
Citation: Plastino, A.R.; Tsallis, C.;

Wedemann, R.S.; Haubold, H.J.

Entropy Optimization, Generalized

Logarithms, and Duality Relations.

Entropy 2022, 24, 1723. https://

doi.org/10.3390/e24121723

Academic Editors: Airton Deppman

and Bíró Tamás Sándor

Received: 7 November 2022

Accepted: 21 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Entropy Optimization, Generalized Logarithms,
and Duality Relations
Angel R. Plastino 1, Constantino Tsallis 2,3,4,* , Roseli S. Wedemann 5 and Hans J. Haubold 6

1 CeBio y Departamento de Ciencias Básicas, Universidad Nacional del Noroeste de la Província de Buenos
Aires, UNNOBA, CONICET, Roque Saenz Peña 456, Junin B6000, Argentina

2 Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems,
Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, Brazil

3 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
4 Complexity Science Hub Vienna, Josefstädter Straße 39, 1080 Vienna, Austria
5 Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524,

Rio de Janeiro 20550-900, RJ, Brazil
6 Office for Outer Space Affairs, United Nations, Vienna International Center, 1400 Vienna, Austria
* Correspondence: tsallis@cbpf.br

Abstract: Several generalizations or extensions of the Boltzmann–Gibbs thermostatistics, based on
non-standard entropies, have been the focus of considerable research activity in recent years. Among

these, the power-law, non-additive entropies Sq ≡ k 1−∑i pq
i

q−1 (q ∈ R; S1 = SBG ≡ −k ∑i pi ln pi) have
harvested the largest number of successful applications. The specific structural features of the Sq

thermostatistics, therefore, are worthy of close scrutiny. In the present work, we analyze one of
these features, according to which the q-logarithm function lnq x ≡ x1−q−1

1−q (ln1 x = ln x) associated
with the Sq entropy is linked, via a duality relation, to the q-exponential function characterizing the
maximum-entropy probability distributions. We enquire into which entropic functionals lead to this
or similar structures, and investigate the corresponding duality relations.

Keywords: generalized entropies; generalized logarithms; duality relations; entropy optimization;
Sq entropies

PACS: 05.90.+m

1. Introduction

Extensions of the maximum entropy principle based on non-standard entropic func-
tionals [1–4] have proven to be useful for the study of diverse problems in physics and
elsewhere, particularly in connection with complex systems [5,6]. These lines of enquiry
were greatly stimulated by research into a generalized thermostatistics advanced in the
late 80s, in which the canonical probability distributions optimize the Sq power-law, non-
additive entropies [7]. The Sq thermostatistics was successfully applied to the analysis of a
wide range of systems and processes in physics, astronomy, biology, economics, and other
fields [8–11]. Motivated by the work on the Sq entropies, researchers also explored the prop-
erties and possible applications of several other entropic measures, such as those introduced
by Borges and Roditi [12], by Anteneodo and Plastino [13], by Kaniadakis [14], and by
Obregón [15]. Recent reviews on these and other entropic forms can be found in [16,17].
These developments, in turn, led to the investigation of general properties of entropic
variational principles, in order to elucidate which features are shared by large families of
entropic forms, or are even universal, and, on the contrary, which features characterize spe-
cific entropies, such as the Sq ones. Several aspects of general entropic variational principles
have been studied along those lines, including, for instance, the Legendre transform struc-
ture [18–20], the maximum entropy–minimum norm approach to inverse problems [21],
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the implementation of dynamical thermostatting schemes [22,23], the interpretation of
superstatistics in terms of entropic variational prescriptions [24], and the derivation of
generalized maximum-entropy phase-space densities from Liouville dynamics [25].

