with others, there is something more, something

Locke described as “I don’t know what” [24, Book I, XXIII, 2]. This notion and the re-

lated ones (such as haecceities and thisness)8 were discarded in favor of bundle theories

of individuation. Bundle theories say that there is nothing more to an object than the

collection of its properties (encompassing relations). Nevertheless, if in the substratum

theories one could say that what distinguishes an object from another is its substratum

(or something like that), in bundle theories, many discussions have appeared concern-

ing the possibility of two objects having the same collection of properties. Can they

have the same collection of properties? If not, why not? Of course, that objects in

our scale, i.e., “macroscopic objects,” can partake all their properties is something that

cannot be logically proven. This assumption must be accepted as a metaphysical hy-

pothesis, and there are no known counterexamples to it. Furthermore, this hypothesis

was what Western philosophy has preferred, from the Stoics to Leibniz’s metaphysics.

Let us remember Leibniz’s metaphysics’ intuitive idea: no two individuals share

all their properties; if they have the same attributes, they are not different, but the

same individual. This metaphysical principle was encapsulated in standard logic with

the definition of identity given by Leibniz Law. This law says what we have expected:

entities are identical if and only if they share all their properties, hence all their relations,

that is, if and only if they are indistinguishable.

What about the identity of properties? In standard logic, we usually say that two

properties, P and Q, are “identical” if they are satisfied by the same “things.” For

instance, for Aristotle, the properties “to be a human” and “to be a rational animal” are

“identical” in this sense. As an example from standard mathematics, consider the sets

{x ∈ R|x2 − 5x + 6 = 0}, {x ∈ N|1 < x < 4}, and {x ∈ R|x = 2 ∨ x = 3}. These three sets

are identical: they have the same extensions but different intensions.9

Classical mathematical frameworks do not accommodate indistinguishables; en-

tities sharing all their attributes and being just numerically distinct do not exist in

classical mathematics (but see below). Individuals are unique, separable, at least in

principle, counted as one of a kind and presenting differences to every other object.

There are no purely numerical identical individuals: some form of Leibniz’s Law holds.

This is so within standard logic and mathematics, and the ways of dealing with indis-

8There are peculiarities in using these terms, but broadly speaking, all refer to something beyond an

individual’s properties.
9In technical terms, in extensional higher-order logics, we can define such a notion by saying that P and

Q are identical when they have the same extensions, that is, when they are satisfied by the same lower terms.
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cernibles require mathematical tricks such as confining them to non-rigid structures10.

For example, take the structure 〈Z,+〉, which represents the integer numbers, Z, and

only the standard addition operation, “+.” This structure is not rigid, since the trans-

formation f (x) = −x is an automorphism of the structure, i.e., it keeps the individ-

uals indiscernible within its point of view. To see this, take the 2 and −2. We can-

not discern them within this structure. Imagine any property for 2 defined only with

“+,” such as “2 + 1 = 3.” If we change the numbers by the “minus” ones, we have

“(−2) + (−1) = (−3).” From within this structure, the latter is identical to the for-

mer; we cannot distinguish them. Of course, if we added additional properties to the

structure, such as the “<” relation, it would become rigid, and we would be able to

distinguish between 2 and −2. However, we cannot do it only with “+.”

The search for legitimate indiscernible objects/individuals, in the above sense and

without mathematical tricks, requires a change of logic. We will retake this discussion

later on this paper, but we wish to turn to another kind of question for now.

Some authors, such as Peter Geach, argue that identity is relative. The only thing

we can say, according to him, is that two individuals a and b are (or not) identical rela-

tive to a sortal11 predicate F; in the positive case, we say that they are F-identical and

can write a =F b. In our opinion, identity is absolute. Identity is, according to us, to

be associated with metaphysical identity, as explained above. It is something an indi-

vidual has that says that it is unique and, when it appears in some other context, we are

authorized to think that it is the same individual that has appeared twice. Alternatively,

an individual’s identity is its identity card, one for each individual: it accompanies it

in all contexts and, with its help, we can distinguish the individual as being the same

individual of a previous experience. Identity makes the individual’s name a rigid des-

ignator, denoting the same entity in all possible accessible worlds. As it is well known,

David Hume guessed that there is no such an identity; according to him, we recognize

someone as being the same from a previous experience by habit, by familiarity [20,

p.74 and passim], but cannot “logically” prove that. Schrödinger had a similar opinion

regarding quantum entities when he says that

“[w]hen a familiar object reenters our ken, it is usually recognized as a

continuation of previous appearances, as being the same thing. The rel-

ative permanence of individual pieces of matter is the most momentous

feature of both everyday life and scientific experience. If a familiar article,

say an earthenware jug, disappears from your room, you are quite sure that

somebody must have taken it away. If after a time it reappears, you may

doubt whether it really is the same one − breakable objects in such circum-

stances are often not. You may not be able to decide the issue, but you will

have no doubt that the doubtful sameness has an indisputable meaning −
10A structure (a domain comprising relations over its elements) is rigid if its only automorphism (bijections

that preserve the relations of the structure) is the identity function. Indiscernibility in a structure means that

the objects are invariant by some automorphism of the structure; in rigid structures, an object is indiscernible

just from itself. Non-rigid (deformable) structures hide the object’s identity so that we may not be able to

discern them by lack of distinctive relations or properties. For details, see [14, §6.5.2], [23].
11A sortal predicate enables to count the objects that obey the predicate, such as “being a philosopher.”

So, Isaac Newton and Stephen Hacking would both be counted as “Lucasian Professor of Mathematics in

Cambridge.”
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that there is an unambiguous answer to your query. So firm is our belief in

the continuity of the unobserved parts of the string!” [32, p.204]

Entities partaking metaphysical identity are termed individuals. Can we think of non-

individuals too? If yes, can we give examples of entities of this kind? The first way to

think of them, by considering what we have said, is to deny them the epithet “to have

an identity.” What should it mean? The short answer is that they would be entities shar-

ing all their characteristics, either substratum or properties and relations. From now

on, we shall avoid speaking of substratum and keep with bundle theories [36]. How-

ever, non-individuals, in our formulation, are not simply metaphysically or numerically

identical entities, although this is logically possible.12 Our notion is weaker, enabling

non-individuals to form collections (termed “quasi-sets”) with cardinalities greater than

one so that no particular differences can be ascribed to them. Furthermore, they would

be indistinguishable even if an omniscient demon (Laplace’s demon) exchanged them

with one another; in this case, nothing would change in the world at all. That is the dif-

ference: individuals, by definition, when permuted, make a difference! This difference

is of fundamental importance, for it involves several other related notions which appear

in physical theories, such as space and time and, fundamentally, permutations. We shall

need to explain that further, but for now, we wish to emphasize that we do not regard

identity as something an entity must have. When something has an identity, then it is

absolute, it is metaphysical, and no two entities with identity can be only numerically

distinct. Non-individuals are entities that lack identity, that can be just numerically dis-

cerned, that have all the same identity card. If one looks at one non-individual here and

there, one finds “another” one in a different context; not even demons or gods will tell

one if this new object is “different” or “the same” one found previously, as this would

be meaningless.

