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Symmetric and antisymmetric structure functions from electromagnetic deep inelastic scattering of charged
leptons off spin-1=2 hadrons are investigated in the framework of a top-down holographic dual description.
We consider the Brower-Polchinski-Strassler-Tan Pomeron, type IIB superstring theory scattering ampli-
tudes, and type IIB supergravity on AdS5 × S5. In all cases, the hard-wall prescription is used. Different
kinematic regions of the Bjorken variable x, as well as the squared momentum of the virtual photon Q2, are
studied in detail for FP

2 and gP1 structure functions of the proton. Also, the virtual Compton scattering
asymmetry of the proton AP

1 is investigated. Comparison with data from several experimental collaborations
is presented. In addition, the holographic Pomeron leads to predictions for the mentioned observables for very
small x values. In particular, we present predictions for gP1 at Q2 around 10 GeV2, for data expected to be
measured in a future electron-ion collider. Limitations of this holographic dual approach are discussed.
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I. INTRODUCTION

Deep inelastic scattering (DIS) of leptons off hadrons is
one of the most important experiments in the history of
modern high energy physics. First experiments of the DIS
of electrons off protons started at the two-mile accelerator
at the Stanford Linear Accelerator Center in late 1967 [1,2].
These experiments, together with the theoretical develop-
ments which encompassed those discoveries, led to a
profound understanding of the structure of nature within
the domain of quantum chromodynamics (QCD). Very
important further experimental and theoretical develop-
ments have produced an immense advance in the compre-
hension of the hadron structure.1 The next step towards the
understanding of the hadron structure will be the exper-
imental program at the Electron-Ion Collider (EIC). It will
lead to the possibility of exploring very small values of the

Bjorken parameter, x, and simultaneously, a wide range of
the squared virtual-photon momentum, Q2. In this para-
metric region, the physics of the nucleon and nuclei
structure is dominated by the gluons. It is also expected
that the EIC will provide unprecedented access to the
spatial and spin structure of the proton, neutron, and light
ions [3]. These are strong motivations to develop new
models as well as to explore their ability to predict
the behavior of the hadron structure functions in this
kinematic domain.
Our present work focuses on two very interesting

aspects. On the one hand, it analyzes the comparison of
models derived from string theory, in terms of the gauge/
string theory duality, with data for symmetric and anti-
symmetric structure functions from several experimental
collaborations within the already explored kinematical
ranges. We will see how with using a very few parameters,
many experimental data are fitted very well for small and
moderately small values of the Bjorken parameter. On the
other hand, the formulas used to fit data are also valid for a
kinematic regime, where there are no experimental data
yet (i.e., for very small x and Q2 around 10 GeV2 for the
antisymmetric structure function gP1 ). Thus, this also gives
predictions for experimental data expected to be measured
at the EIC. These are compelling reasons for the develop-
ment of the work we present in this article.
For polarized charged leptons and polarized hadrons, the

DIS differential cross section corresponding to a final
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1Several of these experimental collaborations are cited in
Sec. III for the structure function F2, in Sec. IV for the
antisymmetric function g1, and in Sec. V for the virtual Compton
scattering asymmetry of the proton.
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polarized lepton in the solid angle dΩ and in the final
energy range ðE0; E0 þ dE0Þ, is given by [4]

d2σ
dΩdE0 ¼

α2em
2Mq4

E0

E
lμνWμν: ð1:1Þ

This is in the laboratory frame where the hadron
carries four-momentum Pμ ¼ ðM; 0Þ, while the incoming

and outgoing lepton four-momenta are kμ ¼ ðE; k⃗Þ and

k0μ ¼ ðE0; k⃗0Þ, respectively. M denotes the nucleon mass,
and αem is the fine structure constant. This expression
assumes the exchange of a single virtual photon between
the incoming lepton and the hadron. The differential
cross section is defined in terms of the so-called leptonic
tensor lμν and the hadronic tensor Wμν. The virtual photon
which probes the hadron structure carries four-momentum

qμ ¼ kμ − k0μ. The four-dimensional Minkowski metric is
defined mostly plus ημν ¼ diagð−1; 1; 1; 1Þ. There is also a
spin four-vector corresponding to the incoming baryon, Sμ,
with the normalization SμSμ ¼ M2. In addition, the Bjorken
variable is defined as

x ¼ Q2

2P · q
; ð1:2Þ

where 0 ≤ x ≤ 1 corresponds to its physical range and
Q2 ¼ q2. In the DIS limit, Q2 becomes very large, while x
is kept fixed. For a spin-1=2 baryon, one may write the
following decomposition for the hadronic tensor [4,5]:

Wμν ¼ WðSÞ
μν ðq; PÞ þ iWðAÞ

μν ðq; P; SÞ; ð1:3Þ
where the symmetric part is

WðSÞ
μν ¼

�
ημν −

qμqν
q2

��
F1ðx; q2Þ þ

1

2

S · q
P · q

g5ðx; q2Þ
�
;

−
1

P · q

�
Pμ −

P · q
q2

qμ

��
Pν −

P · q
q2

qν

��
F2ðx; q2Þ þ

S · q
P · q

g4ðx; q2Þ
�

−
1

2P · q

��
Pμ −

P · q
q2

qμ

��
Sν −

S · q
P · q

Pν

�
þ
�
Pν −

P · q
q2

qν

��
Sμ −

S · q
P · q

Pμ

��
g3ðx; q2Þ; ð1:4Þ

and the antisymmetric part is given by

WðAÞ
μν ¼−

εμνρσqρ

P ·q

�
Sσg1ðx;q2Þþ

�
Sσ −

S ·q
P ·q

Pσ

�
g2ðx;q2Þ

�

−
εμνρσqρPσ

2P ·q
F3ðx;q2Þ: ð1:5Þ

Notice that in QCD for the electromagnetic DIS the
functions g3, g4, g5, and F3 do not appear. On the other
hand, forN ¼ 4 supersymmetric Yang-Mills theory, with a
certain kind of IR deformation, F3 is nonzero [6–8]. This
IR deformation is such that there are massless Nambu-
Goldstone modes emerging from the spontaneous breaking
of the R symmetry [6].
The optical theorem based on the unitarity of the Smatrix

relates the forward Compton scattering (FCS) amplitude to
the DIS cross section. Thus, there are the relations,

WðSÞ
μν ¼ 2π Im½TðSÞ

μν � and WðAÞ
μν ¼ 2π Im½TðAÞ

μν �; ð1:6Þ

where Tμν is given by the time-ordered expectation value of
the product of two electromagnetic currents inside the
hadron,2

Tμν ≡ i
Z

d4x eiq·xhPjT̂fJμðxÞJνð0ÞgjPi: ð1:7Þ

In addition, for longitudinally polarized hadrons,
the longitudinal spin-spin asymmetry Ak for leptonþ
proton → leptonþ X can also be measured [4]. This is
constructed from differential scattering cross sections of
electrons with a parallel (→) or antiparallel (←) spin
aligned with respect to the direction of motion. Let us
take it along the x3 coordinate. On the other hand, protons
can be polarized parallel (⇒) or antiparallel (⇐) with
respect to the direction of motion of the lepton beam.3 The
longitudinal spin-spin asymmetry is defined as

Ak ¼
dσ→⇐ − dσ→⇒
dσ→⇐ þ dσ→⇒

: ð1:8Þ

In order to simplify some equations, the notation has been
abbreviated by defining the differential cross sections as
dσ ¼ d2σ=ðdΩdE0Þ with arrows indicating the correspond-
ing polarization states. The longitudinal spin-spin asym-
metry can be written from the virtual Compton scattering
asymmetries A1 and A2 as

2We also use the variable x to represent the four-dimensional
Minskowski spacetime coordinates x≡ xμ ¼ ðx0; x1:x2; x3Þ.

3Also, the hadrons can be perpendicularly polarized, both up
(⇑) or down (⇓). We shall focus only on the longitudinally
polarized case of both leptons and hadrons.
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Ak ¼ DðA1 þ ηA2Þ; ð1:9Þ

where

A1 ¼
g1 − ð4M2x2=Q2Þg2

F1

; ð1:10Þ

which is a function that we study in Sec. V and compare
with experimental data for the proton AP

1 , and also,

A2 ¼
2Mxffiffiffiffiffiffi
Q2

p g1 þ g2
F1

; ð1:11Þ

where F1 is a symmetric structure function in Eq. (1.4),
while g1 and g2 are antisymmetric structure functions
in (1.5). In addition, D and η in Eq. (1.9) are given by

D ¼ E − ϵE0

Eð1þ ϵRÞ ; ð1:12Þ

and

η ¼ ϵ
ffiffiffiffiffiffi
Q2

p
E − ϵE0 ; ð1:13Þ

while ϵ in the two previous equations is defined as

ϵ ¼ 1

1þ 2
	
1þ ν2

Q2



tan2ðθ=2Þ

; ð1:14Þ

with ν ¼ E − E0, while

R ¼ F2

2xF1

�
1þ 4M2x2

Q2

�
− 1; ð1:15Þ

has been defined as the ratio of the longitudinal to trans-
verse cross sections.
Since in the DIS limit η and A2 are very small, from

Eq. (1.9), we can write

Ak ≈DA1; ð1:16Þ

and within the same approximation R becomes

R ≈
F2 − 2xF1

2xF1

: ð1:17Þ

Finally, one obtains

A1 ≈ 2xð1þ RÞ g1
F2

; ð1:18Þ

which is to be compared with AP
1 in Sec. V.

In order to calculate the mentioned relevant quantities
related to observables, the problem is how to calculate the

tensor Tμν, taking into account the nonperturbative effects
due to QCD soft processes. There are several approaches
for different parametric regions in terms of Q2 and the
Bjorken parameter (for a review, see, for instance, the
books [9–11]). Specially important is the DGLAP formu-
lation where the splitting functions, written in terms of
the gluon Bremsstrahlung by quarks and the quark anti-
quark pair production from a gluon, play a fundamental
role [12–14]. Particularly, for scattering at small angles
and high energies, the description involves a soft-Pomeron
Regge pole corresponding to a glueball and a hard BFKL
Pomeron, which emerges from the leading order QCD
calculations at weak coupling [15–17]. In [18], it has been
constructed a unified description of the soft and hard
Pomerons. The resulting object is known as the Brower-
Polchinski-Strassler-Tan (BPST) Pomeron, which for neg-
ative values of the t-channel Mandelstam variable leads to
results similar to those obtained from the BFKL Pomeron.
On the other hand, for positive t values it gives the expected
Regge behavior. The BPST Pomeron is based on the gauge/
string theory duality. In the context of DIS, this duality has
been developed by Polchinski and Strassler in the pioneer-
ing article [19]. They firstly considered the supergravity
regime, where the s channel dominates both for glueballs
and spin-1=2 fermions, and then studied the small-x region
where superstring theory scattering amplitudes provide the
leading contribution in the large-Nc limit of the dual gauge
theory for DIS of charged leptons from glueballs. The
calculation of the full hadronic tensor for a spin-1=2 hadron
from type IIB superstring theory scattering amplitudes has
been done in [8].
Also, hard scattering in the gauge/string theory duality

framework was previously considered in [20], obtaining a
crucial result, namely: fundamental strings propagating in
certain curved spaces lead to the correct power-law
behavior for high-energy scattering amplitudes of hadrons.
In that particular case, they considered type IIB closed
strings propagating in AdS5 × S5 (with a sharp IR cutoff
leading to a confinement scale in the dual gauge theory)
representing the hard scattering of 2 → m glueballs. The
warp factor of the curved AdS space-time leads to the
power-law behavior for the scattering amplitude, which is
totally different in comparison with the typical soft (expo-
nentially decaying) behavior obtained from propagation of
strings in Minkowski space. The warp factor also provides
a mechanism to understand the size of hadrons from a dual
string theoretical perspective [21], which is deeply related
to the developments presented in [19].
The calculation of the F2 structure function from the

BPST Pomeron has been originally done in [22], and their
results include the conformal case (where there is no IR
cutoff), the hard-wall BPST Pomeron, and also the cor-
rections coming from the eikonal approximation. Their
main result was to show how good is the description of the
small-x range of DIS of data from HERA [23] in terms of
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the exchange of a single BPST Pomeron. Considering the
hard-wall BPST Pomeron, they found that for a combined
H1-ZEUS dataset which originally contained 249 points,
after excluding “ouliers” by using a sieving method (with a
Δχ2max ¼ 4), the fit turns out to be quite good. They found a
χ2d:o:f: per degree of freedom equal to 1.07 for the range
0.1 GeV2 < Q2 ≤ 400 GeV2 and the Bjorken parameter
smaller than 0.01. For comparison, with the new results that
we have obtained in our present work, we display the
mentioned fit of Ref. [22] in the second line of our Table I.
One should notice that when using the BPST Pomeron,
there are only four free parameters to fit all the data in the
mentioned kinematical ranges. Using the parameters of the
F2 fit obtained in [22], one of the remarkable results of
Ref. [8] was to derive the contribution from the exchange of
a holographic Pomeron to the calculation of the antisym-
metric structure function g1 and perform its comparison
with data for the proton from the COMPASS Collaboration
[24–26]. In this case, it appears only one additional
parameter to fit 30 experimental points of reference [26],
obtaining χ2d:o:f: ¼ 1.074, which is also a very good fit.
Thus, given the success of confronting the holographic

calculations for both symmetric and antisymmetric struc-
ture functions with experimental data of the proton within
0.1 GeV2 < Q2 < 400 GeV2 and 2.43 × 10−6 ≤ x < 0.01

ranges for F2 [22], and 0.062 GeV2 < Q2 < 2.41 GeV2

and 5.1 × 10−5 ≤ x < 0.01 for g1 [8], in this work, we aim
at exploring how well the fits behave by including more
data from other experimental collaborations for both
structure functions, and also considering a range of x 10
times larger than the x range studied in these two previous
papers. Specifically, for FP

