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Abstract
Aim: Addressing global environmental challenges requires access to biodiversity 
data across wide spatial, temporal and taxonomic scales. Availability of such data 
has increased exponentially recently with the proliferation of biodiversity databases. 
However, heterogeneous coverage, protocols, and standards have hampered integra-
tion among these databases. To stimulate the next stage of data integration, here we 
present a synthesis of major databases, and investigate (a) how the coverage of data-
bases varies across taxonomy, space, and record type; (b) what degree of integration 
is present among databases; (c) how integration of databases can increase biodiversity 
knowledge; and (d) the barriers to database integration.
Location: Global.
Time period: Contemporary.
Major taxa studied: Plants and vertebrates.
Methods: We reviewed 12 established biodiversity databases that mainly focus on 
geographic distributions and functional traits at global scale. We synthesized informa-
tion from these databases to assess the status of their integration and major knowl-
edge gaps and barriers to full integration. We estimated how improved integration can 
increase the data coverage for terrestrial plants and vertebrates.
Results: Every database reviewed had a unique focus of data coverage. Exchanges of 
biodiversity information were common among databases, although not always clearly 
documented. Functional trait databases were more isolated than those pertaining to 
species distributions. Variation and potential incompatibility of taxonomic systems 
used by different databases posed a major barrier to data integration. We found that 
integration of distribution databases could lead to increased taxonomic coverage that 
corresponds to 23  years’ advancement in data accumulation, and improvement in 
taxonomic coverage could be as high as 22.4% for trait databases.
Main conclusions: Rapid increases in biodiversity knowledge can be achieved through 
the integration of databases, providing the data necessary to address critical environ-
mental challenges. Full integration across databases will require tackling the major 
impediments to data integration: taxonomic incompatibility, lags in data exchange, 
barriers to effective data synchronization, and isolation of individual initiatives.

K E Y W O R D S
big data, biodiversity informatics, biogeography, database integration, functional trait, 
taxonomic system
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1  |  INTRODUC TION

In the face of rapid global changes, a grand challenge is effi-
ciently cataloguing, assessing, and responding to changes in bio-
diversity and associated ecosystem services (Ceballos et al., 2015; 
Chapin et al., 2000; Díaz et al., 2019). Addressing this challenge 
requires unprecedented access to biodiversity data across spa-
tial, temporal, and taxonomic scales (Beck et al., 2012). The past 
few decades have witnessed fast growth of biodiversity infor-
mation (Bisby,  2000; Hardisty et  al.,  2013; Hobern et  al.,  2019). 
Rapid digitization of existing biodiversity collections and ongo-
ing collection of new information are expanding data availability 
worldwide (Ball-Damerow et al., 2019; Chandler et al., 2017; Page 
et al., 2015; Sullivan et al., 2014). Indeed, the Global Biodiversity 
Information Facility (GBIF) – the world’s leading repository of 
biodiversity observations – recently reached 1.6 billion records 
(accessed March 2021). However, we are still a long way from 
fully characterizing the taxonomy, geographic ranges, and func-
tions of all species on Earth (Hortal et al., 2015; Lomolino, 2004; 
Stork,  2018). Addressing these shortfalls requires novel efforts 
in data synthesis to integrate the information held in the world’s 
biodiversity projects, some 600+ of which had been created as 
of 2014 (Belbin, 2014), nearly half of which are essentially invisi-
ble or inaccessible to the research community due to lack of cat-
aloguing and integration (Blair et  al., 2020). There are also large 
volumes of ‘dark data’ that need to be catalogued and integrated 
(Heidorn, 2008).

Data aggregation has been an ongoing goal of the biodiversity 
community (Ball-Damerow et al., 2019; Nelson & Ellis, 2018). A tre-
mendous amount of work has been done by existing biodiversity 
data aggregators. For example, building upon a community designed 
standard (Darwin Core; Wieczorek et al., 2012) and specialized tools 
(e.g., Integrated Publishing Toolkit; Robertson et  al.,  2014), GBIF, 
iDigBio, and VertNet have made over a billion records of species oc-
currences available online over the past two decades. However, the 
challenges to integration are many: existing biodiversity data aggre-
gators often have singular objectives and consequently adhere to 
different protocols and standards (Mesibov, 2018), such as Darwin 
Core used by GBIF (Wieczorek et al., 2012), Veg-X used by Botanical 
Information and Ecology Network (BIEN; Wiser et al., 2011), eBird 
Checklist format used by eBird (eBird, 2021), and structured property 
graph data used by Encyclopedia of Life (EOL, 2014); and datasets 
are highly heterogeneous spatially, temporally, and taxonomically 
(Cornwell et al., 2019; Reichman et al., 2011). As new data are con-
tinuously aggregated, and data processing protocols and standards 
(e.g., georeferencing of missing coordinates and autocorrection of 

taxonomic names) are further developed along different trajecto-
ries, the differences among biodiversity data aggregators can accu-
mulate over time. Thus, biodiversity data aggregators run the risk 
of ‘speciating’, or becoming isolated, which can impede data sharing 
and integration. In response, the community has been calling for 
greater alignment between efforts and actively working on coordi-
nation mechanisms for developing shared roadmaps for biodiversity 
informatics (Hobern et  al.,  2019). We therefore assert that a new 
synthesis is needed for the next stage of biodiversity data integra-
tion; information from existing biodiversity data aggregators should 
be further integrated to reduce shortfalls in biodiversity knowledge 
and achieve a more complete picture of Earth’s biodiversity (Hobern 
et al., 2019; Kattge et al., 2020; König et al., 2019).

To facilitate better integration among biodiversity data domains 
(König et al., 2019), we first need to assess the current state of con-
nectivity and integration among databases. Though biodiversity 
data generally are well organized in individual databases, overlaps 
in their data coverage and the extent of communication across da-
tabases remains unclear. Indeed, attention has rarely been paid to 
the post-aggregation processes and interactions among commonly 
used databases (such as nontransparent data-flows between two 
databases) and synthesis studies of biodiversity data from multi-
ple databases are still scarce in the literature (Cornwell et al., 2019; 
König et al., 2019). To address this gap, we conducted a synthesis 
of existing biodiversity databases that mainly focus on geographic 
distributions and functional traits at global scale, and aimed to an-
swer four questions: (a) How does the coverage of a suite of major 
biodiversity databases differ across taxa, space, and record type? (b) 
How are existing biodiversity databases integrated? (c) How would 
the integration of databases increase biodiversity knowledge? and 
(d) What are the barriers that prevent data integration? To answer 
these questions, we first reviewed the scope of existing major bio-
diversity databases and assessed the status of their integration. We 
also demonstrated that the integration of biodiversity databases 
could rapidly narrow major knowledge gaps. Finally, we examined 
barriers that need to be overcome to obtain a more complete picture 
of the biodiversity on Earth.