Nevertheless, once we think about more than one entity, one could claim that they

must be different. Mathematically, this would be expressed by the set-theoretical argu-

ment that once the cardinal of a set is greater than one, its elements must be different.

We stress that this depends on the set theory one is taking into account. In standard

set theories, such as the most celebrated systems (the apparently most famous one is

termed “ZFC”), this is true, but in quasi-set theory (discussed below), this is may not

be the case. In quasi-set theory, we not only can have collections (quasi-sets) of ab-

solutely indiscernible entities and with a cardinal greater than one, but we can also

quantify such “non-individuals.” Quasi-set theory shows that Quine’s motto of “no en-

tity without identity” [30, p.23] does not hold in general, for even non-individuals can

be values of the variables of a regimented language.

12In his criticism to the definition of identity given by Whitehead and Russell in their Principia Mathemat-

ica (Leibniz Law, in a standard second-order language, x = y := ∀F(Fx ↔ Fy), where x and y are individual

terms and F is a predicate variable for individuals), F. P. Ramsey said precisely this: that we could logically

conceive entities violating the definition, sharing all their properties, and even so not being the same entity

[31, p.30].
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3.1 Identity in classical formal settings

There is a problem concerning the metaphysical identity of the last section: it cannot

be defined in first-order languages [18, 14].13 We provide here a slightly technical

explanation. As said earlier, first-order languages speak of the individuals of some

domain. Usually, the axiomatizations take logical identity as primitive (represented by

a binary predicate “=”), subject to certain axioms (reflexivity and substitutivity). We

can prove that identity is an equivalence relation, really a congruence, whose intended

interpretation is the identity of the domain; calling it D, then we are referring to the

set ∆D := {〈a, a〉 : a ∈ D}, also called the diagonal of D. But it can be proven that

there are other structures, called elementary equivalent structures,14 which also model

“=” but interprets this symbol in sets other than the diagonal (op.cit.). So, within a

first-order language, we never know if we speak of the identity (or the difference) of

two individuals or of, say, classes of individuals.

Higher-order languages enable us to define logical identity by Leibniz Law, but

such logical identity is defined through indiscernibility. If we wish to define indis-

cernibility instead, the definition would be the same: agreement for all properties. So,

higher-order languages do not distinguish between these two concepts. If we intend to

speak of indiscernible but not identical things, Leibniz Law does not help.15 Further-

more, if we aim to preserve some meta-properties of our system (Henkin’s complete-

ness), we are subject to find Henkin models so that two objects of the domain look as

indiscernible since they obey all the language’s predicates, but which are not the same

element [14, §6.3.2]. In short, we need to conclude that metaphysical identity cannot

be defined. The most we can do is find refuge in logical identity, but this, as we shall

see soon, causes troubles to quantum mechanics.

However, let us first put away the often-made claim that even quantum objects can

be discerned by spatio-temporal location.

3.2 Identity and space and time

There is still another way to look at identity in classical settings: include space and

time. Orthodox non-relativistic quantum mechanics makes use of classical space and

time or, as we can say, “Newtonian” absolute notions. Intuitively, the classical space

and time structure is a space that looks, at least for small regions, like the R4, namely

three dimensions for space (R3) and one for time (R). More precisely, mathematically,

the classical space-time is a manifold locally isomorphic to R4, usually termed E4 (for

“Euclidean”); see [28, Chap. 17].

This structure has some interesting features, but for us here, an important charac-

teristic is that it is a “Hausdorff space.” This property of being Hausdorff means that,

13First-order languages deal with domains of individuals, their properties, relations and operations over

them. Quantified expressions like “There exists some x such that . . .” and “For all individuals x, . . .” applies

only to individuals, and we cannot say things like “There is a relation among individuals . . .” or “For every

property of individuals . . ..” In logic, we say that first-order languages quantify over individuals only.
14Elementary equivalent structures are interpretations of a first-order language that preserve the same truth

sentences. From the language’s point of view, one cannot distinguish among such structures: they look the

same.
15The distinction between identity and indiscernibility can be made only in semantical terms; see [6].
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given any two points a and b, a , b, it is always possible to find two disjoint open sets

(say two open balls) Ba and Bb such that a ∈ Ba and b ∈ Bb. In extensional contexts,

such as the ZFC set theory, a property is confounded with a set; the objects that belong

to the set are precisely those satisfying the property. So, a and b have each a property

not shared with the other, namely, to belong to “its” open set. Hence, Leibniz’s Law

applies, and they are different. Notice that this holds for any two objects a and b: once

we have two, they are distinct. Therefore, we may say that, within such a framework,

there are no indiscernibles!16

Let us see now how we can pretend to say that we have indiscernibles within a

classical framework.

3.3 Indiscernibility in classical logical settings

Still working in a classical setting, say the ZFC system, we can mimic indiscernibility.

In this subsection we expand the above discussion about using non-rigid structures,

presenting some of its more technical concepts and ideas.

Usually, we say that the elements of a certain equivalence class are indiscernible,

and perhaps this is acceptable for certain purposes. More technically, in doing that,

we are restricted to a non-rigid (or deformable) structure. As we saw previously, we

say that a structure A = 〈D,Ri〉, i ∈ I, is rigid if its only automorphism is the identity

function; this means that we have a domain D, a non-empty set, and a collection of

relations over the elements of D, each one of a certain arity n = 0, 1, 2, 3, . . ..17 If

the structure is not rigid, then it is is non-rigid or deformable. We saw an example

of a deformable structure earlier on, the 〈Z,+〉. Another example of a deformable

structure is the field of the complex numbers, for the operation of taking the conjugate

is an automorphism. In such a structure C = 〈C, 0, 1,+, ·〉, the individuals i and −i are

indiscernible.

Given A as above, we say that the elements a and b of D are A-indiscernible if

there exists X ⊆ D such that (i) for every automorphism h of A, h(X) = X, that is, X is

invariant by the automorphisms of the structure, and (ii) a ∈ X iff b < X. Otherwise, a

and b are A-discernible [23].

It is clear that in a rigid structure, the only element indistinguishable from a is a

itself since the only automorphism is the identity function. In informal parlance, we

may say that a and b are A-indiscernible iff they are invariant by permutations that

“preserve the relations of the structure.”

