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Citizen science data are increasingly used for biodiversity monitoring. However, concerns are 

often raised over the accuracy of species identifications in citizen science databases, as data are 

collected mostly by non-professionals. Misidentifications can simultaneously generate two error 

types: false positives (erroneous reports of a species) and false negatives (lack of reports of the 

misidentified species). Large-scale assessments of identification errors should bring insights into 

the strengths and weaknesses of citizen-science data. Here we show that citizen science 

photographic data for birds are trustworthy overall, although problems arise in hard-to-identify 

bird groups. We reviewed over 104 000 images of 377 passerine species from the southern 

Neotropics (Argentina) stored in eBird –a large citizen science platform– and quantified 

erroneous reports to calculate precision and recall metrics as measures for data accuracy. 

Precision increases with fewer false positives and recall increases with fewer false negatives, thus 

high values of precision and recall will mirror a higher data accuracy. We found that 97% of the 

photos of all species were correctly identified. Most species (77%; n = 291) showed high accuracy 

in their identifications (precision and recall > 95%), with 122 species showing no errors. A few 

hard-to-identify species (10%; n = 40) showed low levels of data quality (63-90% precision or 

recall). Similarly, few species (12%; n = 46) exhibited intermediate precision or recall scores (90-

95%]. Further, we uncovered the existence of a complex network of cross-identifications 

composed of 272 species, with a predominance of tyrant-flycatchers and ovenbirds, reflecting the 

strong traffic of errors that occurs within these families. To our knowledge, our study provides 

the first large-scale quantification of identification errors in photos submitted by citizen-science 

contributors. We underscore the relevance of performing such assessments to understand how 

identification errors are distributed across a database before analyzing data and provide tools for 
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citizen science stakeholders to direct more specific efforts toward species that need an 

improvement in data quality. 

Keywords: Argentina, eBird, false negatives, false positives, misidentifications, Neotropics, 

network analysis, Passerines, precision, recall 

Citizen science enterprises have become the fastest-growing contributors to bird occurrence data, 

with increasing application of these data in science and policy (Bonney et al. 2009, Cooper et al. 

2014, Schubert et al. 2019). One well-known example is eBird (Sullivan et al. 2009), which to 

date concentrates millions of avian occurrence records of at least 10,500 bird species that are used 

to increase our knowledge on bird ecology and trends worldwide (Horns et al. 2018). Despite 

their emerging popularity and use, citizen science data are still frequently perceived as unreliable, 

as data are largely collected by non-professional users (Cohn 2008, Bonney et al. 2014, Brown & 

Williams 2019). Because of the existent variability in the sampling behaviour and expertise 

among observers (Tulloch & Szabo 2012, Johnston et al. 2018), the potential for error and biases 

in citizen science data is high.  

Species misidentifications are a common source of bias in citizen science data. 

Misidentifications become a problem when they are systematically stored in databases, as they 

can bias estimates of species distributions derived from the data (Ensing et al. 2013, Costa et al. 

2015). They can also alter our understanding of other relevant aspects of the ecology of a species, 

such as migratory patterns and phenology (Hull et al. 2010, Gorleri & Areta 2022). To avoid data 

misuse, users of citizen-science data need to be aware of these potential sources of bias (Aubry et 

al. 2017).  

Surprisingly, few studies have assessed data quality with regard to species identification 

in citizen-collected data, even though projects devote large efforts to detecting and curating 

identification errors (Kosmala et al. 2016, Kelling et al. 2013, 2015a). Scattered evidence for non-

avian taxa suggests that errors may be low or null for most species that are relatively easy to 

identify, but that errors increase as untrained observers find it harder to identify species (Swanson 

et al. 2016). For birds, information on the identification quality is practically nil, although there 

are studies highlighting problems caused when citizen scientists confuse hard-to-identify bird 

species that co-occur (Gorleri & Areta 2022, Rocha-López et al. 2021). Because of this lack of 

information on data quality, critical voices have often raised the question of whether citizen-

science data are useful (Kosmala et al. 2016). A better understanding of the strengths and 

weaknesses of citizen-science databases in relation to the accuracy of species identifications is 

yet required. 

Two error types occur when a species is misidentified: false-positives and false-negatives. 

A false-positive error is created for species A, when species B is erroneously reported as A (Figure 
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1); simultaneously, a false-negative error is created for species B, as it was misidentified and 

reported as A instead of as B (Figure 1). Because misidentifications involve different error rates 

for different species pairs, the proportion of false-positives and false-negative errors is expected 

to vary from species to species. For example, a given species would primarily suffer false-positive 

errors if the species is more commonly misreported rather than misidentified when detected. On 

the other hand, if the species is continuously misidentified when detected, but rarely misreported, 

it would suffer primarily false-negative errors. Species may suffer both error types if they are 

often misreported and misidentified.  

