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a b s t r a c t

In this work, an exact scattering model for a system of clusters of spherical particles, based
on the Rayleigh–Gans approximation, has been parameterized in such a way that it can be
solved in inverse form using Thikhonov Regularization to obtain the morphological
parameters of the clusters. That is to say, the average number of particles per cluster,
the size of the primary spherical units that form the cluster, and the Discrete Distance
Distribution Function from which the z-average square radius of gyration of the system of
clusters is obtained. The methodology is validated through a series of simulated and
experimental examples of x-ray and light scattering that show that the proposed
methodology works satisfactorily in unideal situations such as: presence of error in the
measurements, presence of error in the model, and several types of unideallities present
in the experimental cases.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The characterization of clusters of small particles by
scattering techniques is important in many scientific and
technological applications that involve the morphological
study of soot agglomerates and aggregated colloidal particles
[1]. For instance, the characterization of aerosols of soot
emitted from combustion devices has driven great attention
because of its effects on public health and the environment
[2,3]. Morphological studies of clusters of colloidal particles
can be useful in the design of building blocks for new types
of colloidal assemblies or of model particles to understand
the fundamental physics of particulate systems [4]. Also the
stability and controlled aggregation of colloidal systems for
toner applications is another area in which cluster character-
ization plays an important role [5].

Scattering characterization techniques require the use of
a model that represents the scattering event that happens
All rights reserved.
between the incoming beam, i.e. light, x-rays or neutrons,
and the system of clusters that is been analyzed. Exact
models derived from Maxwell's equations give a precise
description of diluted systems of clusters, but are computa-
tionally complex [6,7]. Concentrated systems can also be
analyzed with these models, but the computational load
is so heavy that realistic simulations are unrealizable. On the
other hand, the Rayleigh Gans (RG) approximation has been
developed for many years and applied with success to model
scattering by systems of clusters [1,8,9]. Indeed, x-ray and
neutron scattering can be analyzed using the RG approxima-
tion without resigning precision [10]. In the case of light,
the optical contrast between particles and the suspending
medium must be low and the phase shift parameter must
be ⪡1, for the RG model to be valid [11].

A vast bibliography on the modeling of scattering by
systems of clusters under the RG approximation has been
developed in recent years [2,12–15].

In order to characterize the clusters, the model that
describes the scattering process, together with the mea-
sured scattering spectra, must be used in order to infer the
morphological parameters of the clusters. This procedure
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is generally known as the solution of the inverse scattering
problem. The solution of this problem is in many cases
unstable and requires what is known as regularization.

In this work, an exact model under the RDG approx-
imation is used to derive an inverse methodology that
allows one to estimate, for a system of arbitrary clusters in
diluted concentration, the parameters that characterize
morphologically the clusters; i.e. the average number of
particles per cluster, the size of the primary spherical units
that form the cluster, and the Discrete Distance Distribu-
tion Function (DDDF) from which the z-average square
radius of gyration of the system of clusters is obtained. The
model, cast in appropriate form, is solved in an inverse
fashion using Thikonov Regularization [16] to estimate the
aforementioned parameters. The methodology is validated
through a series of simulated and experimental examples
of x-ray and light scattering.

2. Scattering model of a system of clusters of spherical
particles in the RDG approximation

A group of N arbitrary non-overlapping particles
located at positions given by Rj (j¼1,…, N), scatters light
with amplitude electric field, ES, given by [10]

ESðRÞ ¼−E0
expðikRÞ

R
∑
N

j ¼ 1
bjðqÞexpð−iq⋅RjÞ ð1Þ

where vector R (jRj ¼ R) indicates the position of the
detector, E0 is the magnitude of the incident field (which
in this case is assumed to be polarized perpendicularly to
the scattering plane), q is the scattering vector, and bj is
the scattering length of particle j. Note that time depen-
dence has been omitted. If the particles are spherical and
all of the same radius