2  |  RE VIE W OF BIODIVERSIT Y 
DATABA SES

Many biodiversity databases have been built over the past two 
decades, with varying emphases on taxonomy, spatial loca-
tion, and record type. To synthesize the major attributes of ex-
isting biodiversity databases, we selected 12 well-established 
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biodiversity databases: the Atlas of Living Australia (ALA; Belbin & 
Williams, 2016), Botanical Information and Ecology Network (BIEN; 
Enquist et  al.,  2016), Biodiversity Information Serving Our Nation 
(BISON; U.S. Geological Survey, 2018), eBird (Sullivan et al., 2014), 
Encyclopedia of Life (EOL; Parr et  al.,  2014), Global Biodiversity 
Information Facility (GBIF), Global Inventory of Floras and Traits 
(GIFT; Weigelt et  al.,  2020), Integrated Digitized Biocollections 
(iDigBio,  2018), iNaturalist (https://www.iNatu​ralist.org), Map of 
Life (MOL; Jetz et al., 2012), a global database of plant traits (TRY; 
Kattge et  al., 2011), and VertNet (Constable et  al., 2010). Our se-
lection cannot cover every notable database because of limited re-
sources and accessibility of database content and documentation. 
Our selections were chosen to represent the breadth of the most 
commonly used, well-established large-scale biodiversity databases 
(Chandler et al., 2017; Cornwell et al., 2019; James et al., 2018; König 
et al., 2019; MacFadden & Guralnick, 2017; Singer et al., 2018) to 
maximize the generalizability of our results and conclusions. Note 
that some of the databases share considerable amounts of data, but 
they can also be different in certain aspects (e.g., distribution data 
from VertNet are available in GBIF, but the trait data from VertNet 
are not). More details of their similarities and differences were in-
vestigated by compiling information from online documentation and 
relevant publications (see Sections  2.1 and 2.2). We acknowledge 
that these databases are typically under active development; thus 
our synthesis is based on a snapshot of their status on the access 
date (March 2021; see Appendix).

2.1  |  Variation in coverage and data types within 
biodiversity databases

We reviewed metadata for biodiversity databases from project web-
sites or publications, and recorded the database name, taxonomic 
scope, taxonomic system, record type, number of records, and spa-
tial coverage. We classified the record types into three categories: 
geographic distribution, media type, and biological information 
(standardized trait data or generalized text descriptions). Within the 
category of geographic distribution, we further classified the infor-
mation as specimen records, observations, checklists of geographic 
regions, or distribution maps. Specimen records and observations 
both have information on specific occurrences of a species at a geo-
referenced point location, but only specimen records are associated 
with physical specimens. Checklists usually contain lists of species 
known to be present in defined geographic regions (e.g., political di-
visions or protected areas). Distribution maps are those that were 
drawn by experts or generated through models with various degrees 
of complexity. Media data were classified by type as either image, 
audio, or video. Biological information included standardized trait 
data and generalized text descriptions.

Our review showed that each biodiversity database holds unique 
scientific value because they cover different spatial extents, taxo-
nomic groups, and record types (Figure 1a). The databases could be 
grouped into different clusters based on similarities of focus and 

data coverage. For example, iNaturalist and eBird are two citizen sci-
ence projects where anyone can submit their original observations. 
EOL, iNaturalist, and eBird form a cluster of databases that indexes 
media data and biological descriptions, while also sharing public ed-
ucation objectives (Figure 1b). TRY and GIFT form another cluster 
that mainly focuses on indexing functional traits of plants. GBIF, 
BISON, iDigBio, and VertNet form yet another cluster that empha-
sizes indexing species occurrences. The cluster of ALA, MOL, and 
BIEN shares the property of indexing both species occurrences and 
geographic range maps. Here, we considered the different attributes 
equally, though assigning different weights to the attributes can lead 
to different database groupings. For example, many of the databases 
seek to document all taxa across the globe (e.g., GBIF, EOL) or to 
index many types of data (e.g., EOL, ALA, iNaturalist).

2.2  |  Data integration status among 
biodiversity databases

To understand how existing biodiversity databases are integrated, 
we reviewed the data-flows among the databases, that is unidirec-
tional flow of biodiversity data from one database to another, or bidi-
rectional flow between two databases. Biodiversity databases (e.g., 
GBIF) typically aggregate digitized information from data providers, 
such as museums, herbaria, and research data repositories, and the 
detailed information about data providers is usually acknowledged 
on a database’s website (e.g., BIEN data contributors – https://web.
archi​ve.org/web/20210​22812​1556/https://bien.nceas.ucsb.edu/
bien/data-contr​ibuto​rs/all/). However, it is usually not straightfor-
ward to understand whether one database is aggregated by another. 
This may be partially due to concerns of appearing redundant and 
losing uniqueness, as acknowledging a database to be aggregated by 
another could be interpreted as one database becoming a subset of 
the other (larger) database. Regardless, understanding such relation-
ships among databases is important for users, as this immediately 
affects the determination of most comprehensive data coverage 
(e.g., whether or not GBIF has the most complete occurrence set 
of a species) or evaluation of data quality (e.g., whether or not to 
consider seemingly duplicate records when using data from multiple 
databases). Therefore, we found it important to assess the degree 
of data sharing and integration among biodiversity databases, which 
we accomplished by reviewing their documentation and associated 
publications.

Overall, the data-flows (i.e., the exchange of primary data) be-
tween biodiversity databases are not always clearly documented 
and at times the relationships need to be inferred. Key technical de-
tails of data-flow, such as the time and frequency of data exchange/
flow, and the version or date of the imported data, are usually lack-
ing. The lack of ‘snapshot’ data archives hinders the reproduction 
of data content, as well as the reproducibility of associated scien-
tific research (Feng et al., 2019). Unclear documentation of data ex-
change may also lead to compliance issues with data licensing, and 
can prevent assignment of proper credit to data collectors.

https://www.iNaturalist.org
https://web.archive.org/web/20210228121556/https://bien.nceas.ucsb.edu/bien/data-contributors/all/
https://web.archive.org/web/20210228121556/https://bien.nceas.ucsb.edu/bien/data-contributors/all/
https://web.archive.org/web/20210228121556/https://bien.nceas.ucsb.edu/bien/data-contributors/all/


    |  5FENG et al.

We found that data-flow, unidirectional or bidirectional, is 
common among biodiversity databases (Figure  2 and Supporting 
Information Table S1). Among the network of databases, GBIF serves 
as a central aggregator at a global scale that ingests species occur-
rence data from many databases, such as BISON, iDigBio, and eBird. 
ALA and BISON have bidirectional data-flows with GBIF – they both 
(a) aggregate biodiversity data collected from their focal regions (i.e., 
Australia and North America, respectively) and pass the data to GBIF, 
and (b) import other data collected from Australia or North America 
from GBIF to their respective databases (Supporting Information 
Table S1). There are also cases of unidirectional data-flow from GBIF 
to specialized databases. For example, MOL aggregates multiple 
types of information on species geographic distributions, including 
occurrence records from GBIF; as does BIEN.