While detecting and quantifying false-positive errors in databases are relatively easy with 

documented data, this is not the case for false-negative errors. False positives can be easily found 

by carefully examining the focal species database for identification errors. Conversely, finding 

false negatives is difficult because these errors are distributed across the full database and are 

potentially buried among several non-focal species. False-positive and false-negative errors 

contained in databases can significantly distort ecological knowledge if they are not corrected 

before data analysis (Royle & Link 2006, Ruiz-Gutierrez et al. 2016, Gorleri & Areta 2022). The 

relative weight of false-positive and false-negative errors can be analyzed through precision and 

recall metrics (see Figure 1 and Methods) that provide critical information on the error structure 

of a dataset.  

On the other hand, misidentifications in databases can be conceptualized as a cross-

identification network between species, where the error flow between the constituent species 

occurs in different directions and magnitudes. For example, errors can be unidirectional, where 

one species is continually misidentified as another but not the other way around, or mutual, where 

each of a pair of species is reciprocally confused in similar (symmetrical) or different 

(asymmetrical) proportions. In turn, there may also be certain species that concentrate errors or 

irradiate them to many other species, therefore, functioning as core species in the error network. 

In this context, knowing the degree of interconnection between the different species can be very 

important to help focus data curation efforts on those taxa (whether species or families) 

responsible for most misidentifications.  

Here, we quantified and characterized false-positive and false-negative errors that stem 

from misidentifications in photographic reports submitted to eBird, for a broad group of nearly 

400 passerine bird species from the southern Neotropics. We also created a network of cross-

identifications among species to quantify the strength, reciprocity, and patterns of identification 

errors. To the best of our knowledge, this is the first thorough assessment of species-level 

identification data quality in a large citizen-collected avian dataset. The goals of this study are to 

(1) provide insights into the overall quality of publicly available photographic data gathered by 
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volunteer data colectors, (2) identify sets of species most likely to be erroneously identified in the 

database, and (3) propose measures to increase data transparency to encourage data reuse and 

applicability. We chose a group of Neotropical passerines as our study system, being good 

candidates for assessing the quality of a volunteer-collected database. Families, such as ovenbirds 

(Furnariidae), tyrant flycatchers (Tyrannidae), and pipits (Motacillidae) have numerous difficult-

to-identify species that coexist in the region, and are particularly challenging for non-expert 

birdwatchers. 

METHODS 

Data compilation 

We analyzed the photographic reports of 393 species of passerines from 26 families directly 

through the eBird media explorer tool (https://ebird.org/media). Therefore, the data that we 

assessed had passed through eBird’s data validation systems. We only assessed photographs from 

Argentina. Analyses were limited to this country because we have a higher level of expertise on 

the identification and geographic and temporal distribution of species from our home country, all 

of which are relevant to building accurate networks of cross-identifications. Additionally, 

Argentina provides a good representation of passerine species that inhabit most of the ecoregions 

that are present in the Southern Cone of the Neotropics. We evaluated photographs spanning from 

2010 to 2020. We reviewed these photographs asynchronously across a six-month period from 

June to December 2020. Two or more of the five authors identified the species in each photograph, 

with at least one being an expert on the species. For a list of photographs reviewed, the names of 

the reviewers, and the date of revision of each photograph, see Supporting Information Appendix 

S1. 

We compiled and classified a total of 103,428 photographs representing 393 passerine 

species. We classified each photograph as ‘correct’, ‘incorrect’ or, when they did not allow us to 

reach species-level identification but had a possibility of being correctly identified, as ‘uncertain’. 

Where possible, we identified the correct species in misidentified reports. If species-level 

identification was challenging, we conservatively assigned incorrect original identifications only 

to the correct genus, family, or order. We reported incorrect identifications through the eBird 

website or directly by contacting the corresponding data curator.  

Data cleaning 

Users can upload multiple photographs of the same bird in their eBird checklists. To ensure the 

independence of each observation, we removed duplicate reports that contained the same 

information on (1) species reported, (2) classification, (3) observer name, and (4) submission 

identifier. The column “classification” refers to the identity (species, genus, family, or order) that 

https://ebird.org/media
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we assigned to each report, and the submission identifier refers to the unique code that eBird 

assigns to each checklist. For species in a checklist having a mix of correctly identified and 

misidentified reports, we used the "classification" column to retain as separate reports the original 

designations. For example, the Yellow-winged Blackbird Agelastiscus thilius had four 

photographs uploaded to eBird checklist S80591607, three of which were correctly identified 

(apparently all photos of the same individual) while one was confused with the Brown-and-yellow 

Marshbird Pseudoleistes virescens. We therefore retained only one record as correctly identified 

(eliminating the others as potential duplicates) and another record as misidentified as Marshbird. 