ESðRÞ ¼−E0
expðikRÞ

R
brðqÞ ∑

N

j ¼ 1
expð−iq⋅RjÞ; ð2Þ

where the scattering length is given by

brðqÞ ¼ k2

2π
ðn1−n0Þ

n0
VrFðq; rÞ with

Fðq; rÞ ¼ 3
ðqrÞ3

ð sin qr−qr cos qrÞ
" #

ð3Þ

Here, n0 and n1 are respectively the refractive indices of
medium and particles, r is the radius of the particles; q is
the absolute value of the scattering vector (q¼ jqj ¼
ð4πn0=λ0Þ sin ð1=2Þθ); k¼2πn0/λ0 is the magnitude of the
propagation vector of the incident radiation; θ is the
scattering angle; λ0 is the wavelength of the incident
radiation in vacuum; and Vr ¼ 4

3πr
3 is the volume of

particles. Thus, the Differential Scattering Cross Section
(DSCS) for this generic cluster of particles (i) is given by

dsðqÞ
dΩ

ðiÞ
¼ jESðRÞj2R2

E20
¼ k4

4π2n2
0

ðn1−n0Þ2V2
r Fðq; rÞ2

� N þ ∑
N

j ¼ 1
∑
N

k¼ 1
k≠j

cos ðq⋅ΔRjkÞ

26664
37775 ð4Þ
with ΔRjk ¼ Rj−Rk. This formula is valid for a cluster of
particles in fixed positions, Rj (j¼1,…, N). If one wants
to compute the DSCS of either a diluted system of Nc

geometrically identical clusters whose orientations are
randomly distributed in all possible directions, or a single
cluster that is rapidly moving in all possible orientations,
such as that the interesting quantity in these two cases
is the average value of the DSCS, orientational average,
denoted 〈S, must be taken on the DSCS given before, as
follows:

dsðqÞ
dΩ

ðiÞ* +
¼ k4

4π2n2
0

ðn1−n0Þ2V2
r Fðq; rÞ2

� N þ ∑
N

j ¼ 1
∑
N

k¼ 1
k≠j

cos ðq⋅ΔRjkÞ
* +

ð5Þ

where the orientational average can be calculated analy-
tically and is given by

N þ ∑
N

j ¼ 1
∑
N

k¼ 1
k≠j

cos ðq⋅ΔRjkÞ
* +

¼ N þ ∑
N

j ¼ 1
∑
N

k¼ 1
k≠j

sin ðqΔRjkÞ
qΔRjk

0BBB@
1CCCA
ð6Þ

with ΔRjk ¼ jΔRjkj. Finally, the orientationally averaged
DSCS of a cluster of spherical particles is given by

dsðqÞ
dΩ

ðiÞ* +
¼ k4

4π2n2
0

ðn1−n0Þ2V2
r Fðq; rÞ2

� N þ ∑
N

j ¼ 1
∑
N

k¼ 1
k≠j

sin ðqΔRjkÞ
qΔRjk

26664
37775 ð7Þ

In any practical application the sample to be proved
experimentally will consist of a system of clusters. Assume
the standard situation in which the system is made of Nc

clusters and the size of the spherical particles that make
up the clusters is the same. In this situation, there are
three possible cases with regards as to how the system is
built: (i) all the clusters have the same number of particles
and spatial configuration; (ii) the number of particles in
each cluster is the same but the geometrical configuration
differs from one cluster to the other; and (iii) the number
of particles in each cluster is not the same and conse-
quently the spatial configuration between clusters is
different. One could also consider that each cluster in the
sample moves so rapidly that during the measurement
process it takes all possible positions. Under these assump-
tions, the DSCS of the system of clusters, i.e. the measured
quantity, is given by

dsðqÞ
dΩ

� �
¼ ∑

Nc

i ¼ 1

dsðqÞ
dΩ

ðiÞ* +
¼ k4

4π2n2
0

ðn1−n0Þ2V2
r Fðq; rÞ2

� ∑
Nc

i ¼ 1
Ni þ ∑

Ni

j ¼ 1
∑
k¼ 1
k≠j

Ni sin ðqΔRðiÞ
jk Þ

qΔRðiÞ
jk

26664
37775 ð8Þ
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In Eq. (8), the Ni's (i¼1,…, Nc) are the numbers of
primary particles in each cluster.