We summarized the status of data integration across databases 
into four categories: synced, lagged, impeded, and isolated (Figure 3). 
Ideally, information in databases could be fully integrated in either 
one or multiple directions in real (or near-real) time (i.e., synced). For 
example, data published to iDigBio are automatically published in 
GBIF (iDigBio, 2021; Singer et al., 2018), thus the content of iDigBio 
is considered synced with GBIF (Figure 3). However, differences may 
arise between otherwise fully integrated databases in the time be-
tween synchronization events (lagged). For example, BIEN imports 
and integrates data from GBIF and other sources at annual or longer 
intervals, which provides more stable and easily archived datasets, 
but the imported GBIF content can be different from the most up-
to-date GBIF data until the next synchronization. This lag can be 
addressed by increasing the frequency of data exchange, shared 
data import protocols, or developing novel database architecture 
designed for data integration (LeBauer et al., 2013). Differences be-
tween databases may also arise from obstacles that prevent subsets 
of data from being shared (impeded). For example, iNaturalist only 
publishes data that are properly licensed on GBIF (iNaturalist, 2018). 
Differences in data licensing is one of the major impediments to in-
tegration and is a problem that was rarely emphasized in biodiversity 
data aggregation prior to the last decade. For example, GBIF initial-
ized a license requirement in 2014 (GBIF,  2014) and excluded ap-
proximately 49 million existing records without appropriate licenses. 
Clearly defined data licenses will make future data use and inte-
gration legally straightforward, and will also provide a cornerstone 
for the Open Science movement (Escribano et  al., 2018). Creative 
commons licenses are the most widely used mechanism to ensure 
proper attribution while allowing others to copy and distribute data 
(Fitzgerald et al., 2007).

Unlike the distribution databases discussed above, trait da-
tabases are characterized by isolation. These databases typically 
capture data within particular taxa or focus on a single trait, such 
as GlobTherm for thermal tolerance (Bennett et  al.,  2018) and 
AmphiBIO for amphibian ecological traits (Oliveira et  al.,  2017; 
Figure 3). A degree of isolation is unavoidable due to the complex 
nature of trait data, which varies greatly in terms of data types, 
units, and measurement methods (Deans et  al.,  2015) and the 
taxon-specific nature of many traits (e.g., seed traits apply only to 

seed plants). Such complexity is not resolved by following exist-
ing standards commonly used by occurrence data such as Darwin 
Core (Wieczorek et  al.,  2012). Effective synthesis and integration 
of trait information will require trait-specific specifications such as 
trait ontologies (Walls et al., 2012), trait data standards (Schneider 
et al., 2019) and embracing of Open Science principles via initiatives 
like the Open Traits Network (Gallagher et al., 2020).

Information in a biodiversity database is generally indexed by 
species’ scientific names. However, the dynamic nature of taxonomic 
research presents challenges to such indexing. With the exception 
of a few well-established groups such as birds (whose taxonomy is 
relatively stable and subject to regular external review and standard-
ization; Chesser et al., 2021), conflicting taxonomic concepts, hom-
onyms, outdated synonyms, and ambiguous alternative spellings are 
prevalent across the tree of life (Boyle et al., 2013; Franz et al., 2008). 
Furthermore, in addition to the roughly 18,000 new species discov-
ered each year, the taxonomy of the > 2 million species currently de-
scribed (Mora et al., 2011) is in a state of constant flux, as old species 
definitions are re-examined and relationships are updated to reflect 
new insights. Finally, no single, universally agreed-upon taxonomy 
exists for the tree of life. Therefore, biodiversity databases have im-
plemented different strategies (here termed taxonomic systems) to 
handle this taxonomic churn (Figure 2 and Supporting Information 
Table S2). Some databases maintain flexibility in nomenclature, es-
pecially when the taxonomy is in flux (e.g., vertebrate species stored 
in VertNet), whereas some databases impose stronger rules. For 
example, EOL allows multiple independent taxonomic sources to 
coexist to avoid potential conflicts between non-compatible no-
menclature; GBIF and Catalogue of Life (COL) have both employed a 
comprehensive but single-backbone system designed to be compat-
ible with different taxonomic sources; MOL developed a backbone 
that includes Catalogue of Life (a global effort to compile existing 
catalogued species) and manually curated taxonomic datasets ad-
dressing synonyms. For land plants, The Plant List (http://www.
thepl​antli​st.org/) adopts periodically revised, comprehensive check-
lists of accepted species and synonyms for major taxonomic groups. 
While such static checklists provide relatively stable taxonomies 
that are easily portable among databases, they have been criticized 
as imposing arbitrary taxonomic opinions, implying certainty where 
none exists and perpetuating the use of invalid or illegitimate names 
in the guise of poorly vetted ‘unresolved names’ (Kalwij, 2012). An 
alternative approach is to align species names using one or more 
dynamic, actively curated taxonomic sources such as the Missouri 
Botanical Garden’s Tropicos database (https://www.tropi​cos.org/). 
This is the method used by databases such as BIEN and TRY that re-
solve their taxonomy using the Taxonomic Name Resolution Service 
(TNRS; Boyle et  al.,  2013). However, while actively curated taxo-
nomic references generally provide the most up-to-date taxonomic 
opinions, their dynamism can also result in taxonomic instability and 
decreased compatibility among databases (e.g., taxonomic data-
bases such as Tropicos can change daily as curators update content).

Still, the different approaches and strategies may solve taxo-
nomic issues locally within a database (Soberón & Peterson, 2004), 

http://www.theplantlist.org/
http://www.theplantlist.org/
https://www.tropicos.org/
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but could deepen differences among different databases that pre-
vent future data integration, thus facilitating the ‘speciation’ of da-
tabases (Figure 2 and Supporting Information Table S2). Ultimately, 
the solution to this impasse will likely be the use of static, versioned 
‘snapshots’ of actively curated taxonomic databases maintained 
through a collaboration of global taxonomic experts and biodiversity 
institutions. An example is the recently initiated World Flora Online 
(http://www.world​flora​online.org/). In the meantime, the current in-
compatibilities of existing databases will need to be resolved either 
by adherence to a standard set of static checklists (however imper-
fect) or the development and deployment of tools that allow users to 
align taxonomies to different taxonomic sources on the fly.

3  |  ENHANCED DATA COVER AGE VIA 
DATABA SE INTEGR ATION

To quantify the improvement in data coverage provided by combin-
ing multiple databases, we compared leading databases that focus 
on similar taxonomic groups and similar record types. We used 

terrestrial plants (Embryophyta; hereafter ‘plants’) and vertebrates 
(Vertebrata) as test cases, because these taxonomic groups are com-
paratively well collected and documented in biodiversity databases 
compared to others (Ball-Damerow et al., 2019; Clark & May, 2002; 
Cornwell et  al.,  2019; Fazey et  al.,  2005; Hecnar,  2009; Kattge 
et al., 2020; König et al., 2019; Titley et al., 2017). We did not use taxa 
that account for large portions of biodiversity on Earth but face huge 
data gaps, such as microbes or invertebrates (Locey & Lennon, 2016). 
Specifically, we combined (a) the distribution of terrestrial plants 
from GBIF and non-GBIF sources, and (b) one crucial and commonly 
measured trait for plants and vertebrates, respectively: maximum 
height (Guralnick et al., 2016; Moles et al., 2009) using the Botanical 
Information and Ecology Network (BIEN; Enquist et al., 2016), TRY 
initiative (Kattge et al., 2011), and EOL (Parr et al., 2014), and body 
length using VertNet (Constable et al., 2010) and EOL (see Appendix). 
Our study goes beyond recent gap analyses of biodiversity data 
(Cornwell et al., 2019; König et al., 2019; Meyer et al., 2016), by ex-
panding the scope to multiple data aggregators with similar missions, 
in two major clades (i.e., terrestrial plants and vertebrates), and using 
an ecological trait characterized by continuous values.