Something like that is what we do in quantum mechanics. Roughly speaking, the

theory says that when we measure a certain observable value for a quantum system in a

certain state, the value does not change before and after a permutation of particles of the

same kind. Physicists say that permutations are not observable, and this is expressed

16In model theory, an important part of logic, we can speak of “indiscernibles” in a sense, for instance,

Ramsey indiscernibles. However, this is a way of speaking; even these entities obey the classical theory of

identity, therefore being individuals. See [5, Chap.15].
17That the identity mapping is an automorphism is trivial. For all the argumentation, it is enough to

consider relational structures, for distinguished elements and operational symbols can be taken as particular

kinds of relations; also, we subsume all domains in just one.
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by the Indistinguishability Postulate.18

Leaving formal logic and mathematics for a while, let us consider more general

situations, which will lead us to a more detailed discussion about quantum mechanics.

We shall commence by emphasizing the importance of the contexts.

4 Connecting identity to context

On many occasions, we are tempted to think about possible worlds which are not actual.

We wonder what our life would have been like if we had taken different decisions at

crucial moments. We can think about an object, person, or animal, in many different

circumstances, which can differ from the actual ones. For example, suppose that we

have a pet cat and live in a small apartment. Given its living conditions, the cat cannot

catch the birds that he sees through the window. He observes them with attention,

craving for them but unable to reach them. Thus, in our tiny-apartment world, our cat

never caught a bird. Furthermore, he never will because he cannot go out. However,

we can imagine a different world, in which we live in a house with a big yard in which

our cat can wander out as many times as it wants. In this big yard world, our cat can

surely try to catch a bird, and he will undoubtedly do so at least once.

The above story is an example of how we reason about counterfactuals. We are

tempted to conclude something that occurs in a world that is not actual could happen,

even if that world never becomes actual. This kind of reasoning is very natural in our

everyday life. However, what are the assumptions behind it? First, somehow, our cat

retains its identity among the different worlds: the cat in the small apartment world is

the same as the cat in the big yard world. Both cats have the same name, color, same

capabilities, and desire to catch birds. Nevertheless, how can we assure that the cat will

retain its properties among the different worlds? Perhaps, if we could afford a house

with a big yard, we could also afford fancy and tasty cat food. The cat gets used to

it, stays inside the house, and eats the whole day. In the fancy house world, it might

become idle to the point that it barely moves or plays, as it happens with some cats.

When it finally goes out to the garden, it cannot catch birds anymore, as it became

clumsy and slow.

The above example shows that we should not make hasty conclusions: the proper-

ties of an object, person, or animal, might depend strongly on the context in which we

are considering them. In the small apartment, humble life, with cheap food, our cat is

playful and agile: it has a high probability of catching a bird but no bird to catch. In the

big house, those properties may or may not be valid. The first lesson is: to assume that

an object retains its properties among different and incompatible worlds is not granted.

18In technical terms, let us take a permutation P between particles denoted by xi and x j . As usually stated,

we may say that for any x1 , . . . , xn,

P(x1, . . . , xi, . . . , x j , . . . , xn)↔ P(x1 , . . . , x j , . . . , xi, . . . , xn) (6)

The Indistinguishabilility Postulate is expressed in terms of “expectation values;” it says that

〈ψ|Â|ψ〉 = 〈Pψ|Â|Pψ〉 (7)

for any observable represented by a self-adjoint operator Â and for any permutation operator P, being |ψ〉 the

vector state of the system.
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Even more so, one may ask: in which sense are the two cats in different worlds the

same? From a strict point of view, one may say that the agile cat from our actual world

is not the same as the idle cat of the alternative reality. In the same way, we should

not mix the different worlds with counterfactual reasoning. If we conclude, by study-

ing our cat in this actual world, that he is very skilled in chasing birds, we cannot use

empirical information from our world to conclude that the cat will indeed chase a bird

in the alternative world.

Thus, we are introduced to a profound philosophical problem by thinking about the

above straightforward situation: what are the principles or conditions that grant identity

to objects considered in different possible worlds? Are we entitled to say that a given

object retains its identity when considered in different and incompatible situations? Of

course, in many situations of our daily life, assuming that objects retain their identities

and properties in different contexts will work. Our bike works well on sunny and rainy

days and in diverse landscapes (such as cities or mountains). Many characteristics of

our bike – such as its color or its range of velocities – are, to a great extent, context

independent. However, we should not take this context independence for granted. This

is more so if we consider quantum systems that define phenomena that lie far beyond

our everyday experience. The realm of the atom extends far beyond the ångström scale

(ten to the minus ten meters, which is something like 0, 0000000001 meters for one

ångström!). The principles – whatever they are – that allow us to identify properties

and objects among incompatible situations may no longer be valid for atomic systems.

Moreover, this seems to be the case, as the GHZ example above and the following

example show.

Suppose that Alice and Bob have separated labs, LA and LB, in which they perform

their experiments. At a given time, a third party prepares a quantum system capable

of affecting what happens in LA and LB. Suppose that Alice decides to make an exper-

iment PA in her lab, in order to interact with the given quantum system, and that Bob

can do PB or P′
B

in LB. Due to the peculiarities of quantum mechanics, PB and P′
B

can-

not be performed at the same time – they are incompatible experiments. To understand

what incompatible means, imagine the following situation: in order to perform PB, Bob

must align a magnet in a given direction d, and in order to perform P′
B
, he must align

its magnet in a different direction d′. A magnet cannot point in two different directions

– similarly, a clock’s handle cannot point at two different angles simultaneously. Thus,

there are two incompatible situations: either Alice performs experiment PA and Bob

performs PB, or Alice performs PA and Bob P′
B
. The two possibilities cannot coexist

in the same world. Let us call these possibilities W1 and W2, respectively.

Suppose now that Alice and Bob are in the process of deciding what to do. They

wonder about the experiments’ possible outcomes in the different situations, W1 and

W2. Notice that they do not need actually to perform the experiments. It is all about

reasoning in various alternatives without actually performing them. Now we question:

what is the status of the possible results of experiment PA concerning W1 and W2? After

the discussion about the cat, we should not be as quick to identify what happens in W1

with W2, even if we are talking about the same experiment, PA. In both possible worlds,

Alice will perform the same actions (she will orient the magnets in the same directions,

prepare the same reading apparatus, and so on). Is she going to obtain the same results?

What enables us to conclude that she will? Notice that we are not asking here about an
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influence of Bob’s actions in Alice ones: the laboratories can be very far away in space

and time. We are asking here whether we are entitled to assume that there is some

trace of identity among the results obtained in different (and incompatible worlds). As

expected, the answer is: no, we are not. Contradictions can be readily achieved if we

do so, as the cat and contextuality examples suggest (and shown in technical research

on quantum theory).