In order to reduce the number of parameters of the
model, Discrete Distance Distribution Functions (DDDF's)
f ðiÞj (j¼1,…,M) are defined for each cluster (i¼1,…, Nc). Also
a set of distances between particles in the clusters
Δrjðj¼ 1;…;MÞis defined. The set of Δrj0s is selected to be
the same for all clusters and to cover at least the range
defined by the minimum and maximum ΔRðiÞ

jk . The Δrj0s are
chosen as Δrj ¼ Δrj−1 þ δΔr ðj¼ 1;…:;MÞ, where δΔr is
the discretization step. Thef ðiÞj 's (j¼1,…, M) represent the
number of distances between particles in cluster i that
are in the range of distances Δrj7δΔr. M is selected to be
less than the maximum theoretical number of different
distances in a cluster that is equal to N(N−1)/2. With these
definitions it is possible to write

∑
Ni

j ¼ 1
∑
Ni

k¼ 1
k≠j

sin ðqΔRðiÞ
jk Þ

qΔRðiÞ
jk

≈ ∑
M

j ¼ 1
f ðiÞj

2 sin ðqΔrjÞ
qΔrj

ð9Þ

Under these assumptions

dsðqÞ
dΩ

� �
¼ Nck

4

4π2n2
0

ðn1−n0Þ2V2
r Fðq; rÞ2 N þ ∑

M

j ¼ 1
f j
2 sin ðqΔrjÞ

qΔrj

 !
ð10Þ

with N¼ ð1=NcÞ∑Nc
i ¼ 1Ni and f j ¼ ð1=NcÞ∑Nc

i ¼ 1f
ðiÞ
j . N is the

average number of particles per cluster and the f j 's are the
average number of distances per cluster that are in the
range Δrj7δΔr for j¼ 1;…;M. It is clear from the previous
discussion that

∑
M

j ¼ 1
f ðiÞj ¼ NiðNi−1Þ

2
ð11Þ
3. Inverse problem formulation

In what follows it will be addressed the problem of
obtaining the relevant parameters of a system of clusters
of spherical particles from measurements of the DSCS
of the system. The scattering model of the system is
the one developed in the previous section in Eqs. (10)
and (11). Assume that relative measurements of the DSCS,
/dsðqÞ=dΩSðrÞ, which are the ones more commonly found,
are considered. In that, case the model of Eq. (10) must
include a constant K1 that depends on the experimental
set up, as follows:

dsðqÞ
dΩ

� �ðrÞ
¼ K1K2aðq; rÞ N þ ∑

M

j ¼ 1
f j
2 sin ðqΔrjÞ

qΔrj

 !
ð12Þ

with K2 ¼ ðNck
4=4π2n2

0Þðn1−n0Þ2 and aðq; rÞ ¼ V2
r Fðq; rÞ2.

Define now a vector of relative measurements of the
DSCS taken at different moduli of the scattering vector, qi
(i¼1,…, L),

i¼ dsðq1Þ
dΩ

D EðrÞ dsðq2Þ
dΩ

D EðrÞ
…: dsðqLÞ

dΩ

D EðrÞ� �T
ð13Þ
With this definition, Eq. (12) can be written using
matrix notation, as

i¼ AðrÞSf′ ð14Þ

where f′¼ KN Kf 1 Kf 2 ⋯ KfM
h iT

¼ KN fT
h iT

is a

vector of unknowns, K ¼ K1K2, and matrices S and A are
given by

S¼

1 S11 S12 … S1M
1 S21 S22 … S2M
… … … … …
1 SL1 SL2 … SLM

266664
377775 with Sij ¼

2 sin ðqiΔrjÞ
qiΔrj

ð15Þ

AðrÞ ¼

aðq1; rÞ 0 … 0
0 aðq2; rÞ … 0
… … … …
0 0 … aðqL; rÞ

266664
377775 ð16Þ

With these definitions, it can be noticed that except
for r, all the unknowns of the model are in vector f′.
Assume for the time being that r is known. Under this
assumption, the solution for f′could be obtained in principle
by linear least squares. However, the structure of matrix S
guarantees that the problem has some degree of ill-condi-
tioning that will require a regularization scheme. If the so
called constrained Tikhonov regularization is adopted [16],
the following minimization problem must be solved:

min
f′

Jðf′; rÞ ¼ fjAðrÞSf′−iðmÞj2 þ γgðfÞg

Subjected to
f′≥0 ð17Þ
where i(m) is a vector with the measured values of the
relative DSCS defined by the model of Eq. (12). The solution
of this problem will give the estimated vector of unknowns