Of all the thermostatistics associated with generalized entropic forms, the thermo-
statistics derived form the Sq entropies has been the most intensively studied and fruitfully
applied one. The Sq-thermostatistics exhibits some intriguing structural similarities with
the standard Boltzmann–Gibbs one. The aim of the present contribution is to explore one
of these similarities, within the context of thermostatistical formalisms based on general
entropic functionals. As is well known, the Boltzmann–Gibbs entropy SBG of a normalized
probability distribution can be expressed as minus the mean value of the logarithms of
the probabilities. Or, alternatively, as the mean value of the logarithms of the inverse
probabilities. On the other hand, the probability distribution that optimizes SBG under the
constraints imposed by normalization and by the energy mean value, has an exponential
form, where the exponential is the inverse function of the above mentioned logarithm
function. In a nutshell: the entropy is the mean value of a logarithm (evaluated on the
inverse probabilities), while the maximum-entropy probabilities are given by an exponen-
tial function, which is the inverse function of the logarithm. This structure turns out to
be nontrivial, and, up to a duality condition, is shared by the Sq-thermostatistics. Indeed,
it is possible to define a q-logarithm function, and its inverse function, a q-exponential,
both parameterized by the parameter q, such that the Sq entropy is the mean value of a
q-logarithm (evaluated on the inverse probabilities), while the probability distribution opti-
mizing Sq has a q-exponential form. The alluded duality condition, however, imposes that
the value of the q-parameter associated with the aforementioned q-logarithm should not be
the same as the value of the parameter associated with the q-exponential. Both q-values are
connected via the duality relation q↔ 2− q, which is ubiquitous in the Sq-thermostatistics.
In the present work, we shall explore which entropic measures generate similar structures,
linking the entropic functional, regarded as the mean value of a generalized logarithm,
with the form of the maximum-entropy distributions.

This paper is organized in the following way. In Section 2, we provide a brief review of
the Sq-thermostatistical formalism, focusing on the q-logarithm duality relation. In Section 3,
we explore which entropic functionals give rise to structures, and duality relations, similar
to those characterizing the Sq-thermostatistics. More general scenarios are considered in
Section 3. Finally, some conclusions are drawn in Section 4.

2. Sq Entropies, q-Logarithms, and q-Exponential Maximum-Entropy
Probability Distributions

The Sq-thermostatistics is constructed on the basis of the non-additive, power-law
entropy Sq [5] defined as

Sq =
k

1− q

W

∑
i=1

(
pq

i − pi

)
, (1)

where q ∈ R is a parameter characterizing the degree of non-additivity exhibited by
the entropy, k is a constant chosen once and for ever, determining the dimensions and
the units in which the entropy is measured, and {pi, i = 1, . . . , W} is an appropriately
normalized probability distribution for a system admitting W microstates. In what follows,
we shall assume that k = 1. The limit q→ 1 corresponds to the standard Boltzmann–Gibbs
(BG) entropy, that is, S1 = SBG = −k ∑W

i=1 pi ln pi. The power-law entropy Sq constitutes
a distinguished and founding member of the club of generalized entropies, which is
nowadays the focus of intensive research activity [3,4,16].

The q-logarithm function, given by

lnq(x) =
x1−q − 1

1− q
(x > 0; ln1 x = ln x), (2)
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and its inverse function, the q-exponential

expq(x) =

{
[1 + (1− q)x]

1
1−q , if 1 + (1− q)x > 0 ,

0 , if 1 + (1− q)x ≤ 0
(3)

constitute essential ingredients of the Sq thermostatistical formalism. For the sake of
completeness, it is worth mentioning that sometimes people use an alternative notation

for the q-exponential, given by expq(x) = [1 + (1 − q)x]
1

1−q
+ . The q-logarithm and the

q-exponential functions arise naturally when one considers the constrained optimization
of the entropy Sq [5,9]. Moreover, it is central to the q-thermostatistical theory that the Sq
entropy itself can be expressed in terms of q-logarithms,

Sq = k
W

∑
i=1

pi lnq

(
1
pi

)
= k

〈
lnq

(
1
pi

)〉
. (4)

Note that, for q→ 1, the above equation reduces to the well-known one, SBG = k ∑W
i=1 pi ln

(
1
pi

)
.

The gist of the Sq thermostatistics is centered on the optimization of Sq under suitable
constraints. The Sq entropic variational problem can be formulated using standard linear
constraints or nonlinear constraints based on escort probability distributions [26,27]. When
working with more general entropic functionals, it is not well understood what are the ap-
propriate escort mean values to be used, and few or no concrete applications of escort mean
values to particular problems have been developed. Consequently, in order to investigate
and clarify the distinguishing features of the Sq formalism within the context of more gen-
eral entropic formalisms, it is convenient to restrict our considerations to the optimization
of the Sq entropy under linear constraints. The main instance of the Sq variational problem
is the one yielding the generalized canonical probability distribution, which corresponds to
the optimization of Sq under the constraints corresponding to normalization,

W

∑
i=1

pi = 1, (5)

and to mean energy. We assume that the ith microstate of the system under consideration,
which has probability pi, has energy εi. The mean energy is then