2 , we consider an initial set of
305 points, in comparison with the initial dataset used in
[22] with 249 points of H1-ZEUS, for the same range
2.43 × 10−6 ≤ x < 0.01. Moreover, we then extend the
range to 0.01 < x < 0.1, which has 278 data. In the whole
range of the Bjorken parameter that we explore, we study
583 experimental points. This is explained in Sec. III. Then,
in Sec. IV B, we also consider an extended parametric
range for gP1 , almost duplicating the number of data with
respect to those included in [8], and still obtaining a very
good comparison between theory and experiment.
We should emphasize that all situations in our analysis

correspond to the full range of the virtual-photon momen-
tum transfer that we study, while the range of the Bjorken
parameter is 10 times larger than the one considered in
[8,22], respectively. Thus, the number of experimental
points in our present work is more than twice in comparison
with the number of data considered in these references
(going from 249 to 583 points for FP

2 , and from 30 to 151
points for gP1 , respectively). In addition, in Sec. V, we
further develop the holographic dual approach to inves-
tigate the virtual Compton scattering asymmetry of the
proton and compare it with experimental data, obtaining a
good level of agreement. To our knowledge, this is the first
holographic dual study of AP

1 . We discuss different aspects
of the limitations of this analysis. The main depart from

TABLE I. Main results of the present work for different fits of the proton structure function F2ðx;Q2Þ. In lines 11 and 12, the values of
the constant Cst, corresponding to the contribution from the string theory scattering amplitude to the linear combination with the hard-
wall BPST Pomeron, are 9 × 10−5 � 4 × 10−5 and 9 × 10−5 � 3 × 10−5, respectively. Np represents the number of experimental points
in each fit. In lines 1 to 10, there are four parameters, while in lines 11 and 12, there are five parameters. Lines 6, 8 and 10 include data
from the JLab Collaboration (considering a BPST Pomeron with an IR hard-wall cutoff), which is explained in the main text.4

Model x range Np

Sieving
Δχ2max ρ ¼ 2λ−1=2‚t Hooft g20 z0 [GeV−1] Q0 [GeV] χ2d:o:f:

1 Hard-wall BPST < 0.01 249 No 0.7776� 0.0019 105.01� 0.85 5.039� 0.076 0.4632� 0.0122 1.34
2 Hard-wall BPST < 0.01 228 4 0.7791� 0.0016 103.14� 0.798 4.959� 0.062 0.4332� 0.0115 1.07
3 Hard-wall BPST < 0.01 305 No 0.7743� 0.0016 105.42� 0.80 5.0104� 0.0741 0.4838� 0.0099 1.28
4 Hard-wall BPST < 0.01 280 4 0.7729� 0.0014 103.73� 0.757 4.894� 0.061 0.4715� 0.0093 1.086
5 Hard-wall BPST < 0.1 548 No 0.8314� 0.003 139.25� 1.12 10.57� 0.99 0.5400� 0.015 12.08
6 HwBPST ⊕ JLab < 0.1 583 No 0.8329� 0.0028 139.22� 1.09 10.62� 0.96 0.5328� 0.0143 11.48
7 Hard-wall BPST [0.01, 0.1] 243 No 0.9176� 0.0037 158.06� 1.06 3.903� 0.298 0.5012� 0.0265 2.23
8 HwBPST ⊕ JLab [0.01, 0.1] 278 No 0.9207� 0.0032 158.44� 1.03 4.193� 0.295 0.5082� 0.0178 1.99
9 Hard-wall BPST [0.01, 0.1] 201 4 0.9194� 0.0032 157.96� 0.80 3.751� 0.205 0.4782� 0.0307 1.25
10 HwBPST ⊕ JLab [0.01, 0.1] 236 4 0.9283� 0.0028 159.00� 0.92 4.402� 0.249 0.4991� 0.0133 1.10
11 BPST ⊕ str: th: [0.01, 0.1] 243 No 0.9135� 0.0039 157.90� 0.83 3.537� 0.250 0.4765� 0.0536 2.18
12 BPST ⊕ str: th: [0.01, 0.1] 204 4 0.9165� 0.0028 159.64� 7.11 3.477� 0.065 0.4049� 0.1691 1.24

4Notice that the central values for all parameters shown in lines
1 and 2 coincide with their corresponding central values of the fits
obtained in [22]. However, their corresponding errors are slightly
different in comparison with the ones shown in that reference. We
have checked it carefully and conclude that our results presented
in Table I are correct.
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experimental results occurs for the parametric region
0.1 < x < 1, where valence quarks play a very important
role, while the top-down holographic dual model we study
does not describe fundamental quarks. We discuss these
issues in the last section of the work.

II. SPIN-1=2 HADRON STRUCTURE FROM A
TOP-DOWN HOLOGRAPHIC DUAL APPROACH

In this section, we study predictions for the symmetric
and antisymmetric structure functions of the proton from a
holographic dual description based on type IIB superstring
theory. Let us emphasize that there is not an specific
holographic dual model of QCD, even in the large Nc limit.
This may seem an obstacle for describing real hadrons in
terms of string theory dual models. However, there is a
compelling reason to investigate the large Nc limit of gauge
theories like QCD from top-down models based on string
theory: there are important properties of the hadron
structure functions, which are “universal,” in the sense
that they are independent of any specific holographic dual
model.5 Thus, this “universal” character should be reflected
on the comparison of the holographic dual model with
experimental data. Besides, in the case of strongly coupled
quark-gluon plasma (QGP), there is important agreement
between the top-down holographic dual description based
on type IIB superstring theory on an asymptotically AdS5-
Schwarzschild black hole times S5 and lattice QCD
calculations at finite temperature (for a review, see [36]).
For instance, this is for the case of mass transport properties
such as the shear viscosity/entropy density ratio, both at
extremely large ’t Hooft coupling [37], and at finite
coupling [38] and also, considering electric charge trans-
port, such as for electrical conductivity at large
coupling [39] and in the strong coupling expansion [40].
We can also mention the photoproduction rates [39],
including the strong coupling expansion [41,42], which
enter the calculation of direct photoemission rates that can
be compared with relativistic heavy-ion collisions experi-
ments at the Relativistic Heavy Ion Collider and at the
Large Hadron Collider. In addition, the DIS of electrons off
a QGP has been studied in [43], while the strong coupling
corrections have been derived in [44]. Another very
important reason is that top-down models have only a
few parameters inherited from the string theory side of the
duality. These are related to the number of D3-branes, Nc,

the fundamental string length squared, α0 ¼ l2s , the nor-
malization constants of the wave functions of the bulk
fields or their corresponding Kaluza-Klein modes after
dimensional reduction, and a certain cutoff to ensure IR
confinement of the gauge theory. In this sense, top-down
models are much more stringent than the bottom-up models
like AdS/QCD.
We consider the holographic dual description in terms of

the large Nc limit ofN ¼ 4 SYM theory, with all the fields
in the adjoint representation of SUðNcÞ. Thus, this holo-
graphic dual model does not contain fermions in the
fundamental representation. Therefore, one should expect
to have a “universal” description for the physics of DIS in
the parametric region where the valence quarks of QCD are
not relevant. This corresponds to low-x values, where the
dominant effects come from the gluon dynamics and the
quark antiquark sea in QCD. This is what we investigate in
this work, trying to understand the results of the compari-
son with experiments. We also discuss certain aspects for
large-x values, however in this case, focusing on the
limitations of the model in that parametric region.
In this holographic dual model, the baryon is represented

by a five-dimensional spin-1=2 Kaluza-Klein mode of the
ten-dimensional dilatino (λ̂) of type IIB supergravity, after
dimensional reduction on S5. We consider the low-lying
Kaluza-Klein spin-1=2 fermion in AdS5. By using the
mapping of string/supergravity states onto SYM operators,

the correspondingN ¼4 SYM theory operator isOð6Þ
0 ðxÞ ¼

Cð6ÞTrðFþλN¼4ÞðxÞ. Its twist is τ ¼ Δ − s ¼ 3, where Δ is
the conformal dimension of an operator of spin s.
This is a descendant operator of the N ¼ 4 SYM theory
obtained by the action of three supercharges on
OI2

2 ðxÞ ¼ CI2
i1i2

TrðXi1Xi2ÞðxÞ. The construction of these
operators is done in terms of fields of the N ¼ 4 SYM
gauge supermultiplet, namely: four left Weyl fermions
λN¼4; six real scalars Xj with j ¼ 1;…; 6; and Fþ
representing the self-dual 2-form field strength.
Also, from the type IIB supergravity side, we may

consider the Kaluza-Klein modes for k > 0 from the
compactification on S5. On the gauge field theory side,
they correspond to local twist τ¼ kþ3 spin-1=2 fermionic

operators OIk;ð6Þ
k ðxÞ ¼ CIk;ð6Þ

i1…ik
TrðFþλN¼4Xi1…XikÞðxÞ,

where Ik runs from 1 to the dimension of the irreducible
representation of SUð4ÞR. They belong to the ½1; k; 0�
irreducible representation of the R-symmetry group. By
increasing the number of scalar fields k ¼ 0; 1; 2; 3;… the
dimension of the corresponding irreducible representation
of SUð4ÞR group of these fermionic operators increases as
4, 20, 60, 140, � � �.
A crucial point in order to calculate the DIS cross section

is the relation to the imaginary part of the forward Compton
scattering amplitude given by the optical theorem. The
calculation of the FCS amplitude includes intermediate
states. From the bulk gravitational theory point of view, the

5Universal properties from holographic mesons have been
obtained, for instance, for the relations among different structure
functions for scalar and vector mesons using very different
holographic dual models [27–30]. In type IIA superstring theory,
these relations were calculated for the Sakai-Sugimoto model
[31] and for the D4D6 anti-D6-brane model [32]. Also, in type
IIB superstring theory, in the case of the D3D7-brane model [33],
it has been obtained the same relations. For spin-1=2 fermions in
the supergravity limit, see Refs. [34,35], while in the string theory
and BPST-Pomeron regimes, see the article [8].
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nature of the intermediate states depends on the particular
kinematic region in which we are interested. There are three
distinct parametric regions in terms of the relation between
the ’t Hooft coupling (λ‚t Hooft) and the Bjorken parameter x.
Basically, different parametric regions depend upon the
properties of the intermediate states in the FCS Feynman-
Witten diagram. Firstly, notice that in the large-Nc limit,
only single hadron states contribute. This is represented in
the holographic dual model as a single closed string. Thus,
in terms of the ten-dimensional center-of-mass energy, s̃,
there is the following relation:

s̃≲ ð1 − xÞ
ð4π gstringNcÞ1=2α0x

; ð2:1Þ

where gstring is the string coupling and α0 is the string
constant. Notice that λ‚t Hooft ≡ gstringNc. In the large Nc

limit and for λ−1=2‚t Hooft ≪ x < 1, only supergravity states can
be excited. Therefore, the intermediate states in the SYM
theory calculation just involve the fermionic single-trace
operators, which we just have described, with certain
selection rules worked out in [34,35]. In Sec. II A, we
briefly review some results derived in these papers, which
will be important in order to understand the limitations
of the type IIB supergravity approach. At lower x values,
however, on the dual string theory side, massive type IIB
string theory modes must be considered. Thus, the calcu-
lation is done in terms of the four-closed strings scattering
amplitude with two dilatinos and two gravitons. For the
kinematic region of exponentially small x, the calculation
can be performed by assuming the exchange of a single
BPST Pomeron in the bulk theory. Notice that in the
construction within the framework of the BPST Pomeron,
hadrons are represented by their wave functions that are
approximated by Dirac-delta distributions as explained
in [22]. The remarkable property of the BPST Pomeron
is that it provides a unified framework containing both the
soft Pomeron for positive t-values and the BFKL Pomeron
for t < 0.
Beyond the large Nc, one should calculate 1=N2

c cor-
rections. In the supergravity sector, it implies the exchange
of two Kaluza-Klein modes, which for the DIS process
corresponds to two external states. Beyond supergravity,
within string theory, one should consider one-loop closed
superstring scattering amplitudes. Furthermore, in the
exponentially small-x regime, it should be necessary to
study two BPST Pomerons exchange. In this parametric
region, eikonal methods are relevant for the description of
DIS [45–49].6 Since we focus on the large Nc limit, all the
results discussed in this work correspond to tree-level

calculations. General nonlinear effects from the BPST-
Pomeron kernel associated with several structure functions,
as well as, the virtual Compton scattering asymmetry of the
proton will be investigated elsewhere.