F I G U R E  1  Overview of biodiversity 
databases reviewed in this paper. The 
coverages of their data are shown in panel 
(a) indicated by ‘X’. Based on the data 
coverages, the biodiversity databases 
are grouped into several clusters (b), 
where the height of the dendrogram is 
the relative distance between clusters. (*) 
Global Biodiversity Information Facility 
(GBIF), Integrated Digitized Biocollections 
(iDigBio), and VertNet index and display 
images on their websites, while the images 
are mainly hosted by external institutions 
or facilities. (†) TRY and Global Inventory 
of Floras and Traits (GIFT) also store 
geographic information about where the 
trait was measured. EOL = Encyclopedia 
of Life; BISON = Biodiversity Information 
Serving Our Nation; MOL = Map of Life; 
ALA = Atlas of Living Australia; BIEN 
= Botanical Information and Ecology 
Network
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3.1  |  Better coverage through data integration

3.1.1  |  Overall trends in data collection

We found that the total number of distribution records (spatial co-
ordinates) for plants has increased exponentially since the 1750s 
(Lomolino et  al., 2010; Figure 4a) as documented in GBIF and the 
combined dataset. A similar exponential increase was found when 
only spatially unique records were examined (Figure 4b). This pat-
tern is also supported by a model selection analysis among linear, ex-
ponential, and logistic functions (Supporting Information Table S3). 
This trend in the growth of biodiversity data is analogous to many 
accelerating processes in the Anthropocene (Steffen et  al.,  2015), 
such as urbanization, globalization, transportation, and telecommu-
nications. One prominent example in information technology (IT) is 
the exponential growth in the number of transistors in a dense inte-
grated circuit, which doubles roughly every 2 years (Moore, 2006). 
This pattern, termed ‘Moore’s Law’, is also evident in the accelerat-
ing development of cyber infrastructures for many disciplines in sci-
ence. Based on the similar exponential curve for biodiversity data, 
we estimated that the total number of plant distribution records 
doubles every 17 years and the number of spatially unique records 
doubles every 21 years. The high speed of biodiversity data accu-
mulation represents the great power of data collection, digitization, 

processing, and publishing, which lays the basis for and presents the 
opportunities for biodiversity database integration.

In contrast to the number of distribution records, the number of 
species identified is gradually reaching saturation (Figure 4c). Based on 
a fitted logistic curve (Supporting Information Table S3), we predicted 
that the number of catalogued plant species in distribution databases 
would be saturated at 365,519 ± 2,233 (mean ± SD of the coefficient 
from the fitted logistic model), that is, the saturation point of predicted 
number of terrestrial plant species in the integrated biodiversity dis-
tribution databases, with species names resolved using the Taxonomic 
Name Resolution Service (TNRS; version 5.0; Boyle et al., 2013). This es-
timate is higher than the current catalogued number of terrestrial plants 
in Catalogue of Life (COL; 354,327), though within the previously esti-
mated range for the total number of plant species on Earth (334,000–
403,911; Lughadha et  al.,  2016). The slowing trend in plant species 
discovery started in ~1949 (the inflection point of the logistic curve 
of the cumulative number of species in GBIF; Supporting Information 
Table  S1), and is in line with previous estimations (Christenhusz & 
Byng, 2016). Such trends may suggest that we are gradually reaching 
saturation and closing the Linnean shortfall, the lack of knowledge in 
describing and cataloguing species (Hortal et al., 2015), for plants. The 
slowing trend could also be caused by species extinctions, reduced 
funding for natural history studies, and increasing difficulties in detect-
ing the remaining rare species (Joppa et al., 2011).

F I G U R E  2  Data exchanges between biodiversity databases with different taxonomic systems. Each box represents one database and 
its adopted taxonomic system (lower half). The taxonomic systems are shown in different colours, with the same colour representing 
compatible systems. A variety of taxonomic systems exist: some databases develop backbone systems (e.g., BIE backbone, GBIF backbone, 
MOL backbone), some databases adopt a name scrubbing tool that standardizes names towards pre-selected taxonomic systems (e.g., BIEN, 
GIFT, TRY), some rely on multiple taxonomic systems (e.g., iNaturalist, EOL), and some do not implement a strong regulation on taxonomic 
names (e.g., VertNet). The one-way or two-way arrows represent unidirectional or bidirectional exchanges of primary biodiversity data 
between databases, respectively. ALA = Atlas of Living Australia; BIE = Biodiversity Information Explorer; BIEN = Botanical Information 
and Ecology Network; BISON = Biodiversity Information Serving Our Nation; EOL = Encyclopedia of Life; GBIF = Global Biodiversity 
Information Facility; GIFT = Global Inventory of Floras and Traits; iDigBio = Integrated Digitized Biocollections; ITIS = Integrated Taxonomic 
Information System; MOL = Map of Life; TNRS = Taxonomic Name Resolution Service; TRY = TRY, a global database of plant traits. As the 
databases continue to grow and develop, this figure represents the best of our knowledge as of March 2021
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3.1.2  |  Improvement in distribution data

Integration of biodiversity databases would increase our knowledge 
of biodiversity greatly. For instance, adding ~15 million records from 
additional sources (compiled by BIEN) to GBIF, the world’s largest 
biodiversity repository, would improve its coverage by ~3.7 million 
spatially unique records and ~20,000 species (Figure 4d–f). The num-
ber of distribution records per taxon in GBIF could be increased by 
4.4%, which is an average of 19 additional records per species. The 
improvement of taxonomic coverage in GBIF would be equivalent to 

23 years of new data accumulation (or aggregation), based on extrap-
olation of the fitted logistic curve (Figure 4c, Supporting Information 
Table S3). GBIF and non-GBIF datasets together provide distribution 
data for ~307,985 species (76–92% of the estimated richness of all 
plants; Lughadha et al., 2016), suggesting we are gradually decreas-
ing the Wallacean shortfall, the lack of knowledge in species distri-
bution, for plant species, in accordance with findings in Cornwell 
et al. (2019). Nonetheless, the complete geographic distributions of 
many species could remain poorly known. For example, it has been 
estimated that 36.5% of land plant species are represented by five or 