E =
W

∑
i=1

pi εi. (6)

Introducing the Lagrange multipliers α and β, corresponding to the constraints of normal-
ization (5) and the mean energy (6), the optimization of Sq leads to the variational problem

δ
[
Sq − α

(
W

∑
i=1

pi

)
− βE

]
= 0, (7)

yielding

pq−1
i =

1
q

[
1 − (q− 1)(α + βεi)

]
. (8)

For later comparison with thermostatistical formalisms based on general entropic forms, it
will prove convenient to recast the above equation as

pq−1
i = 1 + (q− 1)

[
A − B(α + βεi)

]
, (9)

with A = −1/q and B = 1/q. At first glance, it might seem cumbersome to introduce
the parameters A and B, since, within the context of the Sq-thermostatistics, they are
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simple functions of the entropic parameter q. The new parameters, however, will prove
essential when exploring the duality properties exhibited by thermostatitsical formalisms
based on other generalized entropies, and when comparing those properties with the ones
corresponding to the Sq entropy. In those scenarios, the parameters A and B have other
values, depending on the parameterized form of the relevant entropic functionals. Using
theA and B parameters, the maximum Sq entropy probability distribution can be expressed
in terms of a q-exponential, as follows:

pi = expq̃[A−B(α + βεi)] = ln(−1)
q̃ [A−B(α + βεi)], (10)

where
q̃ = 2− q. (11)

Comparing now the Equation (4) for the entropy, with the Equation (10) for the
probabilities optimizing the entropy, we see that the Sq entropy can be expressed in terms of
a q-logarithm function, while the optimal probabilities are given by an inverse q-logarithm
function (that is, by a q-exponential function). However, the value of the q-parameter that
appears in the first q-logarithm, associated with the entropy, does not coincide with the one,
denoted by q̃, that appears in the inverse q-logarithm defining the optimal probabilities.
This pair of q-values satisfy the duality relation (11). It is important to emphasize that the
duality relation (11) has the property

˜̃q = q. (12)

In other words, the dual of the dual of q is equal to q itself. Note also that, in the Boltzmann–
Gibbs limit, q → 1, the duality relation reduces to q̃ = q = 1. The Boltzmann–Gibbs
thermostatistics, regarded as a particular member of the Sq-thermostatistical family, is self-
dual. The duality relation (12) between the values of the q-parameters characterizing two
q-logarithm functions, can be reformulated as a duality relation between the q-logarithms
themselves. Indeed, one has that

lnq̃(x) = − lnq

(
1
x

)
. (13)

For q → 1, the self-dual condition q = q̃ = 1 is obtained, and the relation (13) reduces to
the well-known property of the standard logarithm, ln(x) = − ln(1/x).

3. Generalized Entropies and Logarithms

Now, we shall consider a generic trace-form entropy SG. It can always be written in
the form

SG =
W

∑
i=1

pi lnG

(
1
pi

)
, (14)

expressed in terms of an appropriate generalized logarithm function lnG(x). The specific
form of the generalized logarithmic function lnG(x) depends on which particular ther-
mostatistical formalism one is considering. For example, in the case of the Sq-based
thermostatistics, lnG(x) is given by the generalized logarithm lnq(x). Note that the
subindex “G” stands for “generalized", and it does not represent a numerical param-
eter. In order to lead to a sensible entropy, the function lnG(x) has to be continuous
and two-times differentiable, has to comply with (x lnG(1/x)) > 0 for 0 < x < 1 and
limx→0(x lnG(1/x)) = limx→1(x lnG(1/x)) = 0, and has to satisfy the concavity require-
ment given by d2

dx2

[
x lnG

(
1
x

)]
< 0.
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One can optimize the entropic measure (14) under the constraints imposed by normal-
ization (5) and by the energy mean value (6). The corresponding variational problem reads

δ
[
SG − α

(
W

∑
i=1

pi

)
− βE

]
= 0, (15)

where α and β are the Lagrange multipliers corresponding to the normalization and the
mean energy constraints. The solution to the variational problem is given by a probability
distribution complying with the equations

1
pi

ln′G

(
1
pi

)
− lnG

(
1
pi

)
= −α− βεi, (i = 1, . . . , W), (16)

where ln′G(x) = d
dx lnG(x).