A. A type IIB supergravity dual description
of hadron structure functions

In order to obtain the hadronic tensor, we have to
calculate the expectation value of two electromagnetic
currents inside the hadron. Notice that this can be expressed
as the operator product expansion (OPE) of certain oper-
ators of the N ¼ 4 SYM theory. At strong coupling and in
the planar limit, this OPE is dominated by protected
double-trace operators [19].
The metric of the AdS5 × S5 space can be expressed as

ds2 ¼ z−2ðdz2 þ ημνdxμdxνÞ þ dΩ2
5: ð2:2Þ

The radius of S5 and AdS5 is set to one. Indices a; b; � � � ¼
0;…; 4 correspond to AdS5 space. For its boundary space,
we use greek letters μ; ν; � � � ¼ 0;…; 3. In addition, the
five-sphere indices are denoted by greek letters
α; β; � � � ¼ 1;…; 5. The radial coordinate z goes to zero
in the UV. The hard-wall model contains an arbitrary IR
cutoff at z0 ¼ 1=Λ in order to induce color confinement in
the dual gauge theory at the energy scale Λ.
The matrix element of two electromagnetic currents

inside the hadron is obtained from the Gubser-Klebanov-
Polyakov-Witten ansatz. Thus, we have to evaluate the
supergravity action on shell, taking into account all
possible intermediate states. The first step is to derive
the effective five-dimensional supergravity action involving
two dilatino fields and a massless vector field. This has
been done in [34] from the covariant type IIB supergravity
equations of motion. The relevant part of the action can be
written as

Sint ¼ K
Z

dz d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gAdS5

p �
i
Q
3
λ̄−k γ

aB1
aλ

−
k

þ i
b−;−1kj

12
λ̄−j F

abΣabλ
−
k þ i

bþ;−
1kj

12
λ̄þj F

abΣabλ
−
k

�
; ð2:3Þ

where λ�k are the five-dimensional Kaluza-Klein modes of
Eq. (2.11) obtained from the dimensional reduction of the
ten-dimensional dilatinos (2.10) on the five-sphere. Also, it
has been defined the following constants involving angular
integrals of spinor spherical harmonics on the five-sphere:

b�;−
1kj ¼

�
1þ 2

�
k ∓ jþ 5

2
∓ 5

2

��

×
Z

dΩ5ðΘ�
j Þ†ταvαΘk þ 4Q

Z
dΩ5ðΘ�

j Þ†Θ−
k ;

ð2:4Þ

6The symmetric structure F2 has been studied within the
eikonal approximation in [22], in comparison with H1-ZEUS
data. This nonlinear approximation is related to the saturation
effect, and it is small for Q2 > 1 GeV2.
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where Θ�
k are spinor spherical harmonics satisfying

Eq. (2.13). τα are the Gamma matrices and vα are the
Killing vectors on the five-sphere. The chargeQ is given in
Eq. (2.13). The normalization constant K in (2.3) is
obtained from comparison with the type IIB supergravity
action [50]. The massless vector field B1

a is a linear
combination of off diagonal fluctuations of the metric
tensor and vector fluctuations of the Ramond-Ramond
four-form potential,

B1
aðxÞ≡ A1

aðxÞ − 16Φ1
aðxÞ; ð2:5Þ

being A1
aðxÞ the Kaluza-Klein modes obtained from the

five-dimensional reduction of metric fluctuations,

haα ¼
X
I5

AI5
a ðxÞYI5

α ðyÞ; ð2:6Þ

while Φ1
aðxÞ are the Kaluza-Klein modes of the Ramond-

Ramond four-form field fluctuations,

aaαβγ ¼
X
I5

ΦI5
a ðxÞϵαβγδϵ∇δYI5ϵðyÞ: ð2:7Þ

Label I5 stands for ðl5; l4; l3; l2; l1Þ associated with the
vector spherical harmonics on S5, YI5ϵðyÞ. The masses of
the vector fields B1

a are M2
B;l ¼ l2 − 1 with l ≥ 1. They

transform in the 15, 64, 175, � � � irreducible representations
of SUð4Þ, for l ¼ 1, 2, 3, � � �, respectively. Since in the
gauge/gravity dual calculation we only consider the vector
mode whose boundary value couples to the Uð1ÞR R-
symmetry current of theN ¼ 4 SYM theory, we only need
the corresponding massless vector modes, B1

aðxÞ, satisfying
the boundary condition,

B1
μðx; z → 0Þ ¼ nμ eiq·x; ð2:8Þ

while the solutions to the corresponding Maxwell-Einstein
equations are

B1
μðx; zÞ ¼ nμeiq·xqzK1ðqzÞ;

B1
zðx; zÞ ¼ in · qeiq·xzK0ðqzÞ; ð2:9Þ

where KiðqzÞ are the Bessel functions of second kind.
The field strength is given by Fab ¼ ∇aB1

b −∇bB1
a. Also,

we use Σab ¼ 1
4
ðγaγb − γbγaÞ, where these Gamma matri-

ces are defined on the AdS5.
This dimensional reduction from first principles has been

done in our previous work [34,35]. This procedure allows
us to calculate all the constants derived from explicitly
solving angular integrals of the spinor spherical harmonics,
thus obtaining selection rules for the Kaluza-Klein modes
which take part in the interactions.

The ten-dimensional dilatino field can be written as

λ̂ðx; yÞ ¼
�

0

λðx; yÞ

�
: ð2:10Þ

Then, from the five-dimensional reduction, one obtains the
Kaluza-Klein modes,

λðx; yÞ ¼
X
k

ðλþk ðxÞΘþ
k ðyÞ þ λ−k ðxÞΘ−

k ðyÞÞ; ð2:11Þ

where

ταDαΘ�
k ¼∓ i

�
kþ 5

2

�
Θ�

k with k ≥ 0: ð2:12Þ

An important aspect is that the spinor spherical harmonics
are charge eigenstates, which can be seen from the
following expression:

�
vαDα −

1

4
τατγ∇γvα

�
Θ�

k ¼ −iQΘ�
k : ð2:13Þ

The five-dimensional masses of the Kaluza-Klein modes of
the dilatino field are m�

k . In addition, � indicate the two
towers of masses associated with the irreducible represen-
tations 4�, 20�, 60�, � � � (−), or 4, 20, 60, � � � (þ) of the
SOð6Þ ∼ SUð4Þ isometry group. Here, we label coordinates
x on AdS5 and y on S5.
The calculation of all the structure functions both

symmetric and antisymmetric ones has been done in detail
for fermionic operators of twist τ ¼ 3 in [34] and for the
higher-twist operators of N ¼ 4 SYM theory in [35]. The
most general expression is

Fi¼β2mFm
i þβ2PF

P
i þβmβPFc

i þβ2PmF
P
i þβ2þF

Pþ
i þβ2−FP−

i ;

ð2:14Þ

and similarly, for gi structure functions. The β’s are
coefficients obtained from angular integrals of spinor
spherical harmonics Θ�

k . To understand the different con-
tributions in Eq. (2.14), let us recall that this is obtained
from the optical theorem. Therefore, it has been calculated
from the forward Compton scattering in the bulk of the
AdS5, which means that in each contribution there is
the “product” of two interaction vertices from the five-
dimensional action (2.3) and a fermion internal propagator
connecting them. Fm

i represents the contribution from the
minimal coupling on both vertices from the five-dimen-
sional action. FP

i comes from the Pauli term in both
vertices. FPm

i includes one minimal coupling vertex and
a Pauli vertex in the other interaction vertex, in the FCS
Feynman-Witten diagram. In addition, FP�

i corresponds to
the case where the internal fermion in the FCS diagram in
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AdS5 has a quantum number k� 1, in comparison with the
quantum number of the external states (which is k for both
the incoming and outgoing states). The corresponding
vertices are indicated in Fig. 1 of Ref. [35], while the full
expressions for all the contributions to the structure
functions are also detailed in that reference, and we shall
not reproduce them here. In Secs. III C and IV C, we
discuss the results of the fit for F2 and g1, in comparison to
experimental data of the proton for this range of the
Bjorken variable.

B. DIS from type IIB superstring theory
scattering amplitudes

Now, we focus on the parametric region expð−λ1=2‚t HooftÞ≪
x≪ λ−1=2‚t Hooft, which from the holographic dual perspective
can be described by type IIB superstring theory scattering
amplitudes. The calculation of all structure functions for
spin-1=2 fermions has been done in Ref. [8]. In this region,
at strong coupling and large Nc, the holographic dual
description of the DIS process, in principle, requires full
closed string theory scattering amplitudes in AdS5 × S5,
which are unknown. Fortunately, the dominant t̃-channel7

contribution is well described by a local approximation
where the closed string theory scattering amplitudes are
calculated in ten-dimensional Minkowski space.8 The idea
is that from the closed string theory scattering amplitude
one can build up an effective Lagrangian from which it is
possible to calculate the holographic dual FCS amplitude
and finally, derive from it the structure functions. As in the
previous subsection, we associate the ten-dimensional
dilatino with the spin-1=2 fermionic operators of the gauge
field theory, which in turn we will assume to represent the
dual of the spin-1=2 hadrons. At this point, one should
recall that there is a difference in the holographic dual
calculation of the symmetric and the antisymmetric struc-
ture functions for spin-1=2 fermions. While from this
holographic dual viewpoint, the symmetric structure func-
tions can be derived from a graviton exchange, the
antisymmetric ones require a gauge field exchange con-
tribution leading to an effective Lagrangian with a Chern-
Simons term and a Pauli term. This has been worked out in
full details in [8].
Firstly, let us very briefly recall the derivation of the

symmetric structure functions. The external states of the
type IIB superstring theory scattering amplitude are two
ten-dimensional dilatino fields [which are Neveu-Schwarz-
Ramond (NS-R) fields], and two graviphotons (each being

in a particular polarization state of the graviton NS-NS
field). Now, we consider small values of the Bjorken
variable. Using the relation between the four-dimensional
Mandelstam variable s and the Bjorken variable, namely:
s ¼ −ðPþ qÞ2 ≃ q2=x, small x values are related to large
center-of-mass energy

ffiffiffi
s

p
. Thus, taking into account the

1=z2 warp factor of the metric (2.2), the corresponding ten-
dimensional Mandelstam variable s̃ ¼ z2s is also large
in the AdS (anti–de Sitter) bulk. This implies that the t̃
channel becomes dominant, which tells us that if a spin-j
particle is exchanged, its contribution gives a factor s̃j. In
this case, the leading process implies the exchange of a
Reggeized graviton, being j ∼ 2.
The starting point now is the four-point closed-string

theory scattering amplitude in ten-dimensional Minkowski
space, which by virtue of the Kawai-Lewellen-Tye rela-
tions, factorizes as the product of two open-string theory
scattering amplitudes as follows:

Að1; 2; 3̃; 4̃Þ ¼ 4 i κ210 Gðα0; s̃; t̃; ũÞKbos
op ð1; 2; 3; 4Þ

⊗ Kfer
opð3̃; 1; 2; 4̃Þ: ð2:15Þ

In this expression, the open string theory kinematic
factors are denoted by Kop. Fermionic modes are indicated
with tildes. The kinematic factor involving only bosons is
given by

Kbos
op ð1; 2; 3; 4Þ ¼ ξM1 ξ

N
2 ξ

P
3 ξ

Q
4 ½−1=4s̃ ũ ηMNηPQ þ � � ��;

ð2:16Þ

while for two bosons and two fermions, the factor is

Kfer
opð3̃; 1; 2; 4̃Þ ¼ ξM

0
1 ξN

0
2 ūα3u

β
4½s̃ðk2M0 ðΓN0 Þαβ

− k1N0 ðΓM0 Þαβ − ηM0N0 ðΓPÞαβk2PÞ þ � � ��:
ð2:17Þ

Terms leading to subdominant contributions in the dual
DIS process are indicated with dots. ΓN stands for the ten-
dimensional Gamma matrices. ξi indicates polarization of
bosons, while ui is used for polarization of fermions. We
use capital latin letters for ten-dimensional bosonic indices
and greek letters α, β for spinor indices.
The ten-dimensional Mandelstam variables are defined

as

s̃¼−ðk1þk4Þ2; t̃¼−ðk1þk2Þ2 and ũ¼−ðk1þk3Þ2;
ð2:18Þ

being k1 and k2 the ten-momenta of the first and second
graviphotons. On the other hand, the ten-momenta of the
two dilatinos are k3 and k4. The polarizations of the
graviphotons and dilatinos are

7Here, t̃ denotes the t-channel Mandelstam variable in ten
dimension, which is defined in Eq. (2.18).

8This approximation was originally proposed in [19], then
developed for the holographic Pomeron in [18], while in [7], it
was applied for the calculation of all the structure functions for
the glueball. Furthermore, it was extended to spin-1=2 fermions
in Ref. [8].
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hMN
i ≡ ξMi ⊗ ξNi and ðΓMÞαβλ̂βi ≡ uαi ⊗ ξMi ; ð2:19Þ

respectively. From these expressions, one obtains the
following effective action, where the label (S) indicates
that the symmetric structure functions can be derived
from it:

SðSÞeff ¼2κ25 Im½s̃2Gðα0;s̃;t̃;ũÞ�C
Z

d5x
ffiffiffiffiffiffiffiffiffiffi
gAdS5

p
FmpFn

pλ̄γðm∂nÞλ;

ð2:20Þ

where

s̃2Gðα0; s̃; t̃; ũÞ ¼ −
α03s̃2

64

Y
χ¼s̃;t̃;ũ

Γð−α0χ=4Þ
Γð1þ α0χ=4Þ : ð2:21Þ

Next, one evaluates the effective action (2.20) on shell,
and using of the optical theorem, one obtains

SSymeff ≡ nμn�νIm ½Tμν
ðSÞ� ¼

1

2π
nμn�νW

μν
ðSÞ; ð2:22Þ

from which the symmetric structure functions are derived,
obtaining the full symmetric structure functions for a
spin-1=2 hadron,

F1ðx; q2Þ ¼
1

x2

�
Λ2

q2

�
τ−1 π2jc0ij2C

4ð4πλ‚t HooftÞ1=2
I1;2τþ3; ð2:23Þ

F2ðx; q2Þ ¼ 2x
2τ þ 3

τ þ 2
F1ðx; q2Þ; ð2:24Þ

while

g3ðx; q2Þ ¼ g4ðx; q2Þ ¼ g5ðx; q2Þ ¼ 0; ð2:25Þ

and

Ij;n ¼
Z

∞

0

dwwnK2
jðwÞ ¼ 2n−2

Γðνþ jÞΓðν − jÞΓðνÞ2
Γð2νÞ ;

ν ¼ 1

2
ðnþ 1Þ; I1;n ¼

nþ 1

n − 1
I0;n; ð2:26Þ

for the Bessel functions of second kind, and the twist
τ≡ Δ − s, where Δ is the conformal dimension of the
operator with spin s. The functions g3, g4 and g5 are zero
in this parametric region. Let us emphasize that from the
t-channel graviton exchange, there are no contributions to
the antisymmetric structure functions.
Next, we briefly show how the antisymmetric structure

functions can be derived from type IIB superstring theory.
In this case, the holographic dual calculation is given
through a gauge field exchange in the t̃-channel within the
AdS-bulk geometry. Thus, one has to derive the effective

Lagrangian from type IIB superstring theory and then
calculate the antisymmetric structure functions. The four-
point closed string theory scattering amplitude must have
external R-R states, since the massless gauge fields AC

m of
the five-dimensional SUð4Þ gauged supergravity are linear
combinations of two low-lying Kaluza-Klein modes on S5,
coming from both NS-NS (graviton hMN) and R-R (a R-R
4-form field CM1���M4

) string states. Thus,

Að1̃; 2̃;3;4Þ
¼−iκ2Gðα0; s̃; t̃; ũÞKfer

opð1̃; 2̃; 3̃; 4̃Þ⊗Kfer
opð3̃;1;2; 4̃Þ;