f̂′¼ dKN f̂
T

h iT
. In the functional of Eq. (17), g penalizes the

spurious oscillations in the elements of f, which are propor-
tional to the average number of distances Δrjðj¼ 1;…;MÞ
per cluster, f j. The function g is selected so that to constrain
the second differences of f, a rather natural requirement for
distributions. Thus, the penalty function is given by

gðfÞ ¼ f ′T
0 0T

M

0M γH

" #
f′ ð18Þ

with matrix H (M�M) given by

H¼

1þ β2 −2 1 0 0 … 0
−2 5 −4 1 0 … 0
1 −4 6 −4 1 … 0
… … … … … … …
0 … 1 −4 6 −4 1
0 … 0 1 −4 5 −2
0 … 0 0 1 −2 1þ β2

2666666666664

3777777777775
ð19Þ

where β, which is selected to be ⪢1, restricts the first and last

values of f (Kf 1 and KfM) to be 0, in accordance with what it
is expected of distributions. 0M is a vector of zeros of
dimension M and γ is the regularization parameter that
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equilibrates the amount of regularization with the amount of
fitting. The regularization parameter may be selected using
several methods as discussed in reference [17].

To also estimate r, the previous scheme is incorporated
into the following algorithm which is similar to the one
reported in reference [17]:
1)
 Select qi, i¼1,…, L and Δri, i¼1,…, M.

2)
 Calculate S.

3)
 Give a range of possible values for the radius of the

particles in the clusters (rmin to rmax), and from that
range select a set of Nr values of r (ri, i¼1, …, Nr).
4)
 Calculate A(r) for the Nr values of r.

5)
 Obtain Nr estimations of f′ (f̂′ðriÞ, i¼1, …, Nr) for each

one of the selected values of r using constrained
Tikhonov regularization as described before.
6)
 From the Nr generated pairs ðf̂′ðriÞ; riÞ select as a
solution to the problem ðf̂′ðbrÞ; brÞ the one for which
Jðf̂′ðriÞ; riÞ is minimum.

4. Estimated parameters

With the previous procedure, two estimated variables
are obtained: the estimated radius of the primary particles
in the clusters, br , and the vector of estimates

f̂′¼ dKN cKf 1 dKf 2⋯dKfM �T
h

. It is clear that the elements of

f̂
0
are estimates which are just proportional to the sought

parameters, i.e. N, f 1, f 2, …,f M . For this reason Eq. (11)

together with f̂′must be used to extract useful information
from this vector of estimates. It must be noticed, however,
that if K were known the problem would not require the
use of Eq. (11) and it could be directly solved. Nevertheless,
the most common situation is the restrictive one in which
K is unknown, and then this restriction will be assumed.

4.1. Number of particles per cluster

From the result of the estimation, now define ℚ¼dKN=

∑M
j ¼ 1

dKf j . Using Eq. (11) and after a few manipulations,
it can be shown that, if the estimation is exact

ℚ¼ 2N

1=Nc∑Nc
i ¼ 1Ni

2−N
ð20Þ

In Eq. (20), the Ni's can be written as Ni ¼N þ ΔNi,
where ∑Nc

i ¼ 1ΔNi ¼ 0. This representation for the Ni's is
replaced in Eq. (20) and, after solving for N, the following
expression is obtained:

N¼ ℚþ 2
2ℚ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℚþ 2
2ℚ

� �2

−VN

s
ð21Þ

where VN ¼ ð1=NcÞ∑Nc
i ¼ 1ΔNi

2 is the variance of the number
of particles per cluster. Eq. (21) gives an estimate of
N, i.e. bN, which is a function of ℚ and the variance of the
number of particles per cluster, VN . In order to calculate N,
the value of VN should be externally provided. If the value
of VN is not precisely known, something that is expected,
but instead, a lower and an upper bound for VN , say V ðlÞ

N
and V ðuÞ

N , are available, then the following lower and upper
bounds for N can be obtained:

ℚþ 2
2ℚ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℚþ 2
2ℚ

� �2

−V ðuÞ
N

s
¼ bNðlÞ

oNo bNðuÞ

¼ ℚþ 2
2ℚ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℚþ 2
2ℚ

� �2

−V ðlÞ
N

s
ð22Þ

In this case, the estimated average number of particles

per cluster, bN, will be represented by the interval ½bNðlÞ
; bNðuÞ

�,
in which the real N lies. This interval is expected to be
small in order to obtain a useful estimate of N.