Equation (16) arises from a generic entropy optimization problem. Basically, the opti-
mization of any trace form entropy leads to an equation of the form (16). Here, we want
to consider a particular family of entropies, leading to maximum entropy distributions
satisfying a special symmetry requirement. We want the maximum entropy distribution pi
to be of the form

pi = ln(−1)
G̃

(ξi), (17)

where ξi = A+ B(−α− βεi), with A and B appropriate constants (B > 0), and ln(−1)
G̃

is
the inverse of a generalized logarithmic function lnG̃(x), related to lnG(x) through a duality
relationship. A few clarifying remarks are now in order. First, ξi is, up to the additive and
multiplicative constantsA and B, equal to the right-hand side of (16). Second, the constants
A and B depend only on the form of the entropy (14), and not on any details of the system
under consideration, such as the number of microstates W, the values of the microstates’
energies εi, or the values of the Lagrange multipliers α and β. Last, the duality relation
connecting the functions lnG(x) and lnG̃(x) is such that the dual of the dual is equal to the
original function, that is

ln ˜̃G(x) = lnG(x). (18)

Combining Equations (16) and (17), one obtains

1
pi

ln′G

(
1
pi

)
− lnG

(
1
pi

)
=

1
B

(
lnG̃(pi)−A

)
. (19)

Introducing the constants A = −A/B and B = 1/B, the above equation can be cast in the
more convenient form

1
pi

ln′G

(
1
pi

)
− lnG

(
1
pi

)
= A + B lnG̃(pi). (20)

For a given duality relation lnG(x) → lnG̃(x), and given values of the parameters A and
B, Equation (20) can be regarded as a differential equation that has to be obeyed by the
generalized logarithmic function lnG(x). For solving the differential equation, one needs
an initial condition, given by the value lnG(x0) adopted by the generalized logarithm at
some particular point x0. We shall assume, as an initial condition, that lnG(1) = 0.

Different forms of the duality relation lnG(x) → lnG̃(x) are compatible with different
forms of the generalized logarithm, and with different forms of the generalized entropy.
In what follows, we shall explore some instances of duality relations, in order to determine
which entropic forms are compatible with them.
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3.1. The Duality Condition Satisfied by the Sq Thermostatistics

Motivated by the Sq-based thermostatistics, we shall first adopt the duality condition

lnG̃(x) = − lnG(1/x), (21)

which is precisely the relation (13) satisfied by the Sq-thermostatistics. Equation (20)
then becomes

1
pi

ln′G

(
1
pi

)
− lnG

(
1
pi

)
= A− B lnG

(
1
pi

)
. (22)

Therefore, in order to find the form of lnG(x), we have to solve the differential equation

ln′G(x) =
1
x

[
A + (1− B) lnG(x)

]
, (23)

with the initial condition lnG(1) = 0. The (unique) solution of Equation (23) is then

lnG(x) = A
(

x1−B − 1
1− B

)
. (24)

We see that, up to the multiplicative constant A, the only generalized logarithmic function
leading to an entropy optimization scheme compatible with the duality condition (21) is
the q-logarithm

lnq(x) =
x1−q − 1

1− q
. (25)

The parameter B appearing in (22) coincides with the parameter q of the Sq-thermostatistics.

3.2. The Simplest Duality Relation

We shall now consider the simplest possible duality relation, which is

lnG̃(x) = lnG(x). (26)

In spite of its simplicity, this duality relation is worthy of consideration, because it includes
the standard logarithm (and the corresponding Boltzmann–Gibbs scenario) as a particular case. It is
interesting, therefore, to explore which entropic forms are compatible with the simplest
conceivable condition (26), even if this exploration is not a priori motivated by a generalized
entropy of known physical relevance.

Combining the general Equation (20) with the duality relation (26), one obtains

1
pi

ln′G

(
1
pi

)
− lnG

(
1
pi

)
= A + B lnG(pi). (27)

Then, we have to solve the ordinary differential equation

1
x

ln′G

(
1
x

)
− lnG

(
1
x

)
= A + B lnG(x), (28)

or, equivalently,
d lnG

dx
=

1
x

[
lnG(x) + A + B lnG

(
1
x

)]
, (29)

with the condition lnG(1) = 0. At first sight, Equation (29) may look like a standard
ordinary differential equation. It has, however, the peculiarity that in the right-hand side
of (29), the unknown function lnG is evaluated at two different values of its argument:
x and 1/x. This situation is similar to the one that occurs, for instance, with differential
equations describing dynamical systems with delay. In the case of (29), this difficulty can
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be removed by recasting the equation as a pair of coupled ordinary differential equations.
Let us introduce the functions