ð2:27Þ

where the Italic numbers indicate R-R fields. In addition,

Kfer
opð1̃; 2̃; 3̃; 4̃Þ ¼

s̃
2
ū1ΓMu2ū3ΓMu4; ð2:28Þ

while the second kinematic factor is given in (2.17). The
polarizations of the dilatino fields are given in Eq. (2.19).
On the other hand,

uαi ⊗ ūβi ¼ðCQΓið5ÞÞαβ; with Γið5Þ ¼ ðF iÞM1���M5
ΓM1���M5 ;

ð2:29Þ

are the polarizations of the 4-form field. CQ is the charge
conjugation matrix. The leading amplitude necessary to
write the effective Lagrangian becomes

Að1̃; 2̃; 3̃; 4̃Þ ¼ −i κ2 Gðα0; s̃; t̃; ũÞs̃2 16
15

ðF 3ÞMM2���M5

× ðF 4ÞM2���M5

N
¯̂λ1γ

ðNkMÞ
2 λ̂2: ð2:30Þ

As for the symmetric structure functions, the relation
between the effective on shell action and the hadronic
tensor is

−iSðAÞeff ≡ nμn�νIm ½Tμν
ðAÞ� ¼

1

2π
nμn�νW

μν
ðAÞ: ð2:31Þ

After the evaluation of this action,

nμn�νIm ½Tμν
ðAÞ� ¼ εμνρσnμn�νqρPσq−2Q

πjcij2
12

ffiffiffiffiffiffiffiffi
4πλ

p
�
Λ2

q2

�
τ−1

I τ;

ð2:32Þ

where Q≡ d33CQC, being d33C the complete symmetric
symbol for the SUð4Þ gauge group in the five-dimensional
gauged supergravity obtained from reduction of type IIB
supergravity on the 5-sphere. This contribution (2.32) is
related to the Chern-Simons term [8]. Then, the antisym-
metric structure functions are
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FCS
3 ðx; q2Þ ¼ 1

x

�
Λ2

q2

�
τ−1

Q
π2jcij2

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλ‚t Hooft

p I τ; ð2:33Þ

where

I τ ≡
Z

dωω2τþ2K0ðωÞK1ðωÞ ¼
ffiffiffi
π

p
4

Γ2ðτ þ 1ÞΓðτ þ 2Þ
Γðτ þ 3

2
Þ ;

ð2:34Þ

and gCS1 ðx; q2Þ ¼ gCS2 ðx; q2Þ ¼ 0.
At this point, it is very important to emphasize that

there are examples of holographic dual models similar to
N ¼ 4 SYM in the UV, which in the IR show sponta-
neously broken R symmetry [6]. For these models, our
present calculation leads to

gCS1 ðx; q2Þ ¼ 1

2
FCS
3 ðx; q2Þ ∝ 1

x
: ð2:35Þ

We shall assume this behavior in the present work as
in the work developed in Refs. [6,8]. In addition, there
is a second contribution due to a Pauli (P) term in the
effective Lagrangian, which is also related to the gauge
field exchange in the AdS-Feynman-Witten diagram for
the FCS process. For g1, there is the relation between the
Chern-Simons and the Pauli contributions as follows:

gP1
d33CβC

∝
gCS1

d33CQC ðτ − 1Þ; ð2:36Þ

which depends on the twist τ of the SYM theory operator.
Therefore, at low x, we have g1 ¼ gCS1 þ gP1 .
From the string theory and supergravity point of view,

there are very different mechanisms responsible for the
antisymmetric structure functions. In the supergravity
regime, F3, g1, g2, g3, g4, and g5, are related to the
right-handed dilatino in AdS5 near the boundary. At lower
x values, however, these functions are derived from the
non-Abelian Chern-Simons and Pauli terms in the five-
dimensional effective action.

C. The BPST Pomeron

The exponentially small x region, x≲ exp ð−λ1=2‚t HooftÞ is
described by the BPST Pomeron. Now, it is convenient to
reinstate the radius R ¼ ð4πgstringNcÞ1=4 in the AdS5 × S5

metric. The holographic calculation that we follow holds
for Nc ≫ λ‚t Hooft ≫ 1 and gstring ≪ 1, being perturbative
from the string theory perspective. The ambient space is
described by world sheet fields,

XMðσ1; σ2Þ ¼ xM þ X0Mðσ1; σ2Þ; ð2:37Þ

where xM indicates the zero modes for each M ¼ 0;…9.
If one considers fixed zero modes, then the Gaussian

integral on X0M leads to exactly the same as it would do
in ten-dimensional Minkowski space. This gives the ten-
dimensional flat-space S matrix that would be seen by a
local observer,

S ¼ i
Z

d4x
Z

d6y
ffiffiffiffiffiffiffi
−G

p
Alocalðx; yÞ; ð2:38Þ

where it has been integrated over the zero modes.
Notice that due to the metric warp factor, there is the

simple but crucial redshift,

P̃μ
10d ¼

z
R
pμ
4d; ð2:39Þ

being P̃μ
10d the inertial four-momentum measured by a local

observer in the bulk, while pμ
4d is the same component of

the four-momentum corresponding to the gauge theory at
the boundary of the AdS space. Recall that μ ¼ 0, 1, 2, 3
are Minkowski four-dimensional indices.
Now, one may write Alocalðx; yÞ as

Alocalðx; yÞ → τ10ðP̃Þ
Ym
i¼1

eipi·xiΨðyiÞ; ð2:40Þ

where τ10ðP̃Þ is the flat-spacetime string theory scattering
amplitude of m external states ΨðyiÞ. Then,

S ¼ ið2πÞ4δð4ÞðΣipiÞ
Z

d6y
Ym
i¼1

ffiffiffiffiffiffiffi
−G

p
ΨðyiÞτ10ðP̃Þ: ð2:41Þ

Now, let us apply this to 2 → 2 particle Regge scattering.
From the warp factor of the metric, the redshift leads to

s̃10d ¼
z2

R2
s4d and t̃10d ¼

z2

R2
t4d: ð2:42Þ

We know that

τ10ðP̃Þ ¼ g2stringα
03FðP̃

ffiffiffiffi
α0

p
Þ; ð2:43Þ

where

FðP̃
ffiffiffiffi
α0

p
Þ ¼ KðP̃

ffiffiffiffi
α0

p
Þ
� Y
x̃¼s̃;t̃;ũ

Γð−α0x̃=4Þ
Γð1þ α0x̃=4ÞÞ

�
; ð2:44Þ

which, for jt̃j ≪ s̃, with s̃þ t̃þ ũ ¼ 0, can be approxi-
mated by

FðP̃
ffiffiffiffi
α0

p
Þ ≈ KðP̃

ffiffiffiffi
α0

p
Þðα0s̃Þ2þα0 t̃=2 Γð−α0 t̃=4Þ

Γð1þ α0 t̃=4ÞÞ : ð2:45Þ

Then, plugging these expressions in τ10ðP̃Þ, one obtains the
2 → 2 four-dimensional scattering amplitude,
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τ4ðs; tÞ ¼
Z

d6y
ffiffiffiffiffiffiffi
−G

p
g2stringα

03KðP̃
ffiffiffiffi
α0

p
Þðα0s̃Þ2þα0 t̃=2

×
Γð−α0t̃=4Þ

Γð1þ α0 t̃=4ÞÞΠ
4
i¼1ΨðyiÞ: ð2:46Þ

It means that the relevant exponent in the Regge limit
is j ¼ 2þ α0t̃=2 ¼ 2þ α0tz2=ð2R2Þ.
There are two very different physical situations. On the

one hand, for positive t and 0 < t ≪ s, the maximum value
of the exponent corresponds to the maximum value of the
radial coordinate z0 (recall that 0 < z < z0). Therefore,

jMax ¼ 2þ α0tz20=ð2R2Þ: ð2:47Þ

This is the IR region of the gauge theory. Thus, this is a
nonperturbative effect for the gauge theory, related to
Regge physics associated with the soft Pomeron. On the
other hand, when t < 0 and 0 < jtj ≪ s, the maximum
value of the exponent is

jMax ¼ 2: ð2:48Þ

This is the UV region of the gauge theory, i.e., for z → 0. In
the gauge theory, this corresponds to the (hard) BFKL
Pomeron. In this way, both the hard-BFKL and soft-Regge
Pomerons become unified within a single holographic dual
description. This is a very important result obtained in
Ref. [18]. In this context, Brower, et al. [22] obtained the
structure function F2 derived from the BPST Pomeron.
This function has four parameters, namely: g20, ρ, z0, and
Q0, and it is given by

FBPSTHW
2 ðx;Q2Þ

¼ g20ρ
3=2Q

32π5=2τ1=2b Q0e
ð1−ρÞτb

�
e−

log2ðQ=Q0Þ
ρτb þF ðx;Q;Q0Þe−

log2ðQQ0z2
0
Þ

ρτb

�
;

ð2:49Þ

where

F ðx;Q;Q0Þ ¼ 1 − 2ðπ ρ τbÞ1=2eη2ðx;Q;Q0Þ erfcðηðx;Q;Q0ÞÞ;
ð2:50Þ

and

ηðx;Q;Q0Þ ¼ log ðz20Q0QÞ þ ρ τbffiffiffiffiffiffiffiffi
ρ τb

p ; ð2:51Þ

where

τbðx;Q;Q0Þ ¼ log

�
ρQ
2Q0x

�
; ð2:52Þ

is a longitudinal boost. The parameter Q0 ≈ 1=z0, being z0
the support of the Dirac-delta distribution, which approx-
imates the hadron wave function [22]. Thus, z0 should be of

the order of the hadron size. g0 is an overall constant,
ρ ¼ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λt‚Hooft

p
, and z0 is the IR cutoff energy of the gauge

theory. The presence of this cutoff is indicated by the label
HW (hard-wall model).
In addition, in Ref. [8], it has been obtained the

antisymmetric structure function g1. This equation was
obtained assuming that the kernels for j ≈ 1 (Reggeized
gauge field exchange) and j ≈ 2 (Reggeized graviton
exchange) can be approximately described in the same
way [8]. There are important changes of this derivation with
respect to the derivation of the symmetric function F2,
since in the t̃ channel, there is a Reggeized gauge field
exchange instead of a Reggeized graviton. Thus, for
instance, for t < 0 and 0 < jtj ≪ s, i.e., the UV region
of the gauge theory jMax ¼ 1. The parameters ρ; z0; Q0 are
to be obtained from the F2 fit to experimental data.
Therefore, there is only one new free parameter C to fit
to all g1 data. The corresponding expression for g1ðx;Q2Þ is

gBPSTHW
1 ðx;Q2Þ ¼ Cρ−1=2eð1−

ρ
4
Þτb

τ1=2b

×

�
e−

log2 ðQ=Q0Þ
ρτb þ F ðx;Q;Q0Þe−

log2 ðQQ0z2
0
Þ

ρτb

�
:

ð2:53Þ

III. COMPARISON WITH EXPERIMENTAL
DATA FOR FP

2 ðx;Q2Þ
In this section, we carry out an extensive comparison

with modern experimental data from several collaborations
for the proton. Most of data correspond to very small x
values. In this range, it turns out that the dual description, in
terms of the holographic Pomeron, fits data very well.
Recall that in this kinematic range, gluon dynamics are
dominant; thus, the top-down description we study is able
to capture these effects. In this sense, there are similarities
between N ¼ 4 SYM and QCD.
On the other hand, for larger values of the Bjorken

parameter, the dual supergravity description based on
N ¼ 4 SYM theory is not good to fit experimental data.
This is due to the lack of matter in the fundamental
representation in this model, thus not allowing us to
describe valence quarks, whose physics dominates the
hadron structure for this kinematic regime.
We present the results starting in Sec. III A with the

situation that fits better, i.e., the exponentially small-x
domain described in terms of a single BPST Pomeron
exchange. Then, for the intermediate region, we consider
two descriptions that we explain in two subsections. In
Sec. III B 1, we use a second single BPST Pomeron
exchange, while in Sec. III B 2, we also add the contribu-
tion from type IIB superstring theory scattering amplitudes.
For larger values of x, in Sec. III C, we show the results of
the fit using type IIB supergravity.
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A. FP
2 at low x and the BPST Pomeron

In the range of the Bjorken variable 2.43 × 10−6 ≤
x < 0.01, Brower et al. have found that by using the
BPST Pomeron with an IR cutoff, the structure function
F2 gives a remarkably good fit [22] in comparison with
experimental data of the proton, corresponding to the
H1-ZEUS Collaboration [23] of HERA small-x DIS
scattering experiments. In this case, the values of Q2 are
within the range from 0.1 GeV2 to 400 GeV2.
In order to check the consistency with previous results,

firstly we have carried out a similar fit as the one obtained
by Brower et al. [22]. The parameters are detailed in the
first line of Table I. It includes 249 experimental points,
while the BPST Pomeron has four free parameters. The fit
leads to χ2total ¼ 328, with the value per degree of freedom
χ2d:o:f: ¼ 1.34 and a P-value 0.00031. Then, in order to
improve this fit, we have implemented a sieving procedure
following [51]. This allows one to make a robust fit, by
excluding in a consistent way a limited number of points
(considered as “outliers”) whose individual Δχ2i values are
larger or equal to a certain value Δχ2max ¼ 4. All the
information about Δχ2max together with the total number
of points included in each fit for all cases are displayed in
Table I (and Table II for g1). Technical details of the sieving
procedure are described in the Appendix. Also, some
figures showing χ2d:o:f: for different values of Δχ2max are
presented.
We take the following definitions: the χ2 per degree of

freedom is given by χ2d:o:f: ¼ χ2total
Nd:o:f:

, where Nd:o:f is the
difference between the number Np of experimental points
included in the fit and the number of parameters, with

χ2total ¼
XNp

i¼1

Δχ2i ; ð3:1Þ

being the Δχ2i defined in Eq. (A2) in the Appendix. The
P-value is defined as follows:

Pðχ2total; Nd:o:f:Þ ¼
1

2Nd:o:f:=2Γ½Nd:o:f:=2�
Z

∞

χ2total

t
Nd:o:f:

2
−1 e−t=2dt:

ð3:2Þ

F2 as a function of the Bjorken parameter is depicted
in Fig. 1 for 17 values of Q2. In this case, points with
Δχ2i ≥ Δχ2max ¼ 4 have been excluded, leading to a total
of 228 points and χ2d:o:f: ¼ 1.07, with χ2total ¼ 240 and
P ¼ 0.22066. This very good fit, similar to the one
obtained in Ref. [22], motivates us to investigate this
structure function including more data and extending the
kinematic range. This fit is given in the second line of
Table I.
Next, in the same range of the Bjorken parameter,

we include data of other experimental collaborations
which increases the total number of points to 305 (before
sieving). We consider a more recent paper of H1-ZEUS
Collaboration [56], as well as data from BCDMS
Collaboration [57], NMC Collaboration [58], E665
Collaboration [59], and from SLAC Collaboration [60].
What is interesting now is the possibility of dealing with
more experimental points, which can be seen by visual
inspection of Fig. 2, in the range of 0.001 < x < 0.01 and
forQ2 < 6.5 GeV2, in comparison with Fig. 1. In this case,
the hard-wall BPST Pomeron fits the whole set of 305
points leading to a normalized χ2d:o:f: ¼ 1.28 (in this case,
χ2total ¼ 383 and P ¼ 0.00095). The corresponding set of
parameters is presented in the third line of Table I. Then,
carrying out a sieving with Δχ2max ¼ 4, there are 280 points
left and the corresponding normalized χ2d:o:f: gives 1.086,
which is still very good with the addition of having 30 more
points than in Ref. [22] (now we obtain χ2total ¼ 300 and
P ¼ 0.1535). This is shown in line 4 of Table I. In Fig. 2, we
show F2 as a function of the Bjorken variable for different
values of Q2. In addition, Fig. 3 displays F2 × 2i as a
function of Q2 for different values of x. The integer i is
indicated in this figure. This factor is included to facilitate

TABLE II. Main results of this work for the fit of g1ðx;Q2Þ. The first two lines correspond to fits to data within the ranges
5.1 × 10−5 ≤ x < 0.01 and 0.062 GeV2 < Q2 < 2.41 GeV2. In lines 3 to 9, we display the corresponding fits in the ranges 0.01 <
x < 0.1 and 0.57 GeV2 < Q2 < 19.7 GeV2. Lines 1 to 5 include data for gP1 ðx;Q2Þ from SMC [52], E143 [53], COMPASS [24–26],
and HERMES [54] Collaborations. Lines 8 and 9 also include data from the CLAS Collaboration [55]. More details are explained in the
main text.

Model x range Np Sieving Δχ2max ρ C z0 [GeV−1] Q0 [GeV] χ2d:o:f:

1 Hard-wall BPST <0.01 56 No 0.7729 0.0145� 0.0015 4.894 0.4715 1.14
2 Hard-wall BPST <0.01 54 7 0.7729 0.162� 0.0014 4.894 0.4715 0.94
3 Hard-wall BPST [0.01, 0.1] 69 No 0.9194 0.064� 0.003 3.751 0.4782 2.69
4 Hard-wall BPST [0.01, 0.1] 60 6 0.9194 0.062� 0.002 3.751 0.4782 1.37
5 Hard-wall BPST [0.01, 0.1] 54 4 0.9194 0.062� 0.002 3.751 0.4782 1.15
6 Hard-wall BPST [0.01, 0.1] 69 No 0.9283 0.062� 0.003 4.402 0.4991 2.78
7 Hard-wall BPST [0.01, 0.1] 55 4 0.9283 0.061� 0.002 4.402 0.4991 1.14
8 HwBPST ⊕ CLAS [0.01, 0.1] 95 No 0.9283 0.053� 0.003 4.402 0.4991 3.57
9 HwBPST ⊕ CLAS [0.01, 0.1] 55 4 0.9283 0.051� 0.002 4.402 0.4991 2.23
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the visualization of the curves. A natural question is now
what happens if we try to extend the range of the Bjorken
variable beyondx ∼ 0.01. Since there is a reasonable amount
of data (548 points in total), we may try, for instance, to
consider a wider range such as 2.43 × 10−6 ≤ x < 0.1.

Using the hard-wall BPST Pomeron of Eq. (2.49), we find
that the normalized χ2d:o:f: ¼ 12.08, indicating that this
particular fit does not work. The parameters are presented
in the fifth line of Table I. In addition, after using the sieving
method, the fit does not improve. This can be seen from

FIG. 1. Best fit for F2 obtained from the hard-wall BPST Pomeron in comparison exclusively with H1-ZEUS data for the proton
corresponding to low-x DIS at HERA. Other collaborations are included in others figures. From the initial 249 points in the ranges
2.43 × 10−6 ≤ x < 10−2 and 0.1 GeV2 < Q2 ≤ 400 GeV2, using a sieving with Δχ2max ¼ 4, there are 228 experimental points left,
leading to χ2d:o:f: ¼ 1.07. This reproduces the results of Brower et al. [22]. We only display 17 curves for certain representative values in
the above range ofQ2 as indicated in the box at the right (in fact these are the same values of Ref. [22], chosen to compare with it). Also
notice that although the horizontal axis includes a range beyond x ¼ 0.01, i.e., up to x ¼ 0.1, in this figure, we do not display
experimental points for x > 0.01. The horizontal axis has a logarithmic scale. Error bars of data are shown for each point. In some cases,
dots representing data points are larger than the corresponding error bars.

FIG. 2. F2 structure function using a single BPST Pomeron exchange to fit data of H1-ZEUS Collaboration [56], as well as
data from BCDMS [57], NMC [58], E665 [59], and SLAC [60] Collaborations within the ranges 0.1 GeV2 < Q2 ≤ 400 GeV2 and
2.43 × 10−6 ≤ x < 0.01, corresponding to the proton. The horizontal scale is log x. The number of experimental points depicted has
been limited in order to be able to visualize how a few curves fit the data. Error bars are indicated. In total, the fit includes 280 data
points, while χ2d:o:f: is now 1.086. The same applies to Fig. 3.
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Fig. 4, by looking closely at the region 0.01 < x < 0.1
where we can very easily see how the curves do not fit well
the experimental data. Also, in this case, one can observe
how the curves slightly depart from the experimental points
almost everywhere. It is interesting to notice that although
the functional form of F2 derived from the hard-wall BPST
Pomeron shows a similar trend as shownby the experimental
data around x ∼ 0.14, where it appears a pivotal point, it is
not able to fit the whole range 2.43 × 10−6 ≤ x < 0.1with a
reasonable value of χ2d:o:f:. At this point, it is interesting
comment on the inclusion of the corresponding data from
measurements of the proton F2 structure function taken at

Jefferson Lab Hall C, which we refer as the JLab
Collaboration [61]. These correspond to the ranges
0.06 GeV2 < Q2 < 2.8 GeV2 and 0.009 ≤ x ≤ 0.45. In
this reference, it has been presented two ways to obtain
F2 from cross section measurements. The first one is the
Rosenbluth separation method, which leads to nine points,
from which only five belong to the region 0.009 ≤ x ≤ 0.1,
while the other four points correspond to 0.1 < x < 1. The
second one is the so-called model dependent method, and it
requires to assume the value of R in Eq. (1.17). This implies
that in the calculation that we perform for AP

1 , the quantityR
should be assumed to have some value rather than extracting

FIG. 3. Curves for the fit of F2 structure function as a function of log Q2 using to the BPST Pomeron are drawn in comparison with
data from H1-ZEUS [56], BCDMS [57], NMC [58], E665 [59], and SLAC [60] Collaborations. Notice that the values of FP

2 have been
multiplied by 2ix, where ix is the number of the x bin, ranging from ix ¼ 15 (x ¼ 0.0052) to ix ¼ 26 (x ¼ 0.0000085). The range of Q2

goes from 0.1 GeV2 to 400 GeV2.

FIG. 4. Best fit of the structure function F2 from a single hard-wall BPST Pomeron to the H1-ZEUS [56], BCDMS [57], NMC [58],
E665 [59], and SLAC [60] experimental points at 0.1 GeV2 < Q2 ≤ 400 GeV2 and the extended range 2.43 × 10−6 ≤ x < 0.1,
corresponding to the proton. In total, there are 548 points. χ2d:o:f: ¼ 12.08, which indicates that the fit does not reflect accurately the
experimental results, particularly for 0.01 < x < 0.1.
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it as the result from a fit of data for the virtual Compton
scattering asymmetry of the proton, as we do in Sec. V. For
this reason, we consider the JLab Collaboration data [61] in
an different way in comparison with the previously men-
tioned collaborations. Indeed, it is very interesting the fact
that the model dependent method of [61] gives 35 additional
points within the region 0.01 ≤ x ≤ 0.1. Thus, we fit now
583 points in total. The results are shown in line 6 of Table I,
and also in Fig. 5. In addition, we should notice that for the
very small region x < 0.01, there are only three points,
corresponding to Q2 < 0.1 GeV2. This is a parametric
region out of the reach of theBPSTPomeron since saturation
effects are expected to set in.We observe that like in the case
of the fit of line 5, there is no improvement, even if we
consider sieving “outliers.” From this, we conclude that
there are some effects that a single holographic Pomeron
cannot capture if the x range is extended from very low
values towards moderately low values of x. This behavior
makes sense if we keep in mind that the construction of the
BPST Pomeron in principle attains to the exponentially
small-x values, while for moderately small-x values the
holographic dual top-down construction has been done in
terms of type IIB superstring theory scattering amplitudes.
On the other hand, the approach based on string theory
scattering amplitudes leads to a behavior of F2 proportional
to the inverse power of the square of the virtual photon
momentum transfer. This effect of decreasing F2 as Q2

increases for x fixed does not match the experimental data,
which in turn show an increasing trend for F2 withQ2 for x
fixed. This is amotivation for considering the possibility of a
combination of the contributions from the string theory
scattering amplitudes and a BPST-Pomeron exchange for

the intermediate range 0.01 < x < 0.1. We implement it as
an effective top-down holographic dual description of the
data. All this suggests several possible directions to inves-
tigate that we describe below.

B. FP
2 at intermediate x and type IIB superstring theory

From the results of the previous subsection, we may
conclude that there is no way to fit reasonably well the set
of experimental data for an extended range of the Bjorken
parameter like 2.43 × 10−6 ≤ x < 0.1 using a single BPST
Pomeron in this whole range. Therefore, since the para-
metric region 2.43 × 10−6 ≤ x < 0.01 is very well repre-
sented by a single hard-wall BPST-Pomeron exchange,
now we focus on the range 0.01 < x < 0.1.9 For this
region, one would have expected that the expression for
F2 derived from string theory scattering amplitudes works
well. However, due to the Q2 dependence, it is clear that it
cannot describe the data, because it shows the opposite
trend at fixed values of the Bjorken parameter. Thus, within
the top-down holographic dual approach that we are
studying, we propose to investigate two different possibil-
ities. They are effective descriptions that we describe
below. In the range 0.01 < x < 0.1, we initially consider
243 points from H1-ZEUS [56], BCDMS [57], NMC [58],
E665 [59] and SLAC [60] collaborations. Then, we add the
corresponding data from the JLab collaboration [61].

FIG. 5. Best fit of the structure function F2 from a single hard-wall BPST Pomeron to the H1-ZEUS [56], BCDMS [57],
NMC [58], E665 [59], SLAC [60], and JLab [61] experimental points at 0.1 GeV2 < Q2 ≤ 400 GeV2 and the extended range
2.43 × 10−6 ≤ x < 0.1, corresponding to the proton. In total, there are 583 points. χ2d:o:f: ¼ 11.48, which indicates that the fit does not
reflect accurately the experimental results.

9Notice that in this intermediate region, experimental data
correspond to the range 0.404 GeV2 < Q2 ≤ 400 GeV2. This is
excluding the JLab Collaboration [61]. Next, in Fig. 8, we will
include JLab data [61] and describe it.
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1. A single hard-wall BPST-Pomeron
exchange for 0.01 < x < 0.1

Let us consider the expression for F2 obtained from the
hard-wall BPST Pomeron, but now with this equation let us
fit the data restricted to the range 0.01 < x < 0.1. Thus,
effectively we have two different fits with the BPST
Pomeron equation. The first one corresponds to line 4 of
Table I, in the range 2.43 × 10−6 ≤ x < 0.01. The second
fit with another BPST Pomeron is carried out for
0.01 < x < 0.1, and the results for the four parameters is
given in line 7 of Table I, where χ2d:o:f: is 2.23 (χ2total ¼ 533

and Nd:o:f: ¼ 239), which is not good. Then, using the
sieving method with Δχ2max ¼ 4, the number of data
reduces to 201, but now the normalized χ2d:o:f: ¼ 1.25

indicates a better fit (see line 9 of Table I, and also we
obtain χ2total ¼ 247, Nd:o:f: ¼ 197 and P ¼ 0.009). Figure 6
displays the corresponding fit of F2 as a function of x, and
Fig. 7 as a function ofQ2, both in logarithmic scales for the
horizontal axis. Considering a hard-wall BPST Pomeron,
we can observe how the behavior of the curves of this fit
approaches the pivotal point near x ∼ 0.1. Also, notice that
curves corresponding to the values Q2 ¼ 0.15, 0.25, and
0.4 GeV2 in Fig. 6 do not display experimental points since
there are not data for these values of the square virtual-
photon momentum transfer, being these curves predictions
of the present description. The idea behind the use of two
BPST Pomerons, i.e., one for the exponentially small-x
region and a second one for the moderately small-x values,

FIG. 6. Best fit of the F2 structure function of the proton from the BPST Pomeron to the H1+HERA [56], BCDMS [57], NMC [58],
E665 [59], and SLAC [60] Collaborations, for data within the ranges 0.404 GeV2 < Q2 ≤ 400 GeV2 and 0.01 < x < 0.1, excluding
JLab data. The horizontal scale is log x. As in the previous figures, the number of experimental points depicted has been limited in order
to be able to visualize how a few curves fit the data. Error bars are indicated. The same applies to Fig. 7.