4.2. Radius of gyration of the clusters

From the estimated vector f̂′¼ dKN cKf 1 dKf 2⋯dKfM �T
h

another important parameter can be obtained. First define

ℂ¼∑M
k ¼ 1

cKf kΔr2k=ðdKN þ 2∑M
j ¼ 1

cKf jÞ which is calculated

from the estimated vector and the Δr′ks. Then it can be

demonstrated that, theoretically, ℂ¼ R2
gz
, with

R2
gz
¼ ∑

Nc

i ¼ 1

N2
i

∑Nc
k ¼ 1N

2
k

" #
R2
gi

ð23Þ

which is the z-average square radius of gyration of the
system of clusters. Thus,

ffiffiffiffi
ℂ

p
gives an estimate of Rgz ,

i.e. bRgz . In Eq. (23)

R2
gi
¼

∑
Ni

j ¼ 1
∑
k¼ 1
k≠j

Ni

½ΔRðiÞ
jk �2

2N2
i

≈
∑
M

j ¼ 1
f ðiÞj Δr2j

N2
i

ð24Þ

is the squared radius of gyration of cluster i. If the clusters
have different spatial configurations but the same number of

particles per cluster, N, then ℂ¼ ð1=NcÞ∑Nc
i ¼ 1R

2
gi
, i.e. the

number average squared radius of gyration of the different
clusters. If all the clusters are identical, Ni ¼N and R2

gi
¼ R2

g

for i¼1,…, Nc, and in this case ℂ¼ R2
g , where R2

g is the
squared radius of gyration of the cluster.

5. x-Ray simulated example

In this section, the methodology developed before is
applied for the estimation of the parameters of a system of
clusters computed using the fractal law

N¼ kf
Rg

r

� �Df

ð25Þ

where kf and Df are the fractal parameters, prefactor and
fractal dimension respectively. The system, which is eval-
uated using small angle x-ray scattering techniques, is
composed of four fractions of the same number of iden-
tical clusters each one. All clusters in the system are made
of spherical primary particles of radius r¼6 nm. Each one
of the four fractions, with 1/4 of the total clusters in
the system, is described by the following parameters:
(1) fractal parameters kf¼2.3 and Df¼1.78, N¼60



Fig. 1. The four types of clusters used in the simulations of the x-ray example. They correspond, from left to right, to the ones indicated in the text as (1),
(2), (3) and (4).

Fig. 2. “Measured” (—) and estimated (——) x-ray relative DSCS spectra as
a function of q for the x-ray example for an error level of 5%.

Fig. 3. Real and estimated average DDDF's of the system of clusters for
the x-ray example for an error level of 5%.
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and Rg ¼ 37:1 nm; (2) kf¼2.3 and Df¼1.78, N¼20 and Rg ¼
19:6 nm; (3) kf¼1.5 and Df¼1.3, N¼20 and Rg ¼ 43:3 nm;
and (4) kf¼2.3 and Df¼1.78, N¼20 and Rg ¼ 19:6 nm, but
in a different spatial configuration than in (2). In Fig. 1, the
four types of clusters that compose the system are illu-
strated. With these parameters for the individual clusters,
the parameters to be estimated are r¼6 nm, N¼ 30 and
Rgz ¼ 35:4 nm.

In Fig. 2, the simulated measurement of the x-ray
relative DSCS spectrum is shown in a full line as a function
of q. To compute this “measurement”, the theoretical
values from Eq. (12) were corrupted with a random error
from a zero mean uniform distribution. The error has a q
dependent value in the range 70.05/dsðqÞ=dΩSðrÞ; i.e. 5%
noise relative to current measurement. The values of q
range from 0.001 nm−1 to 1.0083 nm−1, and λ0¼0.2 nm.
The value of n0 was taken to be equal to 1.

In order to apply the proposed methodology, the
relative measurements of the DSCS of the system of
clusters were discretized at L¼101 different values of q
in the range mentioned before. On the other hand, the
average DDDF of the system is discretized at M¼101
different equidistant values of Δr in the range of distances
from 2 nm to 180 nm. This range is usually obtained from
previous knowledge of the system and its minimum value
should not be larger than 2r and its maximum value
depends on the type of clusters analized and should be
larger than the maximum distance between the two most
distant primary particles in all clusters in the system.
Usually, the solution of the inverse problem is sensitive
to this value.