F(x) = lnG(x),
G(x) = lnG(1/x). (30)

The differential Equation (28) can be reformulated as the two coupled differential equations

dF
dx

=
1
x

[
F(x) + B G(x) + A

]
,

dG
dx

= − 1
x

[
G(x) + B F(x) + A

]
, (31)

with the conditions F(1) = G(1) = 0. To find a solution for (31), we propose the ansatz

F(x) = c1xγ1 + c2xγ2 + c3,
G(x) = c1x−γ1 + c2x−γ2 + c3. (32)

If one inserts the ansatz (32) into the differential Equations (31), one can verify that (32)
constitutes a solution, provided that

γ1 = −γ2 ≥ 0,

c1/c2 = − 1
B

(
1 +

√
1− B2

)
, 0 ≤ B2 ≤ 1,

c3 = −A/(1 + B), (33)

and
γ =

√
1− B2, (34)

where γ = γ1 = −γ2. It follows from (33) and (34) that 0 ≤ γ ≤ 1, and that

c2 = −

√
1− γ

1 + γ
c1. (35)

The relations (33)–(35), together with the initial conditions F(1) = G(1) = 0, lead to

F(x) =
A

1 + B

(√
1 + γ xγ −

√
1− γ x−γ

√
1 + γ −

√
1− γ

− 1
)

, (36)

and

G(x) =
A

1 + B

(√
1 + γ x−γ −

√
1− γ xγ

√
1 + γ −

√
1− γ

− 1
)

. (37)

The solution to the system of differential Equations (31) is completely determined by the
conditions F(1) = G(1) = 0. Therefore, given these conditions, and for 0 ≤ B ≤ 1,
the solution (36) and (37) is unique. Now, the entropy Sγ compatible with the duality
relation (26) is Sγ = ∑i pi lnG(

1
pi
), with lnG(x) = F(x). Therefore, for 0 ≤ B ≤ 1, one has

Sγ =
A

1 + B ∑
i

(√
1 + γ p1−γ

i −
√

1− γ p1+γ
i√

1 + γ −
√

1− γ
− pi

)
, (38)

which, after some algebra, can be recast in the more convenient form

Sγ =
A
2

(√
1 + γ +

√
1− γ

1 +
√

1− γ2

)
∑

i

[√
1 + γ

(
p1−γ

i − pi

γ

)
+
√

1− γ

(
p1+γ

i − pi

−γ

)]
. (39)
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Introducing now the parameters q = 1 − γ, (0 ≤ q ≤ 1) and q∗ = 1 + γ = 2 − q,
(1 ≤ q∗ ≤ 2), the entropy (39) can be expressed as a linear combination of two Sq entropies,

Sγ = K
(√

q∗ Sq +
√

q Sq∗
)

, (40)

where

K =
A
2

(√
q +
√

q∗

1 +
√

q q∗

)
. (41)

In the limit B → 1, which corresponds to γ → 0, q → 1, and q∗ → 1, the generalized
entropy (40) is, up to a multiplicative constant, equal to the Boltzmann–Gibbs entropy SBG.

3.3. More General Duality Relations

It is possible to consider duality relations more general than the ones discussed
previously. One can consider scenarios where the relation between a generalized logarithm
and its dual is defined in terms of a pair of functions h1,2(x), as

lnG̃(x) = h1(lnG(h2(x))), (42)

where the functions h1,2(x) satisfy

h1(h1(x)) = x, and h2(h2(x)) = x. (43)

For example, the duality relation associated with the Sq entropy corresponds to h1(x) = −x
and h2(x) = 1/x, while the duality relation associated with the entropy Sγ corresponds to
h1(x) = h2(x) = x.

Other duality relations can be constructed, for instance, in terms of the Moebius trans-
formations

M(x) =
m1x + m2

m3x + m4
, (44)

with m1m4 −m2m3 6= 0. The inverse of (44) is

M(−1)(x) =
m4x−m2

−m3x + m1
. (45)

Moebius transformations that are self-inverse (that is, transformations coinciding with their
own inverse: M(x) = M(−1)(x)) are candidates for the functions h1,2(x) from which possi-
ble duality relations for generalized logarithmic functions can be constructed. Examples of
self-inverse Moebius transformations are those of the form