FIG. 7. F2 as a function of log Q2, see caption of Fig. 6. FP
2 has been multiplied by 2ix, where ix is the number of the x bin, which goes

from ix ¼ 10 (x ¼ 0.08) to ix ¼ 13 (x ¼ 0.018).
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as we just have done, relies on the fact that in the derivation
of the BPST Pomeron, there is a direct relation between the
parameter ρ and the ’t Hooft coupling: ρ≡ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ‚t Hooft

p
.

Recall that in QCD the coupling evolves. Therefore, one
may expect that the parameter ρ also evolves with Q2. This
suggests aQ2 dependence of the structure functions derived
from the BPST Pomeron. On the other hand, the expres-
sions we use do not carry such a dependence, then a single
BPST Pomeron exchange with a fix value of ρ is expected
not to be able to reproduce data in a range beyond
exponentially small values of x. However, the second
BPST Pomeron somehow does the job, though in a very
limited way, that a continuous functional Q2 dependence
would do.
Now, let us consider the addition of the data from the

JLab Collaboration [61] in the present range of the Bjorken
variable. More specifically, these data [61] are in the
ranges: 0.06GeV2<Q2<2.8GeV2 and 0.009<x< 0.45.
The result of the fit with 278 points is shown in line 8 of
Table I, obtaining an improvement with respect to the fit
shown in line 7, which excludes data from the JLab
Collaboration (this contains less points, 243). Thus, in
line 8 of this table, we show the result of this fit obtaining
χ2d:o:f: ¼ 1.99, which is better than the value 2.23 shown in
line 7, where the JLab data are not included. Then, without
any sieving, we see that for this range of the Bjorken
parameter the inclusion of JLab data improves the fit using
a second BPST Pomeron. Moreover, by applying the
sieving with Δχ2max ¼ 4, one obtains χ2d:o:f: ¼ 1.10, and
the number of points for 0.01 < x < 0.1 is 236. This is
shown in line 10, which is a better result compared with line
9. Thus, we learn that the inclusion of JLab experimental

points improves the fit within this region. The more
sensitive parameter that we can observe by comparison
of lines 7 with 8, and then 9 with 10, is z0. This is expected
since it is associated with the IR scale (ΛQCD), being the
JLab data measured at low values of Q2. In Fig. 8, are
detailed the curves corresponding to the fit including JLab
data, considering the sieving of “outliers,” and also it is
shown the experimental points with their error bars.

2. Combined hard-wall BPST Pomeron and string
scattering amplitude

Next, we consider a linear combination of a contribution
to F2 obtained from a hard-wall BPST Pomeron exchange
and a contribution from string theory scattering amplitudes.
The derivation of F2 associated with the string theory
scattering amplitude for spin-1=2 fermions was obtained in
Ref. [8], and for twist τ ¼ 3 operators10 in the gauge theory,
this is given by

FStringsτ¼3

2 ðx;Q2Þ ¼ Cst
1

x

�
Λ2

Q2

�
2

; ð3:3Þ

where the constant Cst depends on τ and on the normali-
zation constants of the bulk fields wave functions. The
functional form of F2 that we use for the fit is of the form,

FIG. 8. Best fit of the F2 structure function from the BPST Pomeron to the H1+HERA [56], BCDMS [57], NMC [58], E665 [59],
SLAC [60], and JLab [61] Collaborations, for data within the ranges 0.06 GeV2 < Q2 ≤ 400 GeV2 and 0.01 < x < 0.1, corresponding
to the proton. The horizontal scale is log x. As in the previous figures, the number of experimental points depicted has been limited in
order to be able to visualize how a few curves fit the data. Error bars are indicated.

10Three is the lowest twist corresponding to fermionic operators
ofN ¼ 4 SYM theory of the formOð6Þ

0 ðyÞ¼Cð6ÞTrðFþλN¼4ÞðyÞ.
Its twist is τ ¼ Δ − s ¼ 3 as explained in Section II. This behavior
corresponds to the strongly coupled regime of the SYM theory.
Theweakly coupled gauge theory is treated perturbatively, and the
OPE is dominated by twist-2 operators.
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FBPSTHWþStringsτ¼3

2 ðx;Q2Þ¼FBPSTHW
2 ðx;Q2ÞþCst

1

x

�
1

Q2

�
2

:

ð3:4Þ

This effective model can be understood as follows. A
single BPST Pomeron exchange in this regime corre-
sponds to a Reggeized graviton exchange in the type IIB
string theory framework. On the other hand, the string
theory scattering amplitude, which for the DIS limit in
which we are interested can be obtained in terms of an
effective supergravity Lagrangian through the calculation
of a t̃-channel Feynman-Witten diagram, corresponds to
the exchange of a single graviton. Therefore, in terms of
the optical theorem, the DIS cross section is obtained from
the sum of the contribution of a Reggeized graviton (a
BPST Pomeron) plus a single graviton exchange t̃-channel
contribution. The relative normalization constant is fixed
by fitting the expression (3.4) to the experimental data,
and we will shortly see that it is very small. As an
inspiration for these two contributions to DIS, one may
recall, for instance, a FCS related to inclusive processes,
described in terms of the Regge theory (for a review,
see [62]). Also, although the meaning is quite different,
concerning the protonþ proton and protonþ antiproton
hard-scattering total cross sections above the resonance
region, Donanchie and Landshoff [63] and Cudell et al.
[64] proposed a model with two types of contributions,
namely: a single Pomeron (P) exchange and a Regge (R)
exchange, of the form,

σtotalðsÞ ¼ AP sαPð0Þ−1 þ AR sαRð0Þ−1; ð3:5Þ

where the constants AP and AR depend on each process. In
particular, Donnachie and Landshoff [65] predicted the
following expression for F2:

F2ðx;Q2Þ ¼ Ax1−αPð0Þ
�

Q2

Q2 þ a

�
αPð0Þ

þ Bx1−αRð0Þ
�

Q2

Q2 þ b

�
αRð0Þ

; ð3:6Þ

with certain constraints for the constants involved, which
ensure the fit to real photoproduction data when Q2

vanishes. In this model, the important prediction is the
behavior of F2 as the Bjorken variable goes to zero, which
leads to a functional form proportional to x1−αPð0Þ ≃ x0.08

[9]. Thus, for F2, the leading contribution comes from the
Pomeron exchange for extremely small x; however, there
is second contribution for larger values of x. The expres-
sion proposed by Donnachie and Landshoff [65] cannot
be extrapolated for extremely small values of the Bjorken
parameter, since Eq. (3.6) does not fit the experimental
data when extrapolating from intermediate values of x
towards very small values.
By considering Eq. (3.4), we obtain χ2d:o:f ¼ 2.18, with

the values of the BPST Pomeron parameters indicated in
line 11 of Table I. In addition, Cst ¼ 9 × 10−5 � 4 × 10−5.
Thus, we observe that there is a very small contribution
from the string theory scattering amplitude and the absolute
error of Cst is large (also notice that χ2total ¼ 519 and
Np ¼ 238). Then, we can implement the sieving method
which leads to 204 points left, while χ2d:o:f: ¼ 1.24 (see line
12 of Table I), which is very close to the case discussed in

FIG. 9. This figure displays the fit of the F2 structure function from the BPST Pomeron plus the string theory scattering amplitude
contribution to the H1+HERA [56], BCDMS [57], NMC [58], E665 [59], and SLAC [60] data within the ranges 0.404 GeV2 <
Q2 ≤ 400 GeV2, corresponding to the proton. The horizontal scale is log x. The number of experimental points depicted has been
limited in order to be able to visualize how a few curves fit the data. Error bars are indicated in both figures.
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the previous subsection with a hard-wall BPST Pomeron
in this specific range. Now, χ2total ¼ 247, Np ¼ 199 and
P ¼ 0.01164. In conclusion, there is not a significant
improvement of the fit in comparison with the hard-wall
BPST Pomeron contribution shown in line 9. The results
are shown in Fig. 9, which can be compared with Fig. 6. For
Q2 ¼ 0.15 GeV2 andQ2 ¼ 0.25 GeV2, we have not found
experimental points. In this region, due to the inverse power
of Q2, the string theory contribution dominates compared
with the BPST Pomeron one. Thus, these two curves have a
rise towards x → 0.01. This feature is not shown for larger
values of Q2 ≥ 0.4 GeV2, where the BPST Pomeron
dominates. This effect becomes clearer by comparison of
Figs. 7 and 10, where while in Fig. 7 there is a monotonic
behavior along all the curves, in Fig. 10 we can observe a
different behavior.

C. FP
2 at 0.1 < x < 1 from type IIB supergravity

In Sec. II A, we have briefly described how to derive the
hadron structure functions in terms of type IIB supergravity
on AdS5 × S5. In this section, we present the results of the
corresponding fit for the region 0.1 < x < 1 for FP

2 .
In Fig. 11, we show the fit of the F2 structure function,

considering the type IIB supergravity dual description, to
data from the BCDMS [57] and SLAC [60] Collaborations.
The inclusion of data from CLAS Collaboration [66] does
not improve the fit in this region. Figure 11 is presented to
illustrate how bad the dual type IIB supergravity descrip-
tion works in this case. Experimental points depicted as
dots with their corresponding error bars cannot be fitted
with the supergravity dual model. The reason why the
holographic dual description fails to describe data is due to
the fact that for 0.1 < x < 1 the quark antiquark sea

FIG. 10. Best fit of the F2 structure function from the BPST Pomeron plus the string theory scattering amplitude contribution to the H1
+HERA [56], BCDMS [57], NMC [58], E665 [59], and SLAC [60] data for 0.01 < x < 0.1. The horizontal scale is log Q2. FP

2 has been
multiplied by 2ix, where ix is the number of the x bin, ranging from ix ¼ 10 (x ¼ 0.08) to ix ¼ 13 (x ¼ 0.018).

FIG. 11. This figure displays the fit of the F2 structure function from the type IIB supergravity description, within the ranges
1 GeV2 < Q2 ≤ 100 GeV2, corresponding to the proton. Data are taken from the BCDMS [57] and SLAC [60] Collaborations.
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becomes very important, while the particular supergravity
dual model we consider does not contain quarks in the
fundamental representation. This is consistent with the
expectations of this model. We will discuss more on these
issues in Sec. VI. The dashed lines presented in Fig. 11
correspond to the supergravity dual description with
twist-3 operators of N ¼ 4 SYM theory. Continuous
lines represent the fit using twist-5 operators correspond-
ing to the Kaluza-Klein state (2,2,2,2,2). We have shown
the results for these twists and particular Kaluza-Klein
states to show an example of a more general effect,
which cannot be improved within the dual supergravity
description.

IV. ANTISYMMETRIC STRUCTURE
FUNCTION gP1 ðx;Q2Þ

In this section, we focus on the comparison of
the antisymmetric function g1ðx;Q2Þ with the results of
several experimental collaborations measuring properties
of polarized electromagnetic DIS of the proton. As in the
case of F2ðx;Q2Þ developed in Sec. III, we firstly consider
the range 5.1 × 10−5 < x < 0.01 for the exchange of a
single holographic Pomeron. Then, we study the range
0.01 < x < 0.1. For the antisymmetric structure function,
the single holographic Pomeron exchange corresponds to a
Reggeized gauge field in the bulk. This is a significant
difference with respect to the BPST Pomeron used for
studying F2.

A. gP1 at low x from the holographic Pomeron

In Sec. III A, we have investigated the fit of the BPST
Pomeron for FP

2 in the range 2.43 × 10−6 ≤ x < 0.01,
which gives the values of the parameters ρ, z0, Q0 and

the overall constant g20. Motivated by the very good results
obtained for FP

2 ðx;Q2Þ within this range, we now fit the
holographic Pomeron associated with the antisymmetric
structure function g1ðx;Q2Þ obtained in Ref. [8] to data
from SMC [52], E143 [53], COMPASS [24–26], and
HERMES [54] Collaborations for the proton.
Thus, firstly, we fit gBPSTHW

1 ðx;Q2Þ from expression (2.53)
in the ranges 5.1×10−5 ≤ x< 0.01 and 0.062GeV2<
Q2<2.41GeV2, for which there are available data at
low x. The function (2.53) has three parameters ρ, z0, and
Q0, which we have already obtained by fitting to F2 data.
Therefore, there is only one free parameter left,C, to fit to all
the data of gP1 . In total, we have considered 56 data to fitC in
Eq. (2.53). The corresponding results are presented in the
first line of Table II. χ2d:o:f is 1.14. Also, we have obtained
χ2total ¼ 62, Nd:o:f: ¼ 55 and the P-value is 0.24. Figure 12
shows the results of this fit in comparison with data as
explained in the caption. Next, we consider the sieving
procedure neglecting points such that their individualΔχ2i is
larger or equal to 7. This eliminates only two points. The
corresponding figure is similar to Fig. 12. This is indicated in
the second line of Table II. It is important to emphasize that
while in Ref. [8] there have been included only 30 points
from the COMPASS Collaboration with a restriction to
small values of Q2, in our present fits discussed here and
displayed in Fig. 12, we consider the whole range of
available Q2 for this measurement. This includes 56 exper-
imental points, and the fit presented in line 1 of Table II is
very good. On the other hand, for the second fit in line 2,
we have obtained χ2d:o:f is 0.94, which is an indication of
overfitting. Also for this case, we have obtained χ2total ¼ 50,
Nd:o:f: ¼ 53, and P ¼ 0.59. The parameters of the Pomeron
of these two lines correspond to line 4 of Table I, where the

FIG. 12. Best fit of the antisymmetric structure function gBPSTHW
1 ðx;Q2Þ from expression (2.53) in the ranges 5.1 × 10−5 ≤ x < 0.01

and 0.062 GeV2 < Q2 < 2.41 GeV2 to data from SMC [52], E143 [53], COMPASS [24–26], and HERMES [54] Collaborations. The
parameters ρ, z0, and Q0 have been obtained from the FBPSTHW

2 ðx;Q2Þ fit. Thus, there is only one free parameter C to fit to a set of
56 points in total from these collaborations. Notice that for each value of x we add a constant Ci ¼ 12.1 − 0.7i to the gP1 , which goes
from 0 (x ¼ 0.0036) to 4 (x ¼ 0.009).
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corresponding errors are indicated. In these two cases, data
from JLab Collaboration are not included.
In addition, we have done a fit by considering the four

parameters free, i.e., with values of ρ, z0, and Q0 not to be
fixed by fitting toF2. In this case, χ2d:o:f: gives 0.6, which is a
signal of overfitting. The idea of this fit was to compare the
values of the parameters with those presented in Table II.