In Fig. 3, the real and estimated average DDDF's of the
system of clusters are shown. The real distribution was
calculated from the coordinates of the particles that make
up the clusters. Indeed, the real distribution is only available
in a simulated set up. The estimated distribution is calcu-
lated in a range of distances that is larger than the range of
distances of the real distribution, which in a real example is
not known. The oscillations at the tail of the estimated
distribution, where the real distribtuion is zero, are artifacts
related to the ill-conditioning of the inverse problem.

The other estimated parameters are bRgz ¼ 41:6 nm andbN¼ 34:3 nm. In this example, we have assumed that the
variance of the Ni, which in this case is 300 nm2, is known.
In Table 1, the estimated parameters are shown for the
cases in which the measurement error is 0%, 1%, 5%, and

10%. Lower bounds and upper bounds, bNðlÞ
and bNðuÞ

respectively, are reported for bN, for three different levels
of knowledge of the variance of the Ni's, expressed by

the range ½V ðlÞ
Ni
;V ðuÞ

Ni
�: 300–300 nm2, 250–350 nm2, and



Table 1

Estimated parameters of the system of clusters for the x-ray example for different levels of measurement error. Lower bounds and upper bounds, N̂
ðlÞ

and

N̂
ðuÞ

respectively, are reported for N̂, for three different levels of knowledge of the variance of the Ni's, expressed by the range ½V ðlÞ
N ;V ðuÞ

N �: 300–300 nm2,
250–350 nm2, and 200–400 nm2.

% error ½V ðlÞ
N ;V ðuÞ

N � ½nm2� R̂gz ½nm� ðRgz ¼ 35:4Þ r̂ ½nm� ðr¼ 6Þ

N̂
ðlÞ
½part:� ðN¼ 30Þ N̂

ðuÞ
½part:� ðN ¼ 30Þ

300–300 250–350 200–400 300–300 250–350 200–400

0a 33.6 (12) 31.4 (5) 28.5 (−5) 33.6 (12) 35.5 (18) 37.2 (24) 35.4 (0) 5.98 (0)
1b 33.8 (13) 31.6 (5) 28.8 (−4) 33.8 (13) 35.7 (19) 37.4 (25) 36.7 (4) 5.95 (−1)
5c 34.3 (14) 32.2 (7) 29.5 (−2) 34.3 (14) 36.2 (21) 37.8 (26) 41.6 (18) 6.02 (0)

10d 42.9 (43) 41.5 (38) 39.9 (33) 42.9 (43) 44.3 (48) 45.5 (52) 46.5 (31) 5.95 (−1)

a γ ¼ 0:001.
b γ ¼ 0:01.
c γ ¼ 0:1.
d γ ¼ 1.

Fig. 4. “Measured” (T-matrix) (——), estimated (—) and calculated with
RDG (—) light scattering relative DSCS spectra as a function of q for the
light scattering example for a measurement error level of 5%, for n1¼1.35,
1.4, and 1.5.

Fig. 5. Cluster of 40 primary spherules used in the simulations of the
light scattering example.
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200–400 nm2. Also the values of bRgz and br are listed in the
table. The estimated parameters agree well with the real
ones in the cases in which the uncertainty is low, i.e. low
measurement error and narrow knowledge ranges for the
variance of the Ni's. As it can be noticed, the estimated

values of the bN's deteriorate as the uncertainty increases,
resulting the estimations in all cases with a positive error.

The same happens with the estimated bRgz 's but the
percentage error is smaller as the measurement error
increases. On the contrary, the estimation of the radii of
the primary spherules remains hardly affected by the
uncertainty increase. The percentage of error with respect
to the real value is indicated between parentheses next to
the reported estimation.

6. Simulated light scattering example

Contrary to x-ray static scattering in which the condi-
tions for the RG approximation to be valid are always
fulfilled, in static light scattering these conditions gener-
ally imply in that a low optical contrast between the
suspending medium and the clusters must be achieved,
and that the phase shift parameter, ð4πrn0=λ0Þððn1=n0Þ−1Þ,
must be ⪡1.