The actions required for experimenting PA are the same in W1 and W2. Can we say

that PA in W1 is the same as PA in W2? After the cat discussion, let us be conservative

about the answer. We will say that PA in W1 is indistinguishable from PA in W2. The

two experiments are completely alike: Alice will execute the same actions in a system

prepared with an equivalent procedure in both worlds. However, we should not be

tempted to claim they are the same. The more so, we should not expect the same

results. In this sense, we say that the properties studied by experiment PA in W1 are

indistinguishable from the properties studied by PA in W2. We denote these properties

by the pairs (PA; W1) and (PA; W2) and write (PA; W1) ≡ (PA; W2), to stress the fact

that they are indistinguishable (but not identical). A natural, logical formalism for

describing this kind of indistinguishability is the quasi-set theory. This theory allows

us to consider properties or objects in alternative worlds as collections of indiscernible

ur-elements.

If world W1 becomes actual, Alice and Bob will perform their actions, obtain their

results, and record them. Out of these results, what conclusions should they take about

the possible results associated with W2? Are they entitled to reason in a counterfactual

way and combine the results of worlds W1 and W2 to extract conclusions about them?

Much caution should be taken here, as the cat and contextual examples show. In prin-

ciple, there is no a priori reason to do so. That we are allowed to do so in many (but

not all!) everyday situations is more a lucky strike that we share with other creatures

in our macroscopic reality than a general rule. Counterfactual reasoning simplifies our

existence, but we should not expect it to be valid in every situation. This lack of validity

seems empirically suggested at microscopic scales, which are very different from our

own.

To summarize, we can state the following:

• Even if state preparations and measurement procedures are completely alike

among different worlds, we should not treat them as identical. In this sense,

we speak about things such as indistinguishable properties and objects.

• Even if two experiments are completely indistinguishable, we should not expect

the same results in different worlds.

• We should not derive conclusions from counterfactual reasoning, especially in

the quantum domain. Such conclusions are not reliable and are not metaphysi-

cally justified.

5 Quantum mechanics in classical logical settings

In this section, we briefly review how the standard quantum formalism performs the

trick of treating indiscernible quantum systems within the scope of classical logic (en-
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compassing mathematics). In doing so, we lay the groundwork for alternative logics

and mathematics, which provide an adequate description from our perspective.

A glance at standard textbooks on quantum mechanics reveals that they use clas-

sical mathematics, hence classical logic. However, the claim that quantum mechanics

requires a different logic, known as quantum logic, can also often be found.19 These

two observations seem contradictory. Why is this apparent contradiction present in the

literature?

The reason may be as follows. Most physicists are concerned with physical prob-

lems being solved by quantum theory and not with philosophical or logical founda-

tional questions about it. Although they might endorse some particular interpretation

of quantum mechanics, thus presupposing some concern with quantum theory’s phi-

losophy, most physicists use “classical” mathematics in an almost instrumentalist way.

Thus, when dealing with entities that would be indistinguishable, physicists use some

mathematical tricks to hide the identifications typical of our standard mathematical

languages. Let us see how they do it.

First, we recall that, in quantum mechanics’ standard formulation, a system’s state

is represented mathematically by a vector in a Hilbert space. This vector, also called

the wave function, is supposed to encode all information available for that system in a

specific situation. Observables, which represent possible experimental procedures and

their outcomes, are self-adjoint operators in the Hilbert space. When an observable

is measured, the state-vector enters (or “collapse”) into one of the observable opera-

tor’s eigenvectors. Since this process is “mysterious,” in the sense that the formalism

does not explain how it happens, many physicists try to avoid it, adopting alternative

explanations. Nevertheless, the primary mathematical object in quantum theory is the

Hilbert space and vectors in it. So, the question is how to represent indistinguishable

objects using the mathematics of vectors.

Quantum particles come in two types: bosons and fermions. Their main differ-

ence comes from their statistics: bosons follow the Bose-Einstein statistics, whereas

Fermions satisfy the Fermi-Dirac one. Both statistics count objects as if they were

indistinguishable, contrary to the classical Maxwell-Boltzman statistics.

Bosons are a typical type of indistinguishable quantum entities. Bosons are a kind

of quantum “particles,” and they are entirely indistinguishable when prepared in the

same quantum state. This state is such that they share all the relevant quantum proper-

ties. A system composed of, say, two bosons 1 and 2 in two possible situations A and

B is described by a symmetric wave function such as the following.

Ψ =
1
√

2

(

ψA
1ψ

B
2 + ψ

A
2ψ

B
1

)

, (8)

where ψA
1
ψB

2
means system 1 in the state A and system 2 in B and similarly for the

other term. The 1√
2

is just a normalization factor required by the formalism. Ψ is

invariant under the permutation of 1 and 2. This invariance means that exchanging

particle 1 by 2 (and vice-versa) does not affect the state of the system. Consequently,

any measurement results are maintained under permutations.

19The field of “quantum logic” arose from Birkoff and von Neumann’s 1936 seminal paper. The reader

interested in the subject is referred to the following excellent papers: [12] and [35].
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This symmetrization of the wave function works, but it is a trick. We are still

using labels to “name” the particles because our language and mental models have a

hard time thinking otherwise. In other words, this trick assumes, upfront, that bosons

are individuals. Suddenly, as if a miracle happened, permutations do not conduce to

different situations. However, this invariance was put there by hand. We could give

more detailed arguments as to why this is a mathematical trick that does not make

bosons indistinguishable, but we hope the above example is sufficient for the reader to

grasp the main idea.

The use of the above trick is similar to confining the discussion to a deformable

(non-rigid) structure, as explained earlier. However, as mentioned, within such classical

settings, we can always go “outside” of the structure and identify the particles. This

possibility of identification is at odds with the hypothesis that they are indiscernible.20

There is no way to escape this conclusion. As we have said before, standard math-

ematics and logic are theories of individuals. This is so for historical reasons: classical

logic, mathematics, and even classical physics were built with individuals in mind.

Quantum mechanics, of course, came to challenge those ideas and to question the con-

cepts of individuality.

6 Alternative logical approaches

Assuming that indiscernibility is a core notion in quantum mechanics, we should look

for an alternative logical and mathematical basis that considers it right from the start.

This bottom-up approach would not mimic it within a standard framework from a top-

bottom one. Our strategy is grounded in a metaphysics of non-individuals (for de-

tail, see [14], [22], and references therein). Moreover, it tries to develop mathematics

compatible with such metaphysics. Consequently, Schrödinger logics and quasi-set

theory were developed in the 1990s. Although they are mathematical developments

independent of the interpretations, the intended one is precisely to cope with such non-

individual entities. In this section, we will give a rough idea about how quasi-set theory

works. For a review about Schrödinger logics, see [14, chap.8].

6.1 Quasi-set theory

In the quasi-theory Q, indiscernibility is a primitive concept, formalized by a binary

relation “≡” satisfying the properties of an equivalence relation, but not full substitu-

tivity.21 In this notation, “x ≡ y” is thought to mean “x is indiscernible from y.” This

binary relation is a partial congruence in the following sense: for most relations, if

R(x, y) and x ≡ x′, then R(x′, y) as well (the same holds for the second variable). The

only relation to which this result does not hold is membership: x ∈ y and x′ ≡ x does

not entail that x′ ∈ y; details in [14, 15]).