F I G U R E  3  Data integration among biodiversity databases. The status of data integration is classified as four categories: synced, lagged, 
impeded, and isolated. Synced refers to the status of full integration, in either one or multiple directions, between different databases in or 
near real-time. For example, data published to Integrated Digitized Biocollections (iDigBio) are automatically published to Global Biodiversity 
Information Facility (GBIF). Lagged refers to the difference between otherwise fully integrated databases between two sync events. For example, 
Botanical Information and Ecology Network (BIEN) imports and integrates data from GBIF and other sources (e.g., the Forest Inventory and 
Analysis or FIA) annually or at longer intervals and publishes the results as versioned database releases. The most recent data in those sources 
will not be available via BIEN until the next import and versioned release. Impeded refers to differences between databases caused by barriers 
that prevent subsets of the data from being shared. For example, iNaturalist only publishes data to GBIF that are properly licensed for open 
sharing (iNaturalist, 2018). Contrary to distribution databases, trait databases are generally isolated from one another, although there are flows/
exchanges of plant trait data between TRY and Global Inventory of Floras and Traits (GIFT), and TRY and Encyclopedia of Life (EOL) (Supporting 
Information Table S1). We caution that the data-flow between or among databases is not well documented, and this figure represents the best of 
our knowledge as of March 2021. ALA = Atlas of Living Australia; BISON = Biodiversity Information Serving Our Nation
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fewer observations (Enquist et al., 2019), and five is much below the 
number of occurrences used in the inference of species geographic 
ranges. Even for well-known groups like trees, it has been estimated 
that only 26% of the species had more than 20 occurrences with high 
quality information (Serra-Diaz et  al.,  2018). Therefore, substantial 
efforts are still needed to increase the quality and quantity of records 
for many species to fully address the Wallacean shortfall.

3.1.3  |  Improvement in trait data

Database integration also substantially improves the taxonomic 
coverage of trait information (maximum height in plants; body 
length in vertebrates; see Appendix: Materials and Methods). Under 
standardized taxonomy, we found that individual plant and verte-
brate trait databases always include unique species–trait combina-
tions and cover different portions of taxonomic diversity (Figure 5). 
For instance, trait knowledge increased in 69–82 plant orders and 
86–124 vertebrate orders through database integration, while the 
range of increase varied by database. The average improvement of 
species–trait combination ranged from 2.0 to 8.7% for plant orders 
and 21.5–22.4% for vertebrate orders. The number of plant orders 
that were sparsely sampled in BIEN (i.e., < 10% of species with trait 
observations), for example, decreased from 99 to 65 through data 
integration; a similar decrease was seen for sparsely-sampled verte-
brate orders in EOL from 53 down to nine (Figure 5).

3.1.4  |  Limitations of our assessment

Data integration can effectively decrease gaps in our knowledge, re-
sulting in more comprehensive data that can facilitate global-scale 
studies of biodiversity, and help identify and reduce potential data 
biases (Reddy & Dávalos, 2003). We note that our assessment of the 
possibilities for data integration does not address how different data 
sources (or ‘data resolutions’, as defined in König et al., 2019) should 
be best integrated for different study objectives. These mismatches 
are apparent in cases such as distribution data represented by pres-
ences versus abundances, or a trait value measured at individual level 
versus the species level. However, indexing trait data availability for a 
focal species is a major step toward more rigorous data integration and 
scientific research. With the integrated data, one could cross-validate 
the values from different sources to ask questions such as: ‘Do trait 
values vary by methods of measurements?’ or ‘Can species-level trait 
data accurately represent the range of values measured at the indi-
vidual level?’ Cross-validations will be especially useful if one database 
is mainly used by the general public, while other databases are more 
heavily used by the scientific community, such that more rigorous in-
formation is delivered by the scientific community to the general pub-
lic. With the integrated data, one could also conduct scientific research 
at broader scales and study, for example, trait variation across time 
or across spatial or environmental gradients (Park et al., 2021; Siefert 
et al., 2015), or species–trait combinations within communities.

3.2  |  A clearer picture of what we do not know

Importantly, database integration can provide an improved assess-
ment of gaps in biodiversity knowledge (Cornwell et al., 2019; König 
et  al.,  2019; Meyer et al., 2015). Following our integration of vari-
ous databases (Appendix), approximately 58,000 plant species still 
lacked publicly available distribution records (i.e., presence records 
with coordinates). This gap corresponds to approximately 15.8% of 
the species in Catalogue of Life—a global effort to compile existing 
catalogued species. The coverage of distribution records in plant or-
ders varied from 47% (in order Hypnales) to fully covered in some or-
ders with a small number of extant species (Cornwell et al., 2019; e.g., 
Ceratophyllales). In addition to true knowledge gaps where informa-
tion on the distributions of species does not exist in any form, there 
are instances where: (a) locality information exists but is not digitized, 
(b) locality information is only available at large spatial scales (e.g., 
country level), (c) locality descriptions are digitized but not georef-
erenced, (d) coordinates are available but not publicly accessible. 
Therefore, gaps estimated from publicly available distribution re-
cords may represent an overestimation of the true knowledge gap. 
From a spatial perspective, distribution records are known to have 
strong biases across regions, usually driven by human factors instead 
of species richness (Daru et al., 2017; Enquist et al., 2019; Hughes 
et al., 2021; Park et al., 2021). While North America and Europe are 
more intensely sampled, there are still ~30.8 million km2 of ice-free 
land surface, as assessed using Eckert IV equal area projection, that 
currently have no valid plant geolocations (Figure 4g). These areas 
are mainly located in Russia (despite the considerable recent pro-
gress of data sharing by the Russian GBIF community; Shashkov & 
Ivanova, 2019), central and Southeast Asia, and northern Africa, and 
collectively cover approximately 13% of the Earth’s land area. With 
the exception of the tropical forests of Southeast Asia, these poorly-
sampled areas are generally known to have to low plant richness, 
such as Sahara desert, Taklimakan desert, Siberian tundra, Siberian 
taiga, and Arctic tundra (Barthlott et al., 2007), suggesting the spatial 
gap of plant distribution knowledge could be much smaller.

Trait data have considerably larger gaps compared to species 
distribution data. Plant height and vertebrate body length are com-
monly used traits in ecological research that are frequently recorded 
in databases (Guralnick et al., 2016; Moles et al., 2009). However, 
height information is absent for 333,597 plant species from 102 or-
ders from BIEN, TRY and EOL, and body length information is absent 
for 38,992 within 127 orders of vertebrate species from VertNet and 
EOL (Figure 5). In total, height data are unavailable for approximately 
92.6% of plant species, and body length is unavailable for 56.8% of 
vertebrate species in Catalogue of Life. The data coverages were 
mostly below 60% for plant orders, and percentages were relatively 
higher for vertebrate orders. Assuming that a trait that is of obvious 
biological importance and is easily measurable shall have more infor-
mation in the literature or the biodiversity databases, other biological 
traits (e.g., life span, metabolic rate, population abundances; Pereira 
et al., 2013) will likely have much larger shortfalls (but see analyses of 
plant growth form in König et al., 2019). In the face of accelerating 
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increases in biodiversity data availability, recognizing the remaining 
knowledge gaps could help guide future data compilation efforts 
(e.g., the gap filling activity in eBird; eBird, 2014) and potentially turn 
our enhanced power of compiling information into efforts that gen-
erate critically needed knowledge (Cornwell et al., 2019).