M(x) =
m1x + m2

m3x−m1
, (46)

which have m4 = −m1. Notice that, for m1 6= 0, the above form of M(x) depends on only
two parameters, as follows: M(x) = x+(m2/m1)

(m3/m1)x−1 . Another self-inverse Moebius transfor-
mation, not included in the family (46), is the identity function, M(x) = x, corresponding
to m1 = m4 6= 0 and m2 = m3 = 0 (see also [28]). The duality relations corresponding to
the entropic measures Sq and Sγ are both constructed in terms of particular instances of
Moebius transformations. The duality relation associated with the entropy Sq is constructed
with h1(x) = −x and h2(x) = 1/x, which are the self-inverse Moebious transformation cor-
responding, respectively, to m1 = 1, m4 = −1, and m2 = m3 = 0, and to m1 = m4 = 0 and
m2 = m3 = 1. The duality relation for the entropy Sγ is constructed with h1(x) = h2(x) = x,
which correspond to m1 = m4 = 1 and m2 = m3 = 0.
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A generalized logarithmic function lnG(x) defining a trace-form entropy (14), for which
the associated entropic optimization principle leads to the duality relation (42), must satisfy
the differential equation

1
x

ln′G

(
1
x

)
− lnG

(
1
x

)
= A + B lnG̃(x)

= A + B h1(lnG(h2(x))), (47)

with the condition lnG(1) = 0. For expression (14) to represent a sensible (i.e., concave)
entropy, the generalized logarithm satisfying (47) has to comply with the requirement

d2

dx2

[
x lnG

(
1
x

)]
= −B

d
dx

[
h1(lnG(h2(x)))

]
< 0. (48)

For duality relations more general than the two ones already analyzed by us in detail
(corresponding to the entropies Sq and Sγ), the associated differential Equation (47) has,
presumably, to be treated numerically.

3.4. Duality Relations: The Inverse Problem

One can also consider the following inverse problem. Given a parameterized family
of non-negative, monotonically increasing functions J(x; λ), depending on one or more
parameters (that we collectively denote by λ), find out if the inverse function J(−1)(x; λ) is
related to a generalized logarithmic function defining a sensible entropy (14), and satisfying
a duality relation (42) defined in terms of appropriate functions h1,2(x). The problem is the
following: for the inverse function J(−1)(x; λ), determine if suitable functions h1,2(x) exist,
and identify them. We assume that the integral

I =
∫ 1

0
J(−1)(x′; λ) dx′, (49)

converges.
In order to formulate this inverse problem, we consider a thermostatistical formalism,

based on a generalized entropy, which yields optimizing-entropy canonical probability
distributions of the form

pi = J(ξi; λ), (50)

where ξi = A+ B(−α− βεi). In the latter expression, α and β are, as usual, the Lagrange
multipliers associated with normalization of mean energy, and A and B are constants,
possibly depending on the parameters λ characterizing the function J(x; λ).

The associated entropy SJ can be expressed as

SJ = ∑
i
C(pi), (51)

where the function C(x) is defined as the integral

C(x) =
∫ 1

x

[
J(−1)(x′; λ) − I

]
dx′. (52)

The function C(x) satisfies the following properties,

C(x) > 0, for 0 < x < 1,
C(0) = C(1) = 0,

dC/dx = I − J(−1)(x; λ),
d2C/dx2 = −dJ(−1)(x; λ)/dx < 0, (53)

which guarantee that SJ, defined by (51), is a sensible entropy. For J(x) = exp(x), one
has J(−1)(x) = ln(x), I = −1, C(x) = −x ln(x), and SJ coincides with the Boltzmann–
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Gibbs entropy. If we compare the expression (51) for SJ with the expression (14) for a
generalized entropy in terms of a generalized logarithm, we find that the generalized
logarithm associated with SJ is

ln(J)
G

(
1
x

)
=

1
x

∫ 1

x

[
J(−1)(x′; λ) − I

]
dx′, (54)

or, equivalently,

ln(J)
G (x) = x

∫ 1

x−1

[
J(−1)(x′; λ) − I

]
dx′. (55)

On the other hand, if we compare the form (17) for a generalized canonical distribution,
with the form (50) corresponding to the function SJ , we obtain

ln(J)
G̃ (x) = J(−1)(x; λ). (56)

The present inverse problem consists of determining what type of duality relation, if any,
exists between the functions (55) and (56). It seems that this is a difficult problem, which
has to be tackled in a case-by-case way. As an intriguing example of this inverse problem,
we can consider the one posed by probability distributions related to the Mittag-Leffler
function Ea,b(x) (see [29] and references therein). The Mittag-Leffler function is given, for a
general complex argument z, by the power series expansion

Ea,b(z) =
∞

∑
k=0

zk

Γ(b + ak)
, a, b ∈ C, <(a) > 0, <(b) > 0, z ∈ C , (57)

with Ea(z) ≡ Ea,1(z). Notice that, in the literature [29], the two parameters a and b
characterizing the Mittag-Leffler function are sometimes referred to as α and β.