20The way to “go outside” the quantum formalism is to go to the set-theoretical universe since all mathe-

matics used in quantum mechanics can be performed in terms of sets.
21If we add substitutivity to the postulates, then no differences between indiscernibility and logical first-

order identity would be made.
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Quasi-sets can have as elements other quasi-sets, particular quasi-sets termed sets

which are copies of the sets in a standard theory (in the case, the Zermelo-Fraenkel set

theory with the Axiom of Choice), and two kinds of atoms (entities which are not sets),

termed M-atoms (M-objects), which are copies of a standard set theory with atoms

(ZFA) and m-atoms (m-objects), which have the quanta as their intended interpretation,

to whom it is supposed that the logical identity does not apply. If we eliminate the

m-atoms, we are left with a copy of ZFA, the Zermelo-Fraenkel set theory with atoms.

Hence, we can reconstruct all standard mathematics within Q in such a “classical part”

of the theory.

Functions cannot be defined in the standard way. When m-atoms are present, it

cannot distinguish between indiscernible arguments or values. Therefore, the theory

generalizes the concept to “quasi-functions,” which map indiscernible elements into

indiscernible elements. See below for more on this point.

Cardinals (termed “quasi-cardinals,” qc) are also taken as primitive, although they

can be proven to exist for finite qsets (finite in the usual sense [10, 2]). The concept

of quasi-cardinals can be used to speak of “several objects.” So, when we say that we

have two indiscernible q-functions, according to the above definition, we are saying

that we have a qset whose elements are indiscernible q-functions and whose q-cardinal

is two.22. The same happens in other situations.

An interesting fact is that qsets composed of several indistinguishable m-atoms do

not have an associated ordinal. This lack of an ordinal means that these elements cannot

be counted since they cannot be ordered. However, we can still speak of a collection’s

cardinal, termed its quasi-cardinal or just its q-cardinal. This existence of a cardinal

but not of an ordinal is similar to what we have in QM when we say that we have some

quantity of systems of the same kind but cannot individuate or count them, e.g., the six

electrons in the level 2p of a Sodium atom.23

Identity (termed extensional identity) “=E” is defined for qsets having the same

elements (in the sense that if an element belongs to one of them, then it belongs to

the another)24 or for M-objects belonging to the same qsets. It can be proven that this

identity has all the properties of classical logical identity for the objects to which it

applies. However, it does not make sense for q-objects. That is, x =E y does not have

any meaning in the theory if x and y are m-objects. It is similar to speak of categories

in the Zermelo-Fraenkel set theory (supposed consistent). The theory cannot capture

22Quasi-cardinals turn to be sets, so we can use the equality symbol among them. We use the notation

qc(x) = n (really, qc(x) =E n, see below) for a quasi-set x whose cardinal is n.
23To count a finite number of elements, say 4, is to define a bijection from the set with these elements to

the ordinal 4 = {0, 1, 2, 3}. This counting requires that we identify the elements of the first set.
24There are subtleties that require us to provide further explanations. In Q, you cannot do the maths and

decide either a certain m-object belongs or not to a qset; this requires identity, as you need to identify the

object you are referring to.

In quasi-set theory, however, one can hypothesize that if a specific object belongs to a qset, then so and

so. This is similar to Russell’s use of the axioms of infinite (I) and choice (C) in his theory of types, which

assume the existence of certain classes that cannot be constructed, so going against Russell’s constructibility

thesis. What was Russell’s answer? He transformed all sentences α whose proofs depend on these axioms

into conditionals of the form I → α and C → α. Hence, if the axioms hold, then we can get α. We are

applying the same reasoning here: if the objects of a qset belong to the another and vice-versa, then they are

extensionally identical. It should be noted that the definition of extensional identity holds only for sets and

M-objects.
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the concept, yet it can be expressed in its language. From now on, we shall abbreviate

“=E” by “=,” as usual.

The postulates of Q are similar to those of ZFU, but by considering that now we

may have m-objects. The notion of indistinguishability is extended to qsets through an

axiom that says that two qsets with the same q-cardinal and having the same “quan-

tity” (we use q-cardinals to express this) of elements of the same kind (indistinguish-

able among them) are indiscernible too. As an example, consider the following: two

sulfuric acid molecules H2SO4 are seen as indistinguishable qsets, for both contain q-

cardinal equals to 7 (counting the atoms as basic elements), and the elements of the

sub-collections of elements of the same kind are also of the same q-cardinal (2, 1, and

4 respectively). Then we can state that “H2SO4 ≡ H2SO4,” but of course, we cannot say

that “H2SO4 = H2SO4,” as for in the latter, the two molecules would not be two at all,

but just the same molecule (supposing, of course, that “=” stands for classical logical

identity). In the first case, notwithstanding, they count as two, yet we cannot say which

is which.

Let us speak a little bit more about quasi-functions. Since physicists and mathemati-

cians may want to talk about random variables over qsets as a way to model physical

processes, it is important to define functions between qsets. This can be done straight-

forwardly, and here we consider binary relations and unary functions only. Such defi-

nitions can easily be extended to more complicated multi-valued functions. A (binary)

q-relation between the qsets A and B is a qset of pairs of elements (sub-collections with

q-cardinal equals 2), one in A, the other in B.25 Quasi-functions (q-functions) from A

to B are binary relations between A and B such that if the pairs (qsets) with a and b

and with a′ and b′ belong to it and if a ≡ a′, then b ≡ b′ (with a’s belonging to A and

the b’s to B). In other words, a q-function maps indistinguishable elements into indis-

tinguishable elements. When there are no m-objects involved, the indistinguishability

relation collapses in the extensional identity, and the definition turns to be equivalent to

the classical one. In particular, a q-function from a “classical” set such as {1,−1} to a

qset of indiscernible q-objects with q-cardinal 2 can be defined so that we cannot know

which q-object is associated with each number (this example will be used below).

To summarize, in this section, we showed that the concept of indistinguishability,

which conflicts with Leibnitz’s Principle of the Identity of Indiscernibles, can be in-

corporated as a metaphysical principle in a modified set theory with indistinguishable

elements. This theory contains “copies” of the Zermelo-Frankel axioms with Urele-

mente as a particular case when no indistinguishable q-objects are involved. This the-

ory will provide us the mathematical basis for formally talking about indistinguishable

properties, which we will show can be used in a theory of quantum properties. We

will see in the next section how we can use those indistinguishable properties to avoid

contradictions in quantum contextual settings such as KS.

25We are avoiding the long and boring definitions, as, for instance, the definition of ordered pairs, which

presuppose lots of preliminary concepts, just to focus on the basic ideas. For details, the interested reader

can see the indicated references.
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7 Formulating quantum mechanics within quasi-set the-

ory

As we have seen, the quasi-set theory enables us to form collections (the quasi-sets)

of “absolutely” indiscernible elements. In this theory, even if one goes outside the rel-

evant structures, they will not become rigid: this mathematical universe is not rigid.