We also excluded photographs showing (1) only a nest or fledgling of the reported species, and 

(2) no observable or identifiable bird (including habitat or other features not related to birds). 

Finally, to avoid biasing the quality estimates resulting from a low sample size, species containing 

five or fewer unique reports (including false-negative reports) were removed from analyses. After 

data cleaning, we obtained 69,699 unique photographic reports of 377 species. 

Species identification quality analysis 

We analyzed (1) the overall number of misidentified photographs in our sub-sample of eBird data, 

and (2) the number of misidentified photographs for each of the 377 study species. The overall 

accuracy of eBird data in the identification of photographic reports was measured as the number 

of correct photographs divided by the total and multiplied by 100. To assess identification 

accuracy for each species we used precision and recall indices that measure the two error types 

produced through misidentifications: false positives and false negatives (Figure 1). Precision was 

calculated as the proportion of true positives over the total number of identifiable photographic 

reports of a given species. Hence, the precision will be lower as the number of false positives for 

a given species increases in the database (Figure 1). Recall was calculated as the proportion of 

true positives over the sum of true positives and false negatives of a given species; hence, recall 

values will decrease as the number of false negatives in the database increases for a given species 

(Figure 1). If, for example, Chilean Elaenia Elaenia chilensis is often misidentified and reported 

as Small-billed Elaenia Elaenia parvirostris by contributors, but not vice-versa (as shown in 

Gorleri & Areta 2022), the recall score for Chilean Elaenia will be lower than the precision score 

(as false negatives outnumber false positives), with the opposite occurring for Small-billed 

Elaenia.    

For practical purposes, we grouped species into three subjective quality categories based 

on the minimum values found for precision and/or recall (1) high-quality group: species with both 

precision or recall above 95%, (2) moderate-quality group: species with minimum precision or 

recall ranging from 90 to 95%, and (3) low-quality group: species with minimum precision or 

recall equal or below 90%. We chose these subjective thresholds because recent research has 
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demonstrated that accuracy metrics below 90% in citizen science databases may distort ecological 

estimates, such as the migratory phenology in certain species (Gorleri & Areta 2022; but see 

Discussion for further refinement).  

Finally, to contextualize our findings, we highlighted the species that may present 

identification challenges to a non-expert birdwatcher. We tagged 85 out of the 377 species 

analyzed as hard to identify based on similarity in appearance, personal experience with the 

species, and bibliographical references stating that the species or genus is difficult to identify (see 

list of species tagged as difficult to identify in Supporting Information Appendix S2). This 

information aims to provide a better framework for the interpretation and discussion of our results.  

Network analysis 

We examined complex patterns of cross-identifications among species by performing network 

analysis. Network analysis allows visualization of how misidentifications behave by plotting the 

strength, reciprocity, and patterns of interconnections of misidentifications between species. To 

create the network, we first created a dataset indicating the number of misidentified reports 

between each possible pair of species and discarding misidentified reports to which we could not 

assign a correct species-level identification. The resulting dataset consisted of three columns: (1) 

reported species, (2) misidentified as, and (3) number of misidentifications. With the resulting 

information, we created the network using the R package visNetwork (v2.0.9; Almende et al. 

2019). The network consisted of a series of nodes that represent each species, interconnected with 

arrows that represent the direction and magnitude of misidentifications. We used the 

Fruchterman-Reingold layout, which is a force-directed layout that orders nodes with more 

connections closer to each other, but repelling nodes when they get too close (Fruchterman & 

Reingold 1991). The resulting network places highly connected species and groups towards the 

centre and relegates species with few connections to the periphery. We also calculated attributes 

of the network, such as degree centrality, which is the number of links a node has to other nodes 

in the network, both incoming (indegree) and outgoing (outdegree). The R code is available in 

Supporting Information Appendix S1. 

RESULTS 

Of the total 69,699 unique photographic reports representing 377 species, 68,101 (97.7%) were 

correctly identified (true positives), while 1,002 (1.4%) were incorrect (false positives) and 596 

(0.9%) were uncertain. There were 937 incorrect reports that we could assign to the correct species 

(assignable false negatives), while for the remaining 65 incorrect reports we could only identify 

genus, family, or order (unassignable false negatives). After grouping species into subjective 

quality groups, we found 291 (77%) species with a score in both precision and recall > 95% (high 

data quality), while 46 (12%) species had minimum values of either precision or recall ranging 
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from 90-95% (moderate data quality), and the remaining 40 (11%) species had either precision or 

recall ≤ 90% (low data quality) (Table 1, Figure 2). Of the 85 species that we initially tagged as 

difficult to identify, 26 had high, 27 had moderate, and 32 had low-quality data (Supporting 

Information Appendix S2). 