4  |  CHALLENGES AND OPPORTUNITIES

4.1  |  A catalogue and synthesis of biodiversity 
databases

To achieve global integration of biodiversity knowledge, we would 
first need to know what databases are available. To facilitate this 
process, we need a catalogue of biodiversity databases with their 
metadata recorded, such as spatial, temporal, taxonomic scope, as 
well as the types of data aggregated, so that existing or new da-
tabases can be easily located, compared, and effectively used. Lee 

Belbin has maintained the Biodiversity Information Projects of the 
World (Belbin, 2014), essentially containing metadata of 685 biodi-
versity projects. The recorded metadata include project summary, 
geographic, temporal, and taxonomic scope, and key technique at-
tributes (though this has not been accessible since 2019; but see 
Blair et al., 2020). Similarly, GBIF has a registry system that indexes 
the metadata of GBIF participants, institutions, and datasets; how-
ever, data associated with this registry are mainly focused on a few 
record types, including occurrences, checklists, and sampling events 
(https://web.archi​ve.org/web/20210​51414​1441/https://www.gbif.
org/artic​le/5FlXB​KbirS​iq0as​cKYiA​8q/gbif-infra​struc​ture-registry). 
Another example is the Global Index of Vegetation Plot Databases 
that indexes the metadata of vegetation-plot data that are publicly 
available (Dengler et al., 2011). In contrast, DataONE has a broader 
scope that indexes the metadata of a large variety of biological and 
environmental data (Michener et  al., 2012). These existing efforts 
form a good basis for a catalogue of biodiversity databases that can 
continuously keep track of existing data aggregators and index new 

F I G U R E  4  Spatial and taxonomic coverage of terrestrial plant occurrence data. Georeferenced plant observations, as illustrated by 
observation dates in Global Biodiversity Information Facility (GBIF; the largest biodiversity informatics infrastructure), have increased 
exponentially over the past 200 years (panels a, b), though the number of species recorded in these databases is reaching saturation (panel 
c). By integrating additional data sources compiled by Botanical Information and Ecology Network (BIEN; i.e., non-GBIF sources comprising 
~15 million records; panel d), the georeferenced plant observations in GBIF can be expanded by an additional ~4 million spatially unique 
records (panel e) and ~20,000 species (panel f). Still, the gaps in plant distributions warrant our attention: areas in Russia, central Asia, and 
northern Africa (red colour in panel g) are missing publicly available occurrences. The grey colour in panel (g) represents the presence of 
plant data, and the black colour represents ice-covered areas
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aggregation efforts. Still, the relationships among biodiversity data-
bases are not always obvious. Therefore, a synthesis, ideally updated 
regularly, would be helpful to clarify the relationships among bio-
diversity databases, in particular what is the unique data coverage 
of each database and what are the data-flows among biodiversity 
databases.

4.2  |  Overcoming the barriers to database 
integration

After cataloguing the metadata and synthesizing the relationships 
among biodiversity data aggregators, many technical barriers re-
main. As a prerequisite to integration, the data in a database should 
be openly available with proper data licenses to minimize impedi-
ments to data sharing (see Section 2.2). Another major barrier is in-
compatible taxonomic systems. A promising effort is Catalogue of 
Life Plus (Bánki et al., 2018), which builds upon existing but discon-
nected efforts (such as the COL and GBIF backbone taxonomy) to 
create an open, shared and sustainable consensus taxonomy, which 
can serve as the infrastructure for individual biodiversity databases 
or database integration. Thirdly, existing databases adopt different 
data processing methods and storing standards (Mesibov,  2018), 
thus leading to incompatibilities for database integration. For ex-
ample, during the data cleaning stage, one collection of a specimen 
without coordinates could be georeferenced differently by two da-
tabases based on different, commonly automated, georeferencing 
algorithms, thus likely leading to two different sets of coordinates for 
the same observation, therefore appearing to represent two differ-
ent records after data integration. One solution could be creating a 

community-wide standard and tools for data evaluation and cleaning 
(e.g., Belbin et al., 2018; Serra-Diaz et al., 2018). Community-driven 
standards for biodiversity data, such as Darwin Core (Wieczorek 
et al., 2012), Humboldt Core (Guralnick et al., 2018), and trait-data 
standard (Schneider et al., 2019) have emerged; expanding the use of 
these community-developed data standards by individual databases 
would enable more effective database integration. The exemplified 
issue of one specimen being assigned different coordinates, or more 
broadly speaking, data duplication due to different processing stand-
ards, could be better resolved by implementing permanent, consist-
ent, globally unique identifiers for all records, in particular for new 
records to be collected, digitized, and integrated (Clark et al., 2004; 
Guralnick et al., 2015; Page, 2008). The implementation of globally 
unique identifiers could also provide enhanced support for database 
integration by facilitating the detection of field discrepancies, such 
as variation in scientific names and coordinates that derived from 
one single record, thus avoiding data duplication, as well as facilitat-
ing the documentation of data provenance, the exchange of relevant 
(meta)data, and the linkage between biological and environmental 
data.

The essential goal of the approaches discussed here is to maxi-
mize compatibility, and thus minimize barriers to data-flow and syn-
thesis. Essentially, solving technical barriers will lead to an enhanced 
ability to find, access, integrate, and reuse biodiversity data. Once 
such technical barriers are addressed, the integrated content from 
multiple databases, either for similar types of data or across differ-
ent research domains, could be organized in multiple non-exclusive 
ways, including (a) a single centralized database, (b) some decentral-
ized but connected databases (Gallagher et al., 2020), or (c) multi-
ple synced databases (LeBauer et  al.,  2013). The implementation 

F I G U R E  5  Potential for increased taxonomic coverage of plant and vertebrate trait data through data integration. The taxonomic 
coverage of a database is measured as the percentage of the species in a plant or vertebrate order that has trait data. By combining trait 
databases, coverage could be expanded in 69–82 plant orders (panel a) and 86–124 vertebrate orders (panel b) compared to individual data 
sources (panels c & d). Panels (c) and (d) show the taxonomic coverages of individual databases and the combined dataset; the positions of 
the points on the x axis are re-ordered from low to high based on the combined taxonomic coverage (orders with low coverage on the left 
and orders with high coverage on the right). EOL = Encyclopedia of Life; BIEN = Botanical Information and Ecology Network

(a)

(c) (d)

EOL
VertNet

combined

Plant Trait Data Vertebrate Trait Data
(b)

percentage of species in an 
order that has trait data

BIEN
EOL
TRY

combined

Taxonomic coverage



12  |    FENG et al.

of database integration will not be a trivial effort;   it needs special 
skills and considerable computation capacity and needs to be well 
planned and coordinated by the biodiversity informatics community 
(Hobern et al., 2019).