Thus, the quasi-set theory is a suitable device to develop a quantum theory where indis-

cernibility is considered from the start as a fundamental notion. This section explains

how quantum mechanics (in the Fock space formalism) can be developed within the

quasi-set theory Q. The current development is based in [11] and is technical. This

level of mathematical formality is necessary to provide essential details. The reader

unconcerned with such technicalities may skip this section and proceed directly to the

conclusions.

7.1 The Q-spaces

In the standard mathematical formalisms, the assumptions that quantum entities of the

same kind must be indiscernible are hidden behind mathematical tricks such as sym-

metrizing wave-functions and vectors. In order to avoid these tricks, we introduce the

notion of Q-spaces. The resulting framework is termed nonreflexive quantum mechan-

ics or, simply, nonreflexive.

We begin with a q-set of real numbers ǫ = {ǫi}i∈I , where I is an arbitrary collection

of indexes, denumerable or not. Since it is a collection of real numbers, which may

be constructed in the classical part of Q, we have that Z(ǫ). Intuitively, the elements

ǫi represent the eigenvalues of a physical observable Ô, that is, they are the values

such that Ô|ϕi〉 = ǫi|ϕi〉, with |ϕi〉 the corresponding eigenstates. Since observables

are Hermitian operators, the eigenvalues are real numbers. Thus, we are justified in

assuming that elements of ǫ are real numbers. Consider then the quasi-functions f :

ǫ −→ Fp, where Fp is the quasi-set formed of all finite and pure quasi-sets (that is,

finite quasi-sets whose only elements are indistinguishable m-atoms). Each of these f

is a q-set of ordered pairs 〈ǫi, x〉 with ǫi ∈ ǫ and x ∈ Fp. From Fp we select those quasi-

functions f which attribute a non-empty q-set only to a finite number of elements of ǫ,

the image of f being ∅ for the other cases. We call F the quasi-set containing only these

quasi-functions. Then, the quasi-cardinal of most of the q-sets attributed to elements

of ǫ according to these quasi-functions is 0. Now, elements of F are quasi-functions

which we read as attributing to each ǫi a q-set whose quasi-cardinal we take to be

the occupation number of this eigenvalue. We write these quasi-functions as fǫi1
ǫi2
...ǫim

.

According to the given intuitive interpretation, the levels ǫi1ǫi2 . . . ǫim are occupied. We

say that if the symbol ǫik appears j-times, then the level ǫik has occupation number j.

For example, the notation fǫ1ǫ1ǫ1ǫ2ǫ3
means that the level ǫ1 has occupation number 3

while the levels ǫ2 and ǫ3 have occupation numbers 1. The levels that do not appear

have occupation number zero. Another point to be remarked is that since the elements

of ǫ are real numbers, we can take the standard ordering relation over the reals and

order the indexes according to this ordering in the representation fǫi1
ǫi2
...ǫim

. This will

be important when we consider the cases for bosons and fermions.
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The quasi-functions of F provide the key to the solution to the problem of label-

ing states. Since we use pure quasi-sets as the images of the quasi-functions, there is

simply no question of indexes for particles, for all that matters are the quasi-cardinals

representing the occupation numbers. To make it clear that permutations change noth-

ing, one needs only to notice that a quasi-function is a q-set of weakly ordered pairs.26

Taking two of the pairs belonging to some quasi-function, let us say 〈ǫi, x〉, 〈ǫ j, y〉, with

both x and y non-empty, a permutation of particles would consist in changing elements

from x with elements from y. However, by the unobservability of permutations theo-

rem,27 what we obtain after the permutation is a q-set indistinguishable from the one we

began with. Remember also that a quasi-function attributes indistinguishable images

to indistinguishable items; thus, the indistinguishable q-set resulting from the permuta-

tions will also be in the image of the same eigenvalue. To show this point precisely, we

recall that by definition 〈ǫi, x〉 abbreviates [[ǫi], [ǫi, x]],28 and an analogous expression

holds for 〈ǫ j, y〉. Also, by definition, [ǫi, x] is the collection of all the items indistin-

guishable from ǫi or from x (taken from a previously given q-set). For this reason, if

we permute x with x′, with x ≡ x′ we change nothing for [ǫi, x] ≡ [ǫi, x′]. Thus, we

obtain 〈ǫi, x〉 ≡ 〈ǫi, x′〉 and the ordered pairs of the permuted quasi-function will be

indiscernible (the same if there are no m-atoms involved). Thus, the permutation of

indistinguishable elements does not produce changes in the quasi-functions.

7.2 A Vector Space Structure

Now, we wish to have a vector space structure to represent quantum states. To do that,

we need to define addition and multiplication by scalars. Before we go on, we must

notice that we cannot define these operations directly on the q-set F , for there is no

simple way to endow it with the required structure; our strategy here is to define ⋆

(multiplication by scalars) and + (addition of vectors) in a q-set whose vectors will be

quasi-functions fromF to the set of complex numbersC. Let us call C the collection of

quasi-functions that assign to every f ∈ F a complex number. Once again, we select

from C the sub-collection CF of quasi-functions c such that every c ∈ CF attributes

complex numbers λ , 0 for only a finite number of f ∈ F . Over CF , we can define

a sum and a product by scalars in the same way as it is usually done with functions as

follows.

Definition 7.1 Let γ ∈ C, and c, c1 and c2 be quasi-functions of CF , then

(γ ⋆ c)( f ) := γ(c( f ))

(c1 + c2)( f ) := c1( f ) + c2( f )

The quasi-function c0 ∈ CF such that c0( f ) = 0 for every f ∈ F acts as the null element

for the sum operation. This can be shown as follows:

(c0 + c)( f ) = c0( f ) + c( f ) = 0 + c( f ) = c( f ),∀ f . (9)

26A weak ordered pair is a qset having just one element (that is, its cardinal is one). We cannot name such

an element, for we need an identity to do that. SO, it can be taken as one element of a kind.
27This theorem says that if we exchange an element of a qset by an indistinguishable one, the resulting

qset turns to be indistinguishable from the original one.
28We are leaving aside the subindices in this notation.
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With both the operations of sum and multiplication by scalars defined as above we

have that 〈CF ,C,+, ⋆〉 has the structure of a complex vector space, as one can easily

check. Some of the elements of CF have a special status though; if c j ∈ CF are the

quasi-functions such that c j( fi) = δi j (where δi j is the Kronecker symbol), then the

vectors c j are called the basis vectors, while the others are linear combinations of them.

For notational convenience, we can introduce a new notation for the q-functions in

CF ; suppose c attributes a λ , 0 to some f , and 0 to every other quasi-function in F .