As outlined, most species had high-quality data. In this group of 291 species, we found that 122 

achieved a perfect score in both precision and recall, meaning that we did not find any false-

positive or false-negative reports for these species. Leading this ranking were: Masked 

Gnatcatcher Polioptila dumicola, Chiguanco Thrush Turdus chiguanco, Scarlet-headed Blackbird 

Amblyramphus holosericeus, Lark-like Brushrunner Coryphistera alaudina, Many-colored Rush-

Tyrant Tachuris rubrigastra, and Rufous-browed Peppershrike Cyclarhis gujanensis (for detailed 

full ranking see Supporting Information Appendix S2). As expected, most species that achieved 

high data quality were easy or relatively easy to identify, and often were very familiar birds, 

‘backyard’ birds, with the exception of Shiny Cowbird Molothrus bonariensis. However, this 

group also included 25 (8.6%) species that we had considered a priori as difficult to identify 

(Supporting Information Appendix S2). In general, these were often rare or range-restricted birds 

(e.g., Rufous-breasted Leaftosser Sclerurus scansor, Olive Spinetail Cranioleuca obsoleta, Sharp-

billed Treehunter  Heliobletus contaminatus, Sooty Grassquit Asemospiza fuliginosa, Dull-

coloured Grassquit A. obscura, Fuscous Flycatcher Cnemotriccus fuscatus, Mouse-colored 

Tyrannulet Phaeomyias murina, and Cordoba Cinclodes Cinclodes comechingonus), or 

widespread species with little geographic overlap with other similar-looking congeners (e.g., 

Scale-throated Earthcreeper Upucerthia dumetaria, Bar-winged Cinclodes Cinclodes fuscus, 

Tufted Tit-Spinetail  Leptasthenura platensis, and Band-tailed Earthcreeper Ochetorhynchus 

phoenicurus).   

The moderate-quality group contained 46 species, of which 27 (58%) were indicated a 

priori as difficult to identify (Table 1, Figure 2, Supporting Information Appendix S2). The tyrant-

flycatchers (Tyrannidae) were the best-represented family with 22 species, with the presence of 

four species of elaenias (Elaenia), and species such as Southern Beardless Tyrannulet 

Camptostoma obsoletum, Southern Scrub Flycatcher Sublegatus modestus, and Suiriri Flycatcher 

Suiriri suiriri that were misidentified as several other species of tyrant-flycatchers (i.e., core 

species in the cross-identification network; see below in this section). The ovenbirds (Furnariidae) 

were also well-represented with 14 species, with the presence of three cinclodes (Cinclodes), three 

miners (Geositta), two canasteros (Asthenes), two thornbirds (Phacellodomus), two spinetails 

(Synallaxis), and two earthcreepers (Upucerthia validirostris and Ochetorhynchus ruficaudus). 

The lowest quality group was the least numerous with 40 species, of which 32 (80%) had 

been previously classed as difficult to identify (Table 1, Figure 2, Supporting Information 
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Appendix S2). Most species belonged to the ovenbirds (Furnariidae; 16 sp.) and tyrant-flycatchers 

(Tyrannidae; 13 sp.) families. In relative terms, pipits (Motacillidae) was the worst-performing 

family, as all the three species of this family comprised the low-quality group: Correndera Pipit 

Anthus correndera, Hellmayr's Pipit A. hellmayri, and Short-billed Pipit A. furcatus (Figure 2). 

Regarding precision, 27 species had a score ≤ 90% (Figure 2), some with critically low values as 

in the case of Three-striped Flycatcher Conopias trivirgatus (64.2%), a species that was 

systematically and reciprocally confused with Social Flycatcher Myiozetetes similis. Other 

examples of a critically low precision score included White-winged Cinclodes Cinclodes 

atacamensis (74.2%) confused with various other sympatric Cinclodes sp. (Figure 3d), and Buff-

fronted Foliage-gleaner Dendroma rufa (75%) reciprocally confused with the more common 

look-alike Ochre-breasted Foliage-Gleaner Anabacerthia lichtensteini (Figure 3a). In terms of 

recall, 17 species had a score equal to or lower than 90% (Figure 2), with the lowest scores reached 

by Greenish Tyrannulet Phyllomyias virescens (63.6%) and Tropical Pewee Contopus cinereus 

(76%), the latter largely reported as Smoke-colored Pewee C. fumigatus. However, note that recall 

indices may be overestimated, as we could not assign all misidentifications to the correct species. 