4.3  |  Outlook for individual aggregators after 
database integration

Finally, it is worth thinking about the uniqueness and destiny of 
individual data aggregators post-integration. An individual ag-
gregator may simply be considered a subset of a larger integrated 
database, though the relevance of individual aggregators could 
be maintained in several aspects. First, while data integration can 
occur for particular data elements (e.g., taxon, place, time) facili-
tated through common use of (meta)data standards, each indi-
vidual aggregator could still retain unique domain information. For 
example, while GBIF aggregates species occurrence data from iN-
aturalist, the latter still uniquely hosts the media data, which are 
not aggregated by GBIF. Similarly, while eBird frequently publishes 
bird observations in GBIF, the media data (images, sounds, videos), 
species count data, as well as range maps are uniquely hosted by 
eBird. Second, individual aggregators will still perform an irreplace-
able role in the initial step of data aggregations, especially if that 
involves data curation and standardization, which is usually auto-
mated but also commonly requires intensive computational effort 
and relies on expert domain knowledge or interactive supervision. 
Such effort is not trivial and it forms the basis for downstream 
data/database integration. Actually, GBIF, a downstream data ag-
gregator, does not allow individual users to directly provide data 
to the database (with the exception of data papers), but only takes 
standardized data from organizations, including upstream data 
aggregators (GBIF,  2021). Third, individual aggregators can also 
play unique roles for users, even when based on the same shared 
knowledge base. For example, while ALA and GBIF share data that 
were collected from Australia (Supporting Information Table  S1), 
ALA comprises a prominent education component with respect 
to Australian biodiversity for its Australian users, as well as in fa-
cilitating scientific research by putting the biodiversity data in the 
context of their environment. Therefore, the individual aggregators 
can retain their relevance even post-integration with other data-
bases. Nonetheless, the possibility that smaller data generators and 
aggregators will be treated as irrelevant in the face of large data ag-
gregators is a legitimate concern. More-intentional approaches are 
needed to ensure that the relevance of smaller data providers is ap-
propriately maintained and their contributions are adequately ac-
knowledged. One way the relevance and contribution of small data 
providers could be emphasized more is through the development of 
data citation mechanisms and tools (e.g., Owens et al., 2021).

On the other hand, there has been a process of specialization 
of data aggregators along the whole workflow of data aggrega-
tion. Specifically, the developers of some databases have expanded 
their scope to development of infrastructure, such as tools for data 

integration, data cleaning, and hosting data portals. There are prom-
inent examples among the data aggregators that have close relation-
ships with GBIF. For example, ALA develops open-access modules 
for the platform that can be implemented by other biodiversity ini-
tiatives (Belbin et al., 2021). VertNet has been actively providing data 
maintenance services, including data cleaning and indexing, among 
the network of collaborative biodiversity databases (Constable 
et al., 2010).

5  |  CONCLUDING REMARKS

The accelerating influx of biodiversity data offers numerous excit-
ing prospects and challenges for documenting and forecasting the 
location, status, function and potential fate of species on the planet. 
However, increases in biodiversity data do not directly translate to 
similar increases in the knowledge needed to address many funda-
mental and applied questions. In the face of pressing environmen-
tal challenges, new approaches are urgently needed to facilitate 
the ability to find, access, integrate, and reuse biodiversity data. 
We demonstrate that rapid progress can be made toward better bi-
odiversity knowledge through overcoming the barriers for data in-
tegration from diverse biodiversity infrastructures. Integration can 
lead to large and rapid increases in knowledge of species distribu-
tions and traits (see Conde et al., 2019; König et al., 2019), but the 
benefit goes beyond just more complete knowledge: it can reduce 
biases and duplicate efforts in biodiversity research, allow cross-
validations to compare conclusions drawn from different sources, 
and provide a clearer picture of where gaps remain, thereby help-
ing to focus future sampling and research (König et al., 2019). To 
address the shortfalls in biodiversity knowledge and achieve full 
integration across databases, we need to fund and maintain the 
foundations of biodiversity information science including biological 
surveys, taxonomic assessment (Taxonomy Decadal Plan Working 
Group, 2018), and digitization of legacy data (Ariño, 2010), as well 
as tackle the major impediments to data integration, including tax-
onomic incompatibility, lags in data exchange, barriers to effective 
synthesis, and isolation of individual initiatives.
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APPENDIX A MATERIAL S AND ME THODS

Metadata review
Many biodiversity databases have been built over the past decade, 
with varying emphases on taxonomy, spatial location, and record 
type. Associated metadata for biodiversity databases are typically 
found in publications or project websites. To synthesize the major 
attributes of existing biodiversity databases, we selected 12 well-
established biodiversity databases: Atlas of Living Australia (ALA; 
Belbin & Williams, 2016), Botanical Information and Ecology Network 
(BIEN version 4.1; Enquist et  al.,  2016), Biodiversity Information 
Serving Our Nation (BISON; U.S. Geological Survey,  2018), eBird 
(Sullivan et al., 2014), Encyclopedia of Life (EOL; Parr et al., 2014), 
Global Biodiversity Information Facility (GBIF; https://www.
gbif.org/), Global Inventory of Floras and Traits (GIFT; Weigelt 
et  al.,  2020), Integrated Digitized Biocollections (iDigBio,  2018), 
iNaturalist (https://www.inatu​ralist.org/), Map of Life (MOL; Jetz 
et  al.,  2012), a global database of plant traits (TRY version 1.0; 
Kattge et al., 2011), and VertNet (Constable et al., 2010). The 12 da-
tabases we examined were chosen to maximize the generalizability 
of our results and conclusions. They were also among the most com-
monly used, well-established, and large-scale biodiversity databases 
(Chandler et al., 2017; Cornwell et al., 2019; James et al., 2018; König 
et  al.,  2019; MacFadden & Guralnick,  2017; Singer et  al.,  2018). 
Selections were limited to databases from which we could either ac-
cess the entirety of the data or the ones with clear documentations. 
We compiled information from online documentation and relevant 
publications, although we note that the design and architecture of 
a database can be in continuous development. Specifically, we re-
corded database name, taxonomic scope, taxonomic system, record 
type, number of records, and spatial coverage. We classified the 
record types into three categories: geographic distribution, media 
type (image, audio, or video), and biological information (standard-
ized trait databases or generalized text descriptions). Within the 
category of geographic distribution, we further classified the infor-
mation as specimen records, observations, checklists of geographic 
regions, and distribution maps. Specimen records and observations 
both have information on species’ geolocations, but only specimen 
records are associated with physical specimens. Checklists usually 
contain lists of species known to be present in certain geographic re-
gions (e.g., political divisions or protected areas). Distribution maps 
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absences is not usually the goal of field surveys. Also, the observed 
absences may not accurately represent a species’ absence, but 
rather an artefact of species’ detection or limited dispersal ability 
rather than environmental unsuitability.