B. gP1 at intermediate x values

We proceed in analogous way as in Sec. III B 1, i.e., by
considering the exchange of a second single BPST
Pomeron in the intermediate range 0.01 < x < 0.1, and
using the same strategy but now considering another single
holographic Pomeron exchange related to a Reggeized
gauge field in the bulk. We have taken the parameters ρ,
z0, andQ0 from the fit of the BPST Pomeron of Sec. III B 1.
For this intermediate range of the Bjorken parameter and
0.57 < Q2 < 19.7 GeV2, there are 69 points. All parame-
ters are indicated in the third line of Table II. Since χ2d:o:f ¼
2.69 is large (while χ2total ¼ 183 andNp ¼ 69, we implement
a sieving, withΔχ2max ¼ 6, which excludes nine experimen-
tal points out of the original 69, and it leads to χ2d:o:f: ¼ 1.37,
while χ2total ¼ 81,Np ¼ 60, andP ¼ 0.03). Finally, if we set
Δχ2max ¼ 4, there are 54 points, while χ2d:o:f ¼ 1.15. In this
way, we can observe that as we reduce the value ofΔχ2max in
the sieving procedure, the value of χ2d:o:f becomes closer to
one, but the number of excluded experimental points turns
out to bemore significant. In this case, we obtain χ2total ¼ 62,
Np ¼ 54, and P ¼ 0.21. All parameters are displayed in
Table II. Figure 13 shows g1 as a function of Q2 for
0.01 < x < 0.1. Lines 3, 4, and 5 of Table II correspond
to the set of parameters for theBPSTPomeron obtained from
the fit of F2 shown in line 9 of Table I, which does not

include the JLab Collaboration. Then, in lines 6 and 7 of
Table II, we have considered the corresponding fit of F2

corresponding to line 10 of Table I, which includes the JLab
Collaboration for the measurement of Fp

2 [61]; however,
we have not included data from CLAS Collaboration
for gp1 [55]. We observe that χ2d:o:f: ¼ 1.14 signaling that
the fit is good after sieving (see line 7 of Table II). In
addition, by considering again the parameters of line 10 of
Table I (with data from JLab), if we include data for gp1 from
CLASCollaboration [55] the fit worsens as shown in lines 8
and 9 of Table II.

C. gP1 at 0.1 < x < 1 from type IIB supergravity

As in Sec. III C, the model based on type IIB super-
gravity on AdS5 × S5 is not able to describe data for gP1 at
0.1 < x < 1. The reason is that we cannot model a
dynamical baryon in terms of fundamental quarks in terms
of these kind of models. This is because, these type of
models do not contain flavor Dp-branes, but, even if we
would include flavor Dp-branes, the baryon mass is
proportional to Nc in the large-Nc limit. On the other
hand, it would be interesting to investigate in the range
0.1 < x < 1 what happens with for supergravity dual
models in the Veneziano limit [67,68]. The Veneziano
limit [69] implies that both the number of colour degrees of
freedom Nc, as well as the number of flavors Nf are taken
very large, but their ratio is kept constant.

V. AP
1 AT LOW x FROM THE HOLOGRAPHIC

POMERON

In this section, we investigate the virtual Compton
scattering asymmetry of the proton AP

1 for low-x values
from g1 and F2 discussed in previous sections.

FIG. 13. Best fit of the antisymmetric structure function gBPSTHW
1 ðx;Q2Þ from expression (2.53) in the ranges 0.01 < x < 0.1 and

0.57 GeV2 < Q2 < 19.7 GeV2 to data from SMC [52], E143 [53], COMPASS [24–26], and HERMES [54] Collaborations. The
parameters ρ, z0, and Q0 have been fixed from the FBPSTHW

2 ðx;Q2Þ fit. Thus, as in the previous figure, there is only one free parameter C
to fit to 55 points from these collaborations.
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The relation of AP
1 with the structure functions FP

2 and gP1
is given by the expression,

AP
1 ¼ 2xð1þ RÞ g

P
1

FP
2

; ð5:1Þ

where R is defined from the following relation involving
the longitudinal and transversal cross sections:

R ¼ σL
σT

¼ FL

2xF1

: ð5:2Þ

We propose to fit AP
1 with a constant R in Eq. (5.1), with

F2 and g1 obtained from our previous fits in this work in
terms of the holographic Pomeron with a hard wall. The
idea is that, although R is a function of x and Q2, since its
variation is smooth [70], in principle, one may consider to
carry out two fits to data of AP

1 in the parametric regions
0.001 < x < 0.01 and 0.01 < x < 0.1, where we use the
parameters already obtained from F2 and g1 in previous
sections. Thus, we calculate R, which is assumed to be a
constant. We consider the following form to calculate the
virtual Compton scattering asymmetry:

AP
1 ðx;Q2Þ ¼ 2xð1þ RÞ g

BPSTHW
1P ðx;Q2Þ

FBPSTHW
2P ðx;Q2Þ : ð5:3Þ

There are experimental points for AP
1 for the proton in

different regimes of x and Q2 from [24,52] Collaborations.
In the region for 0.001 < x < 0.01 and Q2 < 10 GeV2,

we have 32 experimental points of AP
1 . As already com-

mented, the parameters for the structure functions F2

and g1 are taken from our previous fits in this work.
In particular, we take the values g20 ¼ 103.73, ρ ¼ 0.7729,
Q0 ¼ 0.4715 GeV2, and z0 ¼ 4.894. Thus, by using
Eq. (5.3) we obtain

C ¼ 0.0145;

with a very low value χ2d:o:f ¼ 0.53, while R ¼ 0.97� 0.22.
This value of R is out of the expected range. For instance,
in [71], it was measuredR ¼ σL=σT for 0.03 < x < 0.1 and
1.3 < Q2 < 2.7 GeV2. They considered increasing values
of both x and Q2, and within these narrow ranges, R
decreases from 0.45 to 0.17. In addition, in [72], R has been
fitted for 0.1 ≤ x ≤ 0.9 and 0.6 ≤ Q2 ≤ 20 GeV2, and it
decreases from 0.2 to 0.1. We do not have a clear
explanation for this behavior, considering that in principle
it should be smaller for very small values of the Bjorken
variable. In this sense, one should take this value of R with
caution since this is a poorly known quantity [26]. On the
other hand, the very low value of χ2d:o:f indicates that this fit
is no good in this region.
On the other hand, for intermediate values 0.01 < x <

0.1, with Q2 < 10 GeV2, there are 38 points. Then, we
obtain

C ¼ 0.062: ð5:4Þ

having used the following set of parameters from the F2

and g1 fits:

g20 ¼ 157.96 ρ¼ 0.9176 Q0 ¼ 0.47GeV2 z0¼ 3.75:

ð5:5Þ

By implementing the sieving procedure with Δχ2max ¼ 6,
it has been obtained a χ2d:o:f ¼ 1.11, which is very good, and
R ¼ 0.37� 0.06. This an expected value for R for these
values of x. Figure 14 shows experimental data of AP

1 as a
function of the Bjorken parameter, for different values ofQ2

together with the corresponding best fit for intermediate
values of x. Taking into account the error bars, it is observed
a little dependence on Q2, and the curves corresponding to

FIG. 14. Proton virtual Compton scattering asymmetry as a function of the Bjorken parameter for different values ofQ2. Experimental
data correspond to [24,52] Collaborations.
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fits for different Q2 values reproduce the trend of exper-
imental data. These results are compatible with Fig. 5.6 of
Ref. [73], which shows a dependence of R with x and Q2,
related to data from COMPASS Collaboration. In this case,
for small-x values RðxÞ seems to develop an x dependence,
while for intermediate values of x, it seems to be a constant
R ≈ 0.4. Our results for intermediate values of x are
compatible with this constant behavior.

VI. CONCLUSIONS

In this work, we have presented several results, where the
common idea is to investigate how well string theory
holographic dual models fit experimental data related to
the proton structure functions. Moreover, in the case of
polarized DIS, the formulas used are also valid for a domain
of very small x and Q2 > 10 GeV2, where it is expected to
have precision measurements by when the Electron-Ion
Collider starts its experimental program. Thus, the pre-
dictions we discuss in this work will be even more
interesting in the forthcoming years, specially for polarized
structure functions of the proton.
In the Introduction and in Sec. II, we have very briefly

reviewed the basic aspects of the formalism needed to
understand the holographic dual models we have used to
compare with data. Then, in Sec. III, we have extended
the fits of FP

2 ðx;Q2Þ from 249 to around 500 points
from different collaborations, obtaining a very good fit,
described in Table I and in that section. The studied range
of x is ten times larger than the range considered in previous
works. This is very interesting since it tells us that the BPST
Pomeron has the ability to describe the parametric values
of the Bjorken variable where, in principle (and perhaps
naively), one would had expected that string theory
scattering amplitudes provide the relevant contribution.
Our results show that the BPST Pomeron works well.
On the other hand, the string theory scattering amplitudes
produce a ðΛ2=Q2Þτ−1 factor, which behaves opposite to
the trend of experimental data. From the values obtained for
the fits of FP

2 ðx;Q2Þ presented in Table I, we can observe
that ρ ¼ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ‚t Hooft

p
increases from values of the Bjorken

parameter x < 0.01 towards the range [0.01, 0.1]. This
shows a trend for the coupling λ‚t Hooft, which decreases as x
increases. Taking into account that xs ≈Q2, at a fixed
center of mass energy

ffiffiffi
s

p
, the Bjorken parameter becomes

proportional to Q2. It therefore means that by increasing x
in these conditions, we may expect that the ’t Hooft
coupling decreases, which is consistent if Q2 increases.
The values of the z0 IR cutoff sightly decreases as x
increases, meaning that the IR energy cutoff increases less
than 2% (if we compare lines 2 and 9 of Table I). The
variation ofQ0, which is related to the proton mass, is about
6.5%. The larger variation among these parameters is
associated with the g20 overall constant, which is just a

normalization. From this analysis, one may infer that the
results obtained using two different BPST Pomerons, one
for exponentially small x and another for moderately small
values of the Bjorken parameter, are consistent with
experiments. This suggests that there should be a depend-
ence of the holographic Pomeron with λ‚t HooftðQ2Þ, not for
the superconformal N ¼ 4 SYM theory, but for a gauge
theory with logarithmic running as in QCD. One should
keep in mind that each BPST Pomeron that we have used
has only four free parameter to fit more than 200 data for
each range of the Bjorken variable.
An interesting point to mention is related to five-

dimensional AdS/QCD models. In particular, considering
holographic light-front QCD and the Veneziano model, the
scale dependence of the nonperturbative gluon distribution
in the nucleon and the pion has been investigated in [74].
The mentioned gluon distribution was derived in [75]. In
[74], it has been argued that the QCD evolution of the gluon
distribution function gðx; μÞ to large values of the scale μ2

leads to a single scale-dependent Pomeron. Then, the
Pomeron trajectory depends on the momentum transfer
squared t, and on the physical scale μ of the amplitude, such
as the virtuality Q2 of the interacting photon in inclusive
diffractive electroproduction. This is consistent with our
finding for DIS of electrons off protons obtained from top-
down string theory dual models, namely: a single-scale
independent BPST Pomeron cannot give a good description
of the experimental data of the proton structure functions;
instead, one needs to consider a second BPST Pomeron.
Once the two BPST Pomerons are considered for different
ranges of the Bjorken parameter, the description becomes
very good. As explained before, this result suggests that
there should be a single BPST Pomeron with a dependence
on λ‚t HooftðQ2Þ, the running ’t Hooft coupling.
We should also notice that phenomenological studies of

meson spectroscopy using the soft-wall model [76] give a
better comparison with data than top-down models. This is
due to the fact that a quadratic dilaton profile leads to a dual
theory with linear confinement. In this case, the meson
masses squared m2

n;S are proportional to Sþ n, with high
spin S and high radial excitation number n. In the case of
mesons as well as baryons, their spectra have been obtained
using the light-front holographic dual framework, consid-
ering both the hard-wall and the soft-wall models [77]. The
results for the spectrum, elastic, and transition form factors
of the light-quark hadrons in terms of the QCD gap scale
are remarkably good. Hadron spectra from AdS/QCD,
including baryons, are revisited in Ref. [78]. Also, hadron
spectra have been obtained from deformed AdS back-
grounds in terms of the soft-wall model, including glue-
balls, scalar and vector mesons, and baryons with different
spins [79]. Recall that the soft-wall model is a bottom-up
approach. As commented in Ref. [80], it is very difficult to
derive it from superstring theory. In fact, there is no such a
derivation at present. Thus, this model may be interpreted
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as a local five-dimensional effective Lagrangian interpolat-
ing between the low-energy and high-energy limits of QCD
[76]. On the other hand, the interest of our present work is
to investigate whether certain holographic dual models
derived directly from superstring theory are able to describe
experimental data related to the structure of spin-1=2
baryons, in particular, the proton structure functions. The
motivation which drives our interest is an old question
about whether or not fundamental strings are related to
strong interactions. We know that qualitatively there is a
relation in terms of the gauge/string theory duality. The
question we investigate is at what extent fundamental
strings can describe the hadron structure, by direct com-
parison with experimental data of several observables.
We have also investigated the situation of polarized

DIS. In this case, there are two very relevant quantities,
namely: gP1 ðx;Q2Þ and the virtual Compton scattering
asymmetry AP