Only four species had low values in both precision and recall: Patagonian Forest Earthcreeper 

Upucerthia saturatior, Sclater’s Tyrannulet Phyllomyias sclateri, Steinbach’s Canastero 

Pseudasthenes steinbachi, and Greenish Tyrannulet (Figure 2), meaning that they were 

incorrectly reported and also reported as another species, thus, having high rates of both false 

positives and false negatives. 

The general network of cross-identifications consisted of different clusters of species that 

varied from being isolated to poorly or highly interconnected (Figure 3; Supporting Information 

Appendix S3). Some species exhibited uni- or bidirectional interactions: a species confused only 

with another one, or pairs of species that were reciprocally confused at varying rates (Figure 3a). 

Some simple and relatively closed networks showed interactions among multiple species 

occurring mostly within a specific genus or family (e.g., Figure 3b for pipits [Motacillidae], and 

Figure 3c for woodcreepers [Dendrocolaptidae]). Other parts of the network became more 

complex and included a diversity of strengths of interactions among the constituting units, 

connecting species of different genera or even different families. Two "hotspots of 

misidentification" were observed: one formed mostly by tyrant flycatchers [Tyrannidae] and the 

other by ovenbirds [Furnariidae], reflecting the strong “traffic” of misidentifications occurring in 

these families. These hotspots had at their core a few geographically widespread species that were 

widely mistaken as several other look-alike species, obtaining high degree centrality scores (Table 

2). Illustrated examples include Buff-winged Cinclodes Cinclodes fuscus (Figure 3d) in the 

ovenbirds group, and Southern Beardless Tyrannulet (Figure 3e) in the tyrant-flycatchers group.  

DISCUSSION 
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The reliability of citizen science data in terms of species-identification quality remains a largely 

unexplored topic despite the increasing trend to use this data source for biodiversity monitoring, 

ecological and biogeographic studies, and conservation planning. In this work, we assessed the 

identification accuracy of photographic reports stored in the eBird database for 377 species of 

southern Neotropical passerines by assessing the effect of false-positive and false-negative reports 

on precision and recall values. We found that most species (77%; n = 291) had potentially high 

levels of identification accuracy of their photographic reports, while relatively few hard-to-

identify or cryptic species (11%; n = 40) showed concerningly low levels of identification 

accuracy, and a similarly low number of species exhibited moderate accuracy scores (12%; n = 

46). Further, we uncovered the existence of a complex network of cross-identifications, composed 

of different clusters of isolated to highly interconnected species, which underscores the relevance 

of large-scale assessments to understand how identification errors parse out across a database. 

Strength and weaknesses of citizen-science data 

Our large-scale assessment provides new insights into the strengths and weaknesses in the 

accuracy of species identification in photographic records in volunteer-collected databases. In this 

sense, we demonstrate that eBird photographic data are robust in general terms, highlighting their 

usefulness as a reliable source of information. Nonetheless, certain limitations exist in hard-to-

identify species groups for which the data should be subject to validation and verification before 

use (see also Rocha-López et al. 2021). Our evaluation of photographic reports, however, is based 

on a snapshot of the current database of southern Neotropical species. Thus, the scores reported 

here may vary over time and for other geographic regions due to either change in the conditions 

under which identification errors occur (e.g., larger extent of range overlap in cryptic species 

groups or different identification challenges), intrinsic changes in the functioning of the platform 

(e.g. varying skills in the set of reviewers involved in data vetting; increased user expertise), or 

development of more refined identification criteria in difficult groups.   

The largest limitation of eBird data was found in difficult-to-identify species belonging 

to cryptic genera, such as canasteros (Asthenes and Pseudasthenes), spinetails (Synallaxis), 

miners (Geositta), wood-pewees (Contopus), and pipits (Anthus), among others. These species 

represent a challenge for any database, including those largely compiled and curated by experts, 

such as museum collections. Of particular concern are those species that had precision or recall 

values equal to or below 90% (low-quality species group; 40 out of 377 species in our dataset; 

Figure 2), as the false-positive or false-negative errors contained in their databases can seriously 

affect analyses, and therefore products derived from their data (Royle & Link 2006, Miller et al. 

2011, Ruiz-Gutierrez et al. 2016).  
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It is nonetheless important to highlight that moderate accuracies of 90-95% (46 out of 377 

species in our dataset) could also threaten the usefulness of datasets. For example, Clare et al. 