Then, we propose to denote c by λ f . The basis quasi-functions will be denoted simply

fi, as one can check. Now, multiplication by scalar α of one of these quasi-functions,

say λ fi can be read simply as (α · λ) fi, and sum of quasi-functions λ fi and α fi can be

read as (α + λ) fi. What about the other quasi-functions in CF? We can extend this

idea to them too, but with some care: if, for example c0 is a quasi-function such that

c0( fi) = α and c0( f j) = λ, attributing 0 to every other quasi-function in F , then c0 can

be seen as a linear combination of quasi-functions of a basis; in fact, consider the basis

quasi-functions fi and f j, (this is an abuse of notation, for they are representing quasi-

functions in CF that attribute 1 to each of these quasi-functions). The first step consists

in multiplying them by α and λ, respectively, obtaining α fi and λ f j (once again, this

is an abuse, for these are quasi-functions in CF that attribute the mentioned complex

numbers to fi and to f j). Now, c0 is in fact the sum of these quasi-functions, that is,

c0 = α fi + λ f j, for this is the function which does exactly what c0 does. One can then

extend this to all the other quasi-functions in CF as well.

7.3 Inner Products

The next step in our construction is to endow our vector space with an inner product.

This is a necessary step for we wish to calculate probabilities and mean values. Follow-

ing the idea proposed in [11], we introduce two kinds of inner products, which lead us

to two Hilbert spaces, one for bosons and another for fermions. We begin with the case

for bosons.

Definition 7.2 Let δi j be the Kronecker symbol and fǫi1
ǫi2
...ǫin

and fǫi′
1
ǫi′

2
...ǫi′m

two basis

vectors (as discussed above), then

fǫi1
ǫi2
...ǫin
◦ fǫi′

1
ǫi′

2
...ǫi′m

:= δnm

∑

p

δi1 pi′
1
δi2 pi′

2
. . . δin pi′n . (10)

Notice that this sum is extended over all the permutations of the index set i′ = (i′
1
, i′

2
, . . . , i′n);

for each permutation p, pi′ = (pi′1, pi′2, . . . , pi′n).

For the other vectors, the ones that can be seen as linear combinations in the sense

discussed above, we have

(
∑

k

αk fk) ◦ (
∑

k

α′k f ′k ) :=
∑

k j

α∗kα
′
j( fk ◦ f ′j ), (11)

where α∗ is the complex conjugate of α. Now, let us consider fermions. As remarked

above in page 23, the order of the indexes in each fǫi1
ǫi2
...ǫin

is determined by the canon-

ical ordering in the real numbers. Thus, we define another • inner product as follows,

which will do the job for fermions.
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Definition 7.3 Let δi j be the Kronecker symbol and fǫi1
ǫi2
...ǫin

and fǫi′
1
ǫi′

2
...ǫi′m

two basis

vectors, then

fǫi1
ǫi2
...ǫin
• fǫi′

1
ǫi′

2
...ǫi′m

:= δnm

∑

p

σpδi1 pi′
1
δi2 pi′

2
. . . δin pi′n (12)

where: σp = 1 if p is even and σp = −1 if p is odd.

This definition can be extended to linear combinations as in the previous case.

7.4 Fock spaces using Q-spaces

We begin with a definition to simplify the notation. For every function fǫi1
ǫi2
...ǫin

in F ,

we put

α|ǫi1ǫi2 . . . ǫin ) := α fǫi1
ǫi2
...ǫin

Note that this is a slightly modified version of the standard notation. We begin with the

case of bosons.

Suppose a normalized vector |αβγ . . .), where the norm is taken from the corre-

sponding inner product. Let ζ stand for an arbitrary collection of indexes. We define

a
†
α|ζ) ∝ |αζ) in such a way that the proportionality constant satisfies a

†
αaα|ζ) = nα|ζ).

From this it will follow, as usual, that:

((ζ |a†α)(aα|ζ)) = nα.

Definition 7.4 aα| . . .nα . . .) :=
√

nα| . . .nα − 1 . . .)

On the other hand,

aαa†α| . . . nα . . .) = K
√

nα + 1| . . .nα . . .),

where K is a proportionality constant. Applying a
†
α again, we have

a†αaαa†α| . . .nα . . .) = K2
√

nα + 1| . . .nα + 1 . . .).

Using the fact that a
†
αaα|ζ) = nα|ζ), we have that

(a†αaα)a†α| . . .nα . . .) =
√

nα + 1K| . . .nα + 1 . . .).

So, K =
√

nα + 1. Then, we have

Definition 7.5 a
†
α| . . .nα . . .) :=

√
nα + 1| . . .nα + 1 . . .).

From this definition, with additional computations, we obtain (aαa
†
β−a

†
βaα)|ψ) = δαβ|ψ).

In our language, this means the same as

[aα; a
†
β
] = δαβI.
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In an analogous way, it can be shown that

[aα; aβ] = [a†α; a
†
β
] = 0.

So, the bosonic commutation relation is the same as in standard Fock space formalism.

For fermionic states, we use the antisymmetric product “•.” We begin by defining

the creation operator C
†
α.

Definition 7.6 If ζ is a collection of indexes of non-null occupation numbers, then

C
†
α := α|ζ)

If α is in ζ, then |αζ) is a vector of null norm. This implies that (ψ|αζ) = 0, for every

ψ. It follows that systems in states of null norm have no probability of being observed.

Furthermore, their addition to another vector does not contribute to any observable

difference. To take the situation into account, we have the following definition.

Definition 7.7 Two vectors |φ) and |ψ) are similar if the difference between them is

a linear combination of null norm vectors. We denote similarity of |φ) and |ψ) by

|φ) � |ψ).

Using the definition of C
†
α we can describe what is the effect of Cα over vectors, namely

(ζ |Cα := (αζ |.

Then, for any vector |ψ),

(ζ |Cα|ψ) = (αζ |ψ) = 0

for α ∈ ζ or (ψ|αζ) = 0. Then, if |ψ) = |0), then (ζ |Cα|0) = (αζ |0) = 0. So, Cα|0) is

orthogonal to any vector that contains α, and also to any vector that does not contain α,

so that it is a linear combination of null norm vectors. So, we can put by definition that
~0 := Cα|0). In an analogous way, if ∼ α denotes that α has occupation number zero,

then we can also write Cα|(∼ α) . . .) = ~0, where the dots mean that other levels have

arbitrary occupation numbers.

Now, using our notion of similar vectors, we can write Cα|0) � ~0 and Cα|(∼
α) . . .) � ~0. The same results are obtained when we use � and the sign of identity.

By making |ψ) = |α), we have (ζ |Cα|α) = (αζ |α) = 0 in every case, except when

|ζ) = |0). In that case, (0|Cα|α) = 1. Then, it follows that Cα|α) � 0. In an analogous

way, we obtain Cα|αζ) =� |(∼ α)ζ) when α < ζ. In the case α ∈ ζ, |αζ) has null norm,

and so, for every |ψ):

(αζ |C†α|ψ) = (αζ |αψ) = 0.