The Mittag-Leffler function has several applications in physics and other fields. In
particular, it plays a distinguished role in the study of non-standard diffusion processes
involving fractional calculus operators [29]. In the present context, we consider only real
values of the parameters (a, b) and real arguments. A few examples of the Mittag-Leffler
function, and of its inverses, are respectively depicted in Figures 1 and 2, for b = 1 and
different values of the parameter a.
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x

a = 0.25
a = 0.50
a = 0.75
a = 1.00
a = 1.50

Figure 1. Plot of the Mittag-Leffler function Ea,b(x), for b = 1 and illustrative values of the parameter
a; E1,1(x) = ex.
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Figure 2. Plot of the inverse Mittag-Leffler function, E(−1)
a,b (x), for b = 1 and specific values of the

parameter a; E(−1)
1,1 (x) = ln x.

In the context of a Mittag-Leffler-based thermostatistical formalism, some possible
choices for the function J(x; λ) would be

J(x; λ) = Ea,b(x), or,
J(x; λ) = Ea,b(x2), (58)

where λ = (a, b) is the set of parameters characterizing the Mittag-Leffler function. For each
of these choices, provided that the values of the parameters λ are such that the appropriate
conditions are fulfilled, it is possible to explore the existence of functions h1,2 for which the
Mittag-Leffler-related generalized logarithms, (55) and (56), satisfy a differential equation
of the form (47). For J(x; λ) = Ea,1(x) = Ea(x), the corresponding generalized entropy
(51) is defined in terms of the function C(x), given by (52). A few examples of C(x), which
we obtained by numerically solving the integrals (49) and (52) for particular values of the
parameter a, are plotted in Figure 3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
(x
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a = 0.95
a = 1.00
a = 1.10
a = 1.50

Figure 3. Plotof the function C(x) corresponding to J(x) = Ea(x), for different values of the parameter
a. The function C(x) appears in the definition of a trace-form entropic measure (51), and is given by
Equation (52). For a = 1, one has E1(x) = exp(x) and C(x) = −x ln x.

4. Conclusions

Several generalizations or extensions of the notion of entropy have been advanced
and enthusiastically investigated in recent years. The associated entropic optimization
problems seem to provide valuable tools for the study of diverse problems in physics and
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other fields, particularly when applied to the analysis of complex systems. Among the
growing number of entropic forms that have been advanced, the non-additive, power-
law Sq entropies exhibit the largest number of successful applications. It is clear by now,
however, that the Sq entropies are not universal: some systems or processes seem to be
described by entropic forms not belonging to the Sq family. Given this state of affairs,
it is imperative to investigate in detail the properties of the various entropies, and of
the associated thermostatistics, in order to elucidate and clarify the deep reasons that
make them suitable for treating specific problems. In particular, the structural features
of the Sq thermostatistics are certainly worthy of close scrutiny. In the present work, we
investigated one of these features, according to which the q-exponential function describing
the maximum-entropy probability distributions are linked, via a duality relation, with the
q-logarithm function in terms of which the Sq entropy itself can be defined. We investigated
which entropic functionals lead to this kind of structure and explored the corresponding
duality relations.

The main take-home message of the present work is that there is a close connection
between the aforementioned duality relations, and the forms of the entropic measures.
The Sq thermostatistics exhibits a particular duality connection, which, in the limit of
the Boltzmann–Gibbs thermostatistics, reduces to a self-duality. We proved that there
is no other entropic functional satisfying the duality relation associated with Sq, namely,
Equation (21). This constitutes what may be regarded as a brand new uniqueness theorem
leading to Sq, in addition to those already existing, such as the Enciso–Tempesta theo-
rem [30] and those indicated therein. Assuming other types of duality relation, it is possible
to formulate differential equations that lead to new entropic measures complying with the
assumed duality. We studied in detail a duality relation leading to a differential equation
that admits closed analytical solutions, and corresponds to