(2021) demonstrated that even 5-10% of false-positive errors contained in ecological data could 

inflate the estimates of a species occurrence by 20-70%. In particular, a small number of errors 

can strongly affect data analyses if they are heavily clustered in certain geographic regions or 

seasons of the year which, for instance, may produce shifts towards the contaminant data biasing 

either spatial analyses (e.g., distribution maps; Costa et al. 2015, Aubry et al. 2017) or temporal 

analyses (e.g., phenological assessments; Gorleri & Areta 2022). For these reasons, assessing data 

quality demands specific and focused assessments to evaluate how errors are distributed through 

space and time, and thus, our subjective quality thresholds must be used only as rough rules-of-

thumb in quality assessments.  

Our analysis provides a partial picture of the error structure in the overall database as we 

quantified observable errors of individual photographs, and not at the checklist level. eBird 

contributors are encouraged to submit bird checklists with counts of individuals (Sullivan et al. 

2009), rather than single photos (as would be the case in projects like iNaturalist: 

https://www.inaturalist.org), and such checklists often have photographs for only a fraction of all 

the individuals reported for each species. Thus, the finding of misidentified images of a species 

in a checklist does not mean that the undocumented records of that species in the same checklist 

were erroneous. However, assessing the data accuracy of undocumented records is challenging. 

Currently, reports of species without an accompanying photograph comprise more than 90% of 

all eBird records in Argentina. Because the repeated examination of photographs by users and 

data reviewers provides multiple opportunities for error correction, it is likely that photographic 

records will possess a higher accuracy than undocumented records. This suggests that values of 

precision and recall informed here may be optimistic in comparison to the real (unknown) error 

values for the complete dataset of a species, including photographically documented and non-

documented records. 

In the absence of evidence, it is virtually impossible to measure the error in undocumented 

ecological datasets. Hence, it is important to encourage citizen-science contributors to routinely 

add documentary evidence to their checklists whenever possible, complemented by notes 

describing how a hard-to-identify species was distinguished in the field. Many songbirds with 

problematic visual identification are easier to identify by their calls or songs and are highly vocal 

(e.g., Elaenia flycatchers, or pipits; Ridgely & Tudor 2009), therefore, sound recordings are also 

a feasible resource to use that could help decrease errors in datasets. On the other hand, model-

based solutions exist to establish the statistical relevance of false-positive and false-negative 

errors contained in undocumented data (Miller et. al. 2011, Ruiz-Gutierrez et al. 2015, Clare et 

al. 2021). These models measure uncertainty in undocumented datasets for false-positive and 

https://www.inaturalist.org/
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false-negative errors by using auxiliary data validated by experts with information on how errors 

behave in the studied taxa (but see Cruickshank et al. 2019). We strongly recommend researchers 

to explore these analytical methods to avoid misleading conclusions when analyzing 

undocumented data for hard-to-identify species.  

Network analysis as a tool to characterize misidentifications  

The network of cross-identifications that we have developed constitutes a useful tool to identify 

where more efforts are needed to increase data quality and showcase how errors are distributed in 

a large database by depicting how species interact. These networks can be used profitably to 

uncover misidentification hotspots, to pinpoint how the sets of easy-to-confuse species vary 

temporally and across space, and how symmetric or asymmetric are the confusion webs. In 

agreement with our previous expectations, our network revealed the existence of "core" species 

with a high degree of interconnections. These “core” species tend to have dull plumage (for 

example, brown or grey in ovenbirds or olive in tyrant flycatchers), small size, and a wide 

geographic range; attributes that may increase the chances of being misidentified as other species 

with overlapping distributions. Targeting “core” species may be fundamental for citizen-science 

projects as they can focus curation efforts (and contributors’ training) on these species, which 

would allow the most relevant misidentification links to be cut.   

The observed links in the network of cross-identifications also revealed that the flow of 

errors may be asymmetrical between species. While "source" species have a larger number of 

outgoing errors (false positives of the focal species) than the number of incoming errors (false 

negatives of the focal species), in "sink" species the exact opposite occurs. In our network, for 

instance, White-winged Cinclodes functioned mostly as a source species, having a larger number 

of connections targeting other cinclodes, whereas Planalto Woodcreeper Dendrocolaptes 

platyrostris functioned as a sink species, since it only received errors from three other 

woodcreepers and did not distribute any (see Figure 3 D-B). This asymmetry in the flow of errors 

has direct implications for the recall and precision values. While source species would have lower 

precision than recall due to a larger number of false positives in relation to false negatives in the 

data, the opposite would occur in sink species. This complex asymmetry in the webs of confusion 

further highlights the usefulness of examining the misidentification problem through networking.  