To describe and quantify those temporal trends, we fitted the cu-
mulative numbers (dependent variable) and years (independent vari-
able) with simple linear (Equation A1), exponential (Equation A2), and 
logistic regression (Equation A3) using ordinary least squares [‘nls’ 
function in stats package version 3.4.2 in R version 3.4.2 (R Core 
Team 2021)]:

where x represents time and y represents either number of records, 
number of spatially unique records, or the number of species. We 
determined the best model fit from the lowest Akaike information 
criterion (AIC) value. To reveal the contribution of GBIF or non-GBIF 
sources to the combined dataset, we quantified the commonalities 
and uniqueness of GBIF and non-GBIF subsets in terms of number of 
records, number of spatially unique records, and number of species 
with distribution data. For our quantification of the temporal trend in 
the number of species observed, we retained only currently accepted 
names to reduce uncertainty (Berendsohn, 1997; Franz & Peet, 2009; 
e.g., TNRS; Boyle et  al.,  2013), which yield comparable temporal 
patterns.

We identified knowledge gaps in two ways. We showed the pixels 
(at 30 arc-seconds resolution in WGS84 coordinate reference sys-
tem) for which there were no valid plant geolocation data, and quan-
tified the geographic area of those pixels (in Eckert IV equal area 
projection). We caution that the gap here may be an overestimation 
because the plant distribution data compiled by BIEN (including the 
data exported from GBIF) do not include all possible data sources, 
but rather the shareable data that are mainly publicly available. We 
then calculated the taxonomic completeness of the distribution data 
at the level of plant orders. We obtained a list of accepted names 
of extant terrestrial plant species from the Catalogue of Life (COL; 
Catalogue of Life,  2021) and considered that as the master list of 
known species. All taxonomic names were standardized through 
TNRS (Boyle et al., 2013). We obtained the order level completeness 
by calculating the percentage of species in a plant order that has 
distribution information in the combined dataset.

In addition to distribution data, we also investigated the im-
provement in taxonomic coverage of trait data through database 
integration, specifically terrestrial plant height and vertebrate body 
length. We downloaded plant height data from BIEN, EOL, and TRY 
(accessed March 2021). We also obtained a list of accepted names 
of extant terrestrial plant species from Catalogue of Life (accessed 

(A1)y = a + b ∗ x

(A2)y = ea+b∗x

(A3)y =
a

1 + e−b−c∗x

are either drawn by experts or generated through models. There are 
frequent data exchanges among biodiversity databases, but many 
are not transparent to database users. Consequently, we compiled 
data exchange information and assessed the status of data integra-
tion between databases. We used geographic distribution and trait 
data as examples, which are the most prominent record types among 
the reviewed databases. We assessed the integration status by taxo-
nomic groups, which are all organisms, plants, or vertebrates.

IMPROVEMENT OF DATA COVER AG E THROUG H 
DATABA SE INTEG R ATION
To quantify the improvement of data coverage that could be gained 
by combining multiple databases, we compared leading databases 
that focus on similar taxonomic groups and record types. We used 
terrestrial plants (Embryophyta) and vertebrates as test cases, be-
cause these are the taxonomic groups that are comparatively bet-
ter collected and documented in biodiversity databases compared 
to other taxonomic groups (Ball-Damerow et  al.,  2019; Clark & 
May, 2002; Cornwell et al., 2019; Fazey et al., 2005; Hecnar, 2009; 
Kattge et al., 2020; König et al., 2019; Titley et al., 2017). We did not 
use taxa that account for large portions of biodiversity on Earth but 
face huge data gaps, such as microbes and invertebrates (Locey & 
Lennon, 2016). We compared (a) plant distribution data from GBIF 
and non-GBIF sources compiled by BIEN (Enquist et al., 2016), (b) 
plant trait data (i.e., plant height) from BIEN, TRY, GIFT, and EOL, 
and (c) animal trait data (i.e., vertebrate body length) from VertNet 
and EOL.

We obtained data from BIEN (version 4.2; accessed March 
2021) that compiled plant distribution data from GBIF (https://doi.
org/10.15468/​dl.87zyez) and non-GBIF sources, such as the Forest 
Inventory and Analysis (https://www.fia.fs.fed.us/) and NeoTropTree 
(http://www.neotr​optree.info/). The GBIF and non-GBIF sources 
have been fused through a series of data scrubbing and standard-
ization workflows [e.g., Taxonomic Name Resolution Service (TNRS); 
Boyle et  al., 2013] and here we only included data with valid col-
lection year and spatial coordinates. We classified the data into 
three groups: data from GBIF, data from non-GBIF sources, and the 
combined full dataset. We counted numbers of distribution records, 
numbers of spatially unique records, and numbers of species with 
distribution records in all three data sources. A spatially unique re-
cord is defined as a record of the distribution of a species (a pixel 
at 30 arc-seconds resolution in the World Geodetic System 1984 
(WGS84) coordinate reference system that its coordinate corre-
sponds to) that is unique to a dataset. We standardized all species 
names against multiple reference taxonomies, including Tropicos and 
The Plant List, using TNRS (Boyle et al., 2013). The standardization 
process parses and corrects misspelled names and authorities, stan-
dardizes variant spellings, and converts nomenclatural synonyms to 
currently accepted names. To reveal temporal trends of data accu-
mulation, we quantified the cumulative numbers of observations 
made over time, from 1750 to present (2020). Note that we only 
considered presence data and not absence data. This is because 
true absences are relatively rare (Mackenzie, 2005), and gathering 
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March 2021) and considered that as the master list of known spe-
cies. All taxonomic names were standardized through TNRS (Boyle 
et al., 2013). We calculated the taxonomic completeness of species 
trait information at the species and order levels. We obtained the 
species level completeness by checking species whose heights were 
recorded in BIEN, EOL, TRY, or the combined dataset, against the 
names recorded in COL. We obtained the order level completeness 
by calculating the percentage of species in a plant order that has 
height information in either dataset. We calculated the improvement 
in percentages by comparing individual datasets to the combined 
dataset. The improvement in taxonomic coverage represents the 
benefit of using multiple databases.

Following the same workflow, we quantified the taxonomic cov-
erage of animal trait data and percentage improvement by using in-
dividual datasets versus the combined dataset. Body length data of 
vertebrates were downloaded from VertNet and EOL (accessed March 
2021). Accepted names of extant vertebrates were obtained from 
Catalogue of Life. The taxonomic names were standardized through 

Global Names Resolver using the Taxize package (Chamberlain & 
Szöcs,  2013; version 0.9.4.9100) in R (version 3.4.2). The Global 
Names Resolver resolves names against specific name databases, 
which is Catalogue of Life in this study. The resolution process includes 
a series of exact and fuzzy matches based on the full or part of the 
name input (see more details in https://resol​ver.globa​lnames.org/
about). The matching process also considers the context of taxonomy 
and reduces the likelihood of matches to taxonomic homonyms. The 
matching process yields a series of confidence scores for all possi-
ble matches; here we only kept the best matching records. However, 
the creation of a single authoritative list of names will take time; full 
reconciliation of synonyms and distinct taxon concepts may take dec-
ades (Berendsohn, 1997; Boyle et al., 2013; Franz & Peet, 2009). The 
standardization of taxonomic names based on either TNRS or Global 
Names Resolver will not solve all issues of taxonomic name integra-
tion, but this step represents the state-of-the-art in standardizing tax-
onomy names in biodiversity databases and provides a baseline for 
the comparisons of different biodiversity databases.
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