In Fig. 4, the simulated scattering spectra of a fractal
cluster in random orientation calculated with the RG
approximation and using the exact result provided by
the T-matrix method are compared for a range of q values
from 0.0005 nm−1 to 0.025 nm−1. The value of λ0 for this
example was taken as 632 nm. The “measurements” were
discretized at L¼101 different values of q in the range
mentioned before. The average DDDF of the system was
discretized at M¼101 different equidistant values of Δr in
the range distances from 2 nm to 5000 nm.



Table 2
Estimated parameters of the cluster for the light scattering example for
different levels of measurement error for the three cases studied here:
n1¼1.35, 1.4, and 1.5.

% error n1 N̂ ½part:�
ðN¼ 40Þ

R̂gz ½nm�
ðRgz ¼ 735Þ

r̂ ½nm�
ðr ¼ 150Þ

0a 1.35 43.4 (9) 735 (0) 149 (−1)
1.4 41.4 (4) 736 (0) 152 (1)
1.5 39.7 (−1) 740 (1) 157 (5)

1b 1.35 44.2 (11) 796 (8) 149 (−1)
1.4 47.4 (19) 797 (8) 149 (−1)
1.5 40.4 (1) 801 (9) 157 (5)

5c 1.35 47.9 (20) 990 (35) 149 (−1)
1.4 43.0 (8) 994 (35) 154 (3)
1.5 41.8 (5) 996 (36) 159 (6)

10d 1.35 43.9 (10) 1171 (59) 155 (3)
1.4 45.1 (13) 1169 (59) 157 (5)
1.5 42.8 (7) 1178 (60) 160 (7)

a γ ¼ 0:1; 1 and 1.
b γ ¼ 1; 10 and 10.
c γ ¼ 10; 10 and 100.
d γ ¼ 10; 100 and 100.
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The cluster is the one shown in Fig. 5. It consists of
N¼40 spherical primary particles of r¼150 nm, and it was
generated using a fractal law with kf¼2.3 and Df¼1.78.
In this example, the refractive index of the medium was
n0¼1.3 and the refractive indices of the particles that
make up the cluster were taken as n1¼1.35, 1.4 and 1.5.
The phase shift parameters are for each of these cases:
0.02, 0.05 and 0.09, respectively. If these values are ⪡1 or
not, as required by the theory, will be confirmed in the
analysis performed below. In Fig. 4 the curves in dotted
lines represent the values calculated using the exact result
provided by the T-matrix method to which a random error
of magnitude 5% calculated in the same form as in the
x-ray example was added. The thick solid curves represent
the same scattering spectra but calculated using the RG
approximation. As it may be noticed, the spectra calculated
using the RG model agree well with the exact scattering
spectra except for the very small and very large angles in
which a small difference is noticed. This difference
becomes more pronounced as the optical contrast of
the particles with the medium increases, as expected.
This result confirms, for this example, the validity of the
conditions for RG scattering to be applicable and the weak
effect of multiple scattering in this case.

Now, the methodology developed to estimate the
clusters parameters is applied to the three cases consid-
ered for this cluster, i.e. n1¼1.35, 1.4 and 1.5. In Fig. 6 the
DDDF's estimated for each case are shown for an error
level of 5%. As in the x-ray example, oscillations at the tail
of the distributions beyond the upper value of the range of
the real distribution are present. As mentioned before,
these oscillations are related to the ill-conditioned nature
of the solved inverse problem. The parameters to be
estimated are: Rgz ¼ 735 nm, N¼ 40 and r¼150 nm. The
results of the estimations are shown in Table 2. In this
table the results corresponding to 0%, 1% and 10% mea-
surement error are also illustrated. The spectra fitted to the
Fig. 6. Real and estimated DDDF's of the cluster for the light scattering
example for an error level in the measurement of 5%. (—) n1¼1.35, (——)
n1¼1.4, and (����) n1¼1.5.
measurements are shown in Fig. 4 in thin full line for the
5% error case. The estimated parameters agree well with
the real ones in the cases in which the uncertainty is low,
i.e. low measurement error and low contrast between
medium and particles. When the uncertainty is not low,
the estimated N's slightly deteriorate giving values that are
consistently larger than the real ones but do not follow a
particular pattern with respect to the uncertainty intro-
duced by the measurement error and the refractive index
Fig. 7. Measured (�—) and estimated (—) x-ray relative DSCS spectrum as
a function of q for the experimental x-ray examples, labeled EXP1
and EXP2.