1 ðx;Q2Þ. For gP1 ðx;Q2Þ, the number of points
we have considered is about twice the number of points
considered in previous studies. The results of the fits using a
holographic Pomeron for x < 0.01 and a second one for the
range [0.01, 0.1] are very good. This reinforces the
idea previously commented about the need of considering
a running coupling in the holographic Pomeron. The
experimental data for polarized DIS are in the range
0.06 GeV2 < Q2 < 2.41 GeV2 at low x, and 0.57 GeV2 <
Q2 < 19.7 GeV2 at intermediate x. Moreover, the formulas
we have considered for this holographic Pomeron,which are
based on the exchange of a single Reggeized gauge field in
the AdS5 × S5 bulk, are valid for small x values and Q2

corresponding to the polarized DIS at the EIC. Thus, our
predictions will be very interesting for polarized data to be
measured at the EIC. In this case, there is only one remaining
free parameter to fit over 50 experimental data of g1ðx;Q2Þ.
Also in this context, with the values of the parameters

corresponding to the fits ofF2 and g1, we have calculated the
virtual Compton scattering asymmetry AP

1 and then com-
pared this predictionwith experimental data. In this case, we
have also obtained a very good level of agreement. For this
quantity, we have also obtained predictions for future EIC
measurements for Q2 > 10 GeV2 and very small x values.
Very important efforts have been carried out in the last

years to understand the origin of the proton spin. In this
search, the EIC was conceived to be the most powerful
collider to achieve this goal, through measurements with
high precision and wide range of Q2. In the case of the
antisymmetric structure function of the proton gP1 , it is also
expected to obtain extremely precise measurements at
values of x down to 10−5 [3,81]. Particularly, related to
the expectations of the EIC program concerning polarized
scattering processes, very interesting results have been
obtained for gP1 in Ref. [82]. They generated pseudodata
calculating that function and other observables. They
carried out an extrapolation to the kinematic region of
the expected EIC measurements of gP1 . During the

extrapolation from measured data for x in ½10−2; 1� to
the expected new experimental data from EIC, it is assumed
that the parton distribution functions have certain form, and
also their Q2 dependence is dictated by DGLAP evolution.
These two hypotheses, which are instrumental in the
analysis developed in Ref. [83], lead to predictions for
extremely low x values, that can be compared with the
results of our calculations using the holographic Pomeron.
A different approach has been developed by Kovchegov

et al. [84], also obtaining a different prediction for gP1 at the
EIC range for low x and the values of Q2. Their evolution
equations consider the polarized color-dipole scattering
amplitude toward small values of x. This procedure leads to
predictions for helicity parton distribution functions and for
gP1 at small x from perturbative QCD.
At this point, an important question is why the holo-

graphic Pomeron works. For very low values of x, say
smaller than 0.01, we have shown that experimental data of
several observables are described well. In order to under-
stand it, we very briefly recall the argument of Brower,
et al. [18]. For simplicity, let us assume conformal
dynamics. Then, consider the 2 to 2 scattering amplitude
of states of a conformal field theory (for this case, N ¼ 4
SYM theory). This process is dual to the 2 to 2 scattering of
closed strings in type IIB string theory in the AdS5 × S5

background. Using the metric (2.2), the radial coordinate z
is related to the energy scale of the N ¼ 4 SYM theory at
the AdS boundary (z → 0 which corresponds to the UV
limit of the field theory). It has been shown in [18] that the
BPST Pomeron kernel for the Mandelstam variable t ¼ 0,
is given by the following expression:

KernelBPSTðz;z0;sÞ¼
sj

BPST
0

ð4πDBPST ln sÞ1=2
×exp½−ðln z0− ln zÞ2=ð4DBPST ln sÞ�;

ð6:1Þ

where there is a diffusion constant:DBPST ¼ 1=ð2λ1=2‚t HooftÞþ
Oðλ−1‚t HooftÞ and jBPST0 ¼ 2 − 2=λ1=2‚t Hooft þOðλ−1‚t HooftÞ. Now,
let us compare this expression with the BFKL Pomeron
kernel, which obviously has a very different interpretation,
being obtained from perturbative calculations in the
large Nc limit. The corresponding single BFKL-Pomeron
exchange scattering amplitude between two hadrons whose
structure is described by the impact factors Φ1ðp⊥Þ and
Φ2ðp0⊥Þ, respectively, is given by

Z
dp⊥
p⊥

Z
dp0⊥
p0⊥

Φ1ðp⊥ÞKernelBFKLðp⊥; p0⊥; sÞΦ2ðp0⊥Þ;

ð6:2Þ

where p⊥ is the transverse momentum with which the first
hadron is probed by the BFKL Pomeron, and similarly, p0⊥
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is the transverse momentum with which the second hadron
interacts with it. A good approximation for this kernel gives

KernelBFKLðp⊥;p0⊥;sÞ

≈
sj

BFKL
0

ð4πDBFKL ln sÞ1=2
exp½−ðln p0⊥− ln p⊥Þ2=ð4DBFKL ln sÞ�;

ð6:3Þ

where now the diffusion constant becomes

DBFKL ¼ 7ζð3Þ
8π2

λ‚t Hooft; ð6:4Þ

and jBFKL0 ¼ 1þ ln 2
π2

λ‚t Hooft. It is effectively a diffusion
kernel, with diffusion in ln p⊥, over a diffusion time
τ ≈ ln s. It is important to stress that the BFKL Pomeron
is valid for small λ‚t Hooft, while the BPST Pomeron was
derived for large coupling. Now, let us compare the BPST
Pomeron kernel (6.1) with the BFKL Pomeron one (6.3).
One can see the identification of 1=zwith p⊥. Notice that in
both cases, there is the same diffusion time. Thus, there is a
connection between the Reggeized gluon of pertubative
QCD and the Regge limit for a propagation of a closed
string in AdS5 × S5 [18].
Recall that a single holographic Pomeron exchange

dominates at large Nc and at a large center of mass
energy

ffiffiffi
s

p
. At finite Nc, the multi-Pomeron exchange

could become the leading contribution as s increases. In
this work, we have considered only a single holographic
Pomeron exchange, and the results of the comparison with
experimental data are very good. In any case, the question
of the role of 1=N2

c contributions is very important. In the
context of the BPST Pomeron, it was studied by consid-
ering the eikonal approximation in [45–49]. For F2, it was
investigated in [18], concluding that the onset of saturation
occurs for very small values of Q2.
Another very interesting result is the fact, already

commented, that the expressions we use for the holographic
Pomeron are valid for extremely small-x values, and for Q2

typically larger than 1 GeV2, which avoids saturation
effects, and smaller than the domain where electroweak
interactions become relevant. In this sense, our predictions
offer the possibility to investigate and compare with the
situation of polarized DIS at the EIC.
For intermediate values of the Bjorken parameter, it was

derived the DIS hadronic tensor using a local approxima-
tion for the string theory scattering amplitudes for glueballs
in [19], for spin-1=2 hadrons in [8], and for mesons in [29].
First of all, let us emphasize that one crucial difference
between the holographic dual description of mesons is that
simply using probe flavor Dp-branes a dynamical meson
can be described in terms of fundamental open strings
attached to the flavor Dp-brane. On the other hand, glue-
balls are described as closed strings. However, there are no

dynamical baryons constructed from fundamental open
strings. This is because they must end on a baryon vertex,
for instance, a D5-brane wrapping the S5 [85] (also
[86,87]). Thus, their masses scale as Nc, which in the
gauge/string theory duality approximation is very large. In
this discussion, we neglect corrections of the order
1=N2

c ≡ g2string, related to the string coupling, corresponding
to the world sheet topology of the torus. The issue is that in
the string theory scattering amplitude calculation a certain
approximation is made, and consequently, it turns out that
diffusion in the radial coordinate is neglected. The result
for the spin-1=2 fermions is that the ðΛ2=Q2Þτ−1 power
behavior is the opposite to the trend indicated by experi-
ments. On the other hand, it turns out that we can fit data
very well by considering a single-holographic Pomeron
exchange. As it was explained in this section, this is
compatible with a running coupling dependence of the
holographic-Pomeron kernel.
The supergravity dual description related to the s-

channel of forward Compton scattering cannot be used
to compare with data. The reason is that as explained in the
previous paragraph, there are not top-down holographic
models, even including flavors, with the ability of repre-
senting dynamical baryons composed of fermions in the
fundamental representation in the planar limit. Thus, since
for 0.1 < x < 1 DIS is dominated by valence quarks,
apparently there is no known way top-down dual super-
gravity models give a correct description of DIS in the case
of baryons.
We should mention that in terms of the so-called holo-

graphic QCD (AdS/QCD or bottom-up models), many
important hadronic properties have been investigated.
Related to hadron structure it is interesting to mention,
for instance, the calculations with the soft Pomeron in
holographic QCD developed in Ref. [88]. A very interest-
ing result derived from holographic QCD is presented in
[89] where the authors fit F2 as a function of the Bjorken
parameter for 249 points from HERA, for x < 0.01 and
0.1 < Q2 < 400 GeV2 with a χ2d:o:f ¼ 1.7, which is to be
compared with the corresponding one for the BPST
Pomeron in this region (see line 1 of our Table I). While
in the BPST Pomeron fits (lines 1–4 of Table I) there are
four free parameters, in the case of Ref. [89], there are nine
free parameters. In a previous paper [90], it was considered
holographic QCDwith nonminimal coupling contributions,
obtaining χ2d:o:f ¼ 1.1 using 14 free parameters. Also, the
BPST Pomeron in holographic QCD has been studied in
[91] for the calculation of F2. Generalized parton distri-
bution functions of quarks and gluons in holographic QCD
have been studied for different observables and compared
to experiments [92]. With respect to the Veneziano limit
that we commented before for top-down models, in [93],
the authors initiate a study of Regge theory in a bottom-up
holographic model for QCD.
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APPENDIX: BRIEF COMMENTS ON THE
SIEVING METHOD

In the fits to experimental data described in this work,
we have used the sieving method described by Block in
Ref. [51]. This method contains several steps that we
briefly explain below.
Step 1 : In order to carry out a robust fit to all data, one

firstly minimizes the Lorentzian squared function Λ2
0,

which is defined as

Λ2
0 ¼

XN
i¼1

ln ð1þ 0.18Δχ2i ðxi; αÞÞ; ðA1Þ

where α ¼ fα1;…; αMg represents the space of
parameters corresponding to the function that we want
to compare to data. A set of experimental data indicated
by y ¼ fy1;…; yNg corresponds to the values of x ¼
fx1;…; xNg, respectively. In the cases we present in this
work, xi can be either the value of the Bjorken parameter or
the value of the squared of the virtual-photon momentum
transfer, Q2

i , at which the structure function is measured.

For instance, in the first situation, we have yi ¼ F2ðxi; Q2Þ,
which corresponds to an experimental set of data for a
certain fixed value of Q2.
Then, one defines

Δχ2i ðxi; αÞ ¼
�
yi − yðxi; αÞ

σi

�
2

; ðA2Þ

where yðxi; αÞ is the theoretical value and σi is the
experimental uncertainty corresponding to that point, yi.
This object will allow us to quantify how far a certain
experimental point yi lies from the signal and therefore,
to identify whether this point can be considered as an
“outlier.” Specifically, if χ2min ¼

P
N
i¼1Δχ2i ðxi; αÞ obtained

after minimizing Λ2
0 is satisfactory, then one carries out a

conventional χ2 fit, and the uncertainties of the parameters
α can be calculated. As a standard convention, when χ2min is
close to the number of degrees of freedom (N −M), it is
considered to be satisfactory. On the other hand, if χ2min
turns out not to be satisfactory, one should follow step 2.
Step 2: Then, one uses the regressors obtained from

the fit with Λ2
0 and calculates Δχ2i ðxi; αÞ for each one of

the N points.
Step 3: Next, a certain value Δχ2max is set to carry out the

sieving. It means that points such that Δχ2i ðxi; αÞ ≥ Δχ2max

are to be excluded. The idea is to set Δχ2max as large as
possible in order to eliminate only “outliers,” thus trying to
minimize the number of points of the signal which would
be excluded arbitrarily by the sieving.
Step 4:With the not-excluded points in the previous step,

one calculates the usual χ2min. This result has to be corrected
due to the truncation (elimination) of the points through the
discussed sieving mechanism. This correction is imple-
mented in terms of a factor R, which in turn depends upon
Δχ2max. If the corrected χ2min is acceptable in the conven-
tional sense, then one follows step 5. Otherwise, if the
corrected χ2min is not acceptable, and if Δχ2max is not too
small, then one can still choose a smaller value of Δχ2max

(a) (b)

FIG. 15. Panel (a) corresponds to the normalized χ2d:o:f: as a function ofΔχ2max. Panel (b) shows the number of experimental points after
sieving as a function of Δχ2max.
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and return to step 3. The limiting value for the algorithm to
work is Δχ2max > 2 [51].
Step 5: From the fit developed in the previous step, using

the sieved data, one obtains the set of parameters α. Then,
the uncertainties of such parameters can be calculated
from the covariance matrix, which is a M ×M square
matrix. Also, this matrix must be corrected by multiplying
it by a factor rχ2, depending on Δχ2max.
It is worth to say that the value of χ2d:o:f: obtained from the

sieving is not necessarily closer to 1. This is due to the
normalization constant, which increases asΔχ2max decreases.

As an example, Fig. 15 displays the normalized χ2d:o:f:
[panel (a)] and the number of experimental points
[panel (b)], after sieving, as function of Δχ2max for the fit
of F2 in the case of the BPST Pomeron for 0 < x < 0.01.
We can observe that Δχ2max ¼ 4 is a good value for sieving
since the number of excluded experimental points is small
and χ2d:o:f: is close to 1, even closer than for any otherΔχ2max.
Notice that still for smaller values of Δχ2max as 2 or 3, which
implies excluding more experimental points, the fit does
not improve in comparison with the mentioned case
for Δχ2max ¼ 4.
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[74] H. G. Dosch , G. F. de Téramond, T. Liu, R. Sabbir Sufian,
S. J. Brodsky, and A. Deur (HLFHS Collaboration), To-
wards a single scale-dependent Pomeron in holographic
light-front QCD, Phys. Rev. D 105, 034029 (2022).
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