Finally, we only found two non-passerines in the passerine misidentification network: 

Picui Ground Dove Columbina picui reported as Saffron Finch Sicalis flaveola and Black-faced 

Ibis Theristicus melanopis reported as Scale-throated Earthcreeper. In both cases, these are clearly 

distinct pairs of species suggesting that the cause of error is data input rather than in-the-field 

misidentification. Quantifying such errors is complex as the intent of users during data entry is 

generally unknown. In any case, we believe that their overall impact is minimal compared to 



Accuracy of bird identifications in citizen science 

actual identification errors, as we only detected a handful of errors involving species that are 

unlikely to be confused. 

Recommendations to improve citizen-science data quality 

The potentially high data quality in eBird data may stem from factors involving data validation 

systems adopted by the platform and the users participating in the project. eBird covers a broad 

front for error detection through the use of smart filters that detect unusual or outlier observations 

for a date and locality during data entry and the participation of expert reviewers (Wood et al. 

2011). This combination of smart filters and expert reviewers generates an active feedback loop 

between humans and computers that demonstrated to improve the data quality of the eBird 

platform (Kelling et al. 2013). In Argentina, for example, 40 expert reviewers scour incoming 

data for accuracy and actively curate the database with the help of more than 145 filters set to flag 

unusual entries at a county level. Even so, current data validation systems have some flaws. In 

particular they fail to flag errors in several difficult-to-identify species, either because smart filters 

are not specifically designed to detect identification errors accurately (being better at flagging 

spatio-temporal anomalies during data entry; see Bonter & Cooper 2012), or because data 

reviewers are not adequately trained to detect errors in cryptic or hard-to-identify species (Gorleri 

& Areta 2022). On the other hand, recent evidence suggests that birders who are active in citizen 

science initiatives often have a high degree of specialization in bird identification (Kelling et al. 

2015b, Randler 2021, Rosenblatt et al. 2022). It is, therefore, to be expected that, if most 

contributors are specialized birders, then the identification of species will be generally accurate 

when entered into eBird, in particular for those species that are not difficult to identify.  

Unfortunately, because we were only able to analyze data from public eBird outputs, we 

were unable to quantify how much of the data was correct or incorrect when submitted by 

contributors. This is because eBird does not provide publicly available information about changes 

in identification or record removals following subsequent data revisions. We were therefore 

unable to distinguish whether the records that we analyzed were correctly entered, or whether the 

original identification was changed afterwards. We suggest that citizen science programs strive 

to include public metadata to allow tracking of changes in identifications (as, for instance, 

iNaturalist currently does). Having knowledge of the change history of each record will increase 

transparency and allow data users and citizen-science stakeholders to assess how erroneous data 

is entered into the database, and to identify where data-validation systems are either failing or are 

being more successful.  

The need to reduce misidentification errors is important for future broad-scale citizen-

science programs. Well-directed training can improve the identification skills of participants 

rapidly (Falk et al. 2019). This simple strategy can be used by citizen science stakeholders by 
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focusing training efforts on the core species responsible for most cross-identifications, or among 

species of cryptic genera. For large projects, various digital communication strategies can be used 

to reach a wide audience quickly, for example, through online bird identification workshops or 

the use of social media to spread targeted information. Another step that could be taken by citizen-

science platforms is to highlight species or species groups in which data quality is known or 

suspected to be compromised by misidentifications. This would provide platform users and 

researchers with a useful reminder that these species demand more careful procedures when 

uploading and analyzing the data. In this context, Artificial Intelligence (AI) may also play a 

critical role for data quality in a timely and cost-effective manner, as these approaches become 

more sophisticated (Balázs et al. 2021, Sun et al. 2021). One recent example of AI applied to 

citizen science was outlined by Wessels et al. (2019) who combined expert knowledge and 

machine-induced models to identify unreliable observations automatically from a large volume 

of bird records in Europe, with an accuracy of ~85% in detecting erroneous data. Moreover, it is 

no longer far-fetched to imagine that models of smart photograph or audio recognition, for 

example, Merlin Bird ID (https://merlin.allaboutbirds.org) or BirdNET (Kahl et al. 2021), may 

soon be applied to data validation systems, resulting in a useful tool for automated error 

recognition during data entry.  

In conclusion, researchers need to be cautious when analysing citizen science data (Areta 

& Juhant 2019, Gorleri & Areta 2022, Rocha-López et al. 2021), if their focal species are difficult 

to identify. We hope this work fosters a more critical use of citizen science data by researchers, 

besides providing tools for curators, reviewers, and managers of citizen-science data to direct 

more specific efforts toward species that need an improvement in data quality. We believe that 

citizen science has enormous potential as a trustworthy data source to serve science, policy, and 

conservation. Knowing and managing the inherent biases of each species will provide us with 

even more robust information.   
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Figures 

Figure 1. Schematic representation showing how false-positive and false-negative reports are 

simultaneously generated in databases when a species is misidentified. Note that a false-positive 

report of a species A simultaneously results in a false-negative report for another species B. 