Fig. 8. Estimated normalized average DDDF's of the system of clusters for
the experimental x-ray examples, EXP1 and EXP2.
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contrast. As the measurement error increases, the estima-
tions have in all cases a positive error. With respect to
estimated Rgz 's, they follow a clear deterioration pattern
with uncertainty. Errors in this case are also always
positive. Contrarily, the estimation of the radii of the
primary spherules remains hardly affected by the uncer-
tainty increase. In the table, also the percentage of error
with respect to the real values is indicated between
parentheses next to the reported estimations.

7. Experimental x-ray examples

A final application of the methodology developed here
will be applied to a couple of experimental small angle
x-ray scattering spectra of colloidal samples of aluminum
hydroxide made by partial hydrolysis of aluminum chlor-
ide solution with sodium hydroxide. The spectra were
taken from reference [18] and correspond to a sample
characterized by a hydrolysis ratio, x, of 2.6 (EXP1) and to a
sample with x¼2.5 (EXP2). At these values of x the
colloidal particles aggregate to form systems of clusters
which exhibit fractal dimension Df¼1.45 for x¼2.5 and
Df¼1.86 when precipitation starts at x¼2.6.

In Fig. 7 the experimental x-ray relative DSCS spectra of
the two samples are shown in dotted line. The collected
data cover the q-range 0.0383–0.800 nm−1 for EXP1 and
0.0643–2.033 nm−1 for EXP2 and the wavelength of the
incident x-ray beam is λ0¼0.16 nm. These experimental
values were discretized at L¼121 different points in the
range of q considered for each example. Also the average
DDDF's were discretized at M¼101 equidistant values of
Δr over a range of 1–120 nm for EXP1 and over a range
from 1 to 60 nm for EXP2. In Fig. 8 the estimated average
DDDF's of the systems of clusters are shown for each
example. The other estimated parameters were: bN¼62,bRgz ¼23.5 nm and br¼3.2 nm for EXP1 and bN¼23,bRgz ¼12 nm and br¼1.36 nm for EXP2. These estimations
give, using the fractal law of Eq. (25), and for the fractal
dimensions reported in [18] for the colloidal samples of
aluminum hydroxide analyzed here, the following struc-
ture prefactors: kf¼1.5 for EXP1 with Df¼1.86 and kf¼0.98
for EXP2 with Df¼1.45. These values for the prefactor
parameters are within the range of reasonable values for
this quantity [19].

In each case the clusters were considered to have the
same number of subunits, i.e. the variance of the number
of particles per cluster,VNi , was set to zero in the estima-
tion scheme. In Fig. 7, the estimated spectra are shown in
solid line for both examples.

In these examples the regularization parameters are
γ¼5.5�109 for EXP1 and γ¼8.6�106 for EXP2 which
were calculated using the Generalized Cross Validation [20].
The authors of the article from which these experimental
values were taken also calculated the size and number
of the subunits forming the clusters. Their results differ
quantitatively from the ones obtained here. These authors
assumed that the subunits forming the clusters are of the
same size for both experiments, and estimated their size as
∼1 nm independently from the scattering data. With this
value calculated the number of particles and obtainedbN¼512 for EXP1 and bN¼64 for EXP2. The estimation
method used in that article is based on an approximated
model which may justify the observed differences with the
results obtained here.
8. Conclusions

In this work, an exact scattering model for a system of
clusters, based on the RG approximation, has been para-
meterized in such a way that it can be solved in an inverse
form using Thikhonov Regularization. With the methodol-
ogy developed here, all the relevant parameters of the
clusters can be estimated in a single step procedure with-
out any assumption. Although natural clusters of particles
are usually the result of a fractal aggregation process, no
assumptions on the relationships between the parameters
of the clusters have been made in this work. Thus, the
results presented here also apply to non-fractal clusters.
The simulated as well as the experimental examples pre-
sented in this work show that the proposed methodology
performs satisfactorily in unideal situations such as: pre-
sence of error in the measurements, presence of error in
the model, and several types of unideallities present in the
experimental example.
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