It then follows that

(ψ|Cα|αζ) = 0,

so that Cα|αζ) has null norm too.

Now we calculate the anti-commutation relation obeyed by the fermionic creation

and annihilation operators. We begin calculating the commutation relation between Cα

and C
†
β. We do that by studying the relationship between |αβ) and |βα). Let us consider

the sum |αβ) + |βα). The product of this sum with any vector distinct from |αβ) is null.
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For the product with |αβ) we obtain (αβ|[|αβ)+|βα)] = (αβ||αβ)+(αβ||βα). By definition,

this is equal to δααδββ − δαβδβα + δαβδαα − δααδββ. This is equal to 1 − 0 + 0 − 1 = 0.

The same conclusion holds if we multiply the sum |αβ) + |βα) by (βα|. It then

follows that |αβ) + |βα) is a linear combination of null norm vectors, which we denote

by |nn), so that

|αβ) = −|βα) + |nn).

Given that, we can calculate

C†αC
†
β
|ψ) = |αβψ) = −|βα|ψ) + |nn) = −C

†
β
C†α|ψ) + |nn).

From this it follows that {C†α; C
†
β}|ψ) = |nn). We do not lose generality by setting

{C†α; C
†
β}|ψ) = 0. In an analogous way we conclude that

{Cα; Cβ}|ψ) = 0.

Now we calculate the commutation relation between Cα and C
†
β
. There are some

cases to be considered. We first assume that α , β. If α < ψ or β ∈ ψ then

{Cα; C
†
β}|ψ) ≈ ~0.

If α ∈ ψ and β < ψ, assuming that α is the first symbol in the list of ψ, then {Cα; C
†
β}|ψ) =

Cα|βψ) + C
†
β |ψ(∼ α)) � −|βψ(∼ α)) + |βψ(∼ α)) = ~0. If α = β and α ∈ ψ, then

{Cα; C
†
α}|ψ) = Cα|αψ) + C

†
α|ψ(∼ α)) � ~0 + |ψ) = |ψ). If α = β and α < ψ, then

{Cα; C
†
α}|ψ) = Cα|αψ) + C

†
α|ψ(∼ α)) � |ψ) + ~0 = |ψ). In any case, we recover

{Cα; C
†
α}|ψ) � δαβ|ψ). So, we can put

{Cα; C†α} = δαβ.

It then follows that the commutation properties in Q-spaces are the same as in tradi-

tional Fock spaces.

Using this formalism, we can adapt all the developments done in [26, Chap.7]

and [27, Chap.20] for the number occupation formalism. However, contrary to what

happens in these books, no previous (even unconscious) assumptions about quantum

objects’ individuality is taken into account.

8 Conclusions

It is an exciting question to ask if we need to change logic every time we find diffi-

culties with the classical one. Are there other ways to circumvent the problems, such

as in the quantum case, using the tricks mentioned above, or choosing an alternative

interpretation? This question makes sense. However, we think that every theory, even

a mathematical one, starts from metaphysical hypotheses, even if not made explicit.

We have stated above that classical logic, standard mathematics, and classical physics

were developed with the classical enclosing world in our minds. This world is one
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of individuals that have an identity. So, two of those individuals cannot possibly be

different.

Nevertheless, quantum mechanics brought us a different world, a world with no

proper names. In the quantum world, objects are (in most cases) precisely alike, and

permutations between objects of the same kind do not lead to any physical differences.

Here we emphasize that it is not that these are not measurable differences; they are no

differences at all. So, we arrive at the following conclusions.

1. Indistinguishability is essential in quantum mechanics, regardless of interpretation.

In our opinion, it should be placed at an equal level of importance in quantum

foundations to concepts such as entanglement, contextuality, and nonlocality.

2. Ontological and epistemic aspects matter. Any physical theory is grounded in in-

terpretations due to the possibility of associating different world views (or meta-

physics) to a theory. Parodying Poincaré, we can say that physics is (also) a

domain where we give the same name to distinct things.29

3. Since mathematics and logic need to reflect the assumed metaphysical aspects (we

could speak in terms of ontology), quantum mechanics’ formalism and physical

theories should do the same.

Let us expand on this last point with an example involving logic. It is common to

say that in order to obtain intuitionistic logic, it is enough to drop the excluded mid-

dle law from the axioms of classical logic. From a purely formal point of view, this

is correct. However, logic is not only syntax. It also involves semantic aspects and

even pragmatic ones (making references to who uses the logic and why). Let us con-

sider semantics. Although classical and intuitionistic logic differs syntactically just by

one axiom, semantically, they are much different. Classical propositional logic can be

described through truth-tables; intuitionistic logic cannot. In classical logic, any propo-

sition is either true or false, yet we may not know what the case is; in intuitionistic logic,

the notions of true and false are different. In this logic, a proposition p is true if there

is a “process” to get it, and false if a process for obtaining p leads to a contradiction.

Other differences can be pointed out. For instance, in classical logic, something exists

if its nonexistence creates a contradiction. In intuitionistic logic, something exists if it

can be created by our imagination.

This example shows that in order to consider a logic, semantical aspects must at

least be considered. Of course, this is true also with physical theories. Otherwise, we

risk having a purely mathematical theory. However, what corresponds to semantics

in the quantum case? We chose interpretations because quantum mechanics, as Yuri

Manin wrote, “does not really have its own language” [25, p. 84]. At least not yet. In-

deed, the standard formalism grounded on Hilbert spaces makes use of the language of

standard functional analysis, which presupposes classical mathematics and logic, with

all the problems seem before (in regarding quantum phenomena). A proper language

should reflect the indiscernibility of quanta from the start, without tricks!

29Poincaré was referring to mathematics: “mathematics is the art of giving the same name to distinct

things” — look at [38]. Of course, he spoke within the framework of axiomatized mathematical theories,

able to have different models.

29



As we showed in this paper, such a correct language can be constructed. In this

paper, we examined content and context in quantum physics. We provided examples

of context for the classical and quantum realms and argued that the quantum situa-

tion is fundamentally different. Furthermore, we reasoned that context-dependency in

the quantum world is intrinsically connected to the lack of identity. Thus, the non-

identity of individuals is an essential feature of the quantum world. Since the standard

mathematics used in physics does not exactly allow for objects who lack identity, i.e.,

indistinguishable objects, we advocated for using a different mathematical structure in

physics: quasi-set theory. Quasi-set theory includes standard mathematic in it but also

contains indistinguishable objects. We believe that recreating quantum physics in terms

of quasi-set theory and its underlying logic would result in thinking closer to a more

reasonable ontology for the quantum world than currently available ontologies. This

way of thinking may lead to exciting insights into quantum ontologies and fundamental

physical principles that define quantum mechanics.
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