Precision and recall metrics serve to evaluate the overall identification quality of a species 

database by considering the number of false positives (precision) and false negatives (recall) about 

the true positives. Illustrations from Pearman and Areta (2020) were reproduced with permission. 

This is a simplification of a more general problem; the flow of errors is better reflected in a 

network of cross-identifications (see Figure 3). 
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Table 1. Number of species of southern Neotropical passerines scoring high (green), moderate 

(orange), or low (red) in precision and recall metrics in the identification quality of photos 

submitted to eBird. High: species with scores > 95%, moderate: species with scores ranging from 

90-95%, and low: species scoring ≤ 90%. 
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High 291 15 18 

Moderate 20 11 5 

Low 4 9 4 
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Table 2. Top 20 species of southern Neotropical passerines with the highest degree-centrality 

scores obtained from the network of cross-identifications (see Figure 3). The degree centrality 

scores indicate the number of connections (links) a species has to other species in the network. 

While indegree refers to the number of incoming links of a species (number of arrows from other 

species pointing to the focal species), outdegree is the number of outgoing links (number of 

arrows from the focal species pointing to other species). Total links indicate the sum of indegree 

and outdegree.  

Species Family Indegree Outdegree Total  

Asthenes pyrrholeuca Furnariidae 9 8 17 
Molothrus bonariensis Icteridae 8 9 17 
Serpophaga subcristata/griseicapilla Tyrannidae 9 8 17 
Suiriri suiriri Tyrannidae 5 10 15 
Asthenes baeri Furnariidae 6 8 14 
Synallaxis frontalis Furnariidae 5 9 14 
Camptostoma obsoletum Tyrannidae 8 4 12 
Elaenia parvirostris Tyrannidae 6 6 12 
Sicalis flaveola Thraupidae 4 7 11 
Elaenia spectabilis Tyrannidae 4 6 10 
Myiophobus fasciatus Tyrannidae 5 5 10 
Rhopospina fruticeti Thraupidae 6 4 10 
Sublegatus modestus Tyrannidae 5 5 10 
Asthenes modesta Furnariidae 4 5 9 
Chrysomus ruficapillus Icteridae 4 5 9 
Cinclodes fuscus Furnariidae 5 4 9 
Molothrus rufoaxillaris Icteridae 4 5 9 
Phacellodomus sibilatrix Furnariidae 4 5 9 
Agelasticus cyanopus Icteridae 1 7 8 
Phacellodomus striaticollis Furnariidae 4 4 8 
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Figure 2. Identification accuracy ranking in photographic reports submitted to eBird for 377 

species of southern Neotropical passerines. The accuracy was measured using the precision and 

recall metrics (see Figure 1 and Table 1), and the ranking was based on the minimum value of 

either precision or recall for each species. Left panel: ranking including all species (see the 

ranking in detail in Supporting Information Appendix S2). Right panel: ranking showing only 

species comprising the “low-quality species group”, i.e. species with either precision or recall 

scores ≤ 90%.  
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Figure 3. Network of cross-identifications in photo reports of 377 species of southern Neotropical 

passerines submitted to eBird. Each circle represents a species, coloured by family, with nearby 

circles representing species that are connected through misidentification. Arrows indicate the 

magnitude and direction of misidentifications, with thicker arrows corresponding to a higher 

number of misidentifications among the constituting units. Small, dashed lines indicate not-shown 

connections with species in or outside of the focal group. While examples (a-d) are accurate 

representations extracted from the general network, we simplified and re-arranged the example 

“e” relationships to represent only misidentifications involving the core species Camptostoma 

obsoletum. See full-resolution network in Supporting Information Appendix S3. Illustrations from 

Pearman and Areta (2020) were reproduced with permission.  
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Supporting Information 

Appendix S1. The full dataset used in this study with a reproducible R code to perform data 

quality and network analyses. Available at: https://zenodo.org/record/6828335 

Appendix S2. All species ranking of identification accuracy of photo reports submitted to eBird 

in Argentina. The ranking is first ordered by the minimum value found for either precision and 

recall scores, and second by the number of samples analyzed for each species. Species that were 

tagged as difficult to identify are indicated as ‘TRUE’ in column D named ‘hard_to_id’. Available 

at: https://zenodo.org/record/6828335 

Appendix S3. High-resolution network (Html file). Available at: 

https://zenodo.org/record/6828335 

https://zenodo.org/record/6828335
https://zenodo.org/record/6828335
https://zenodo.org/record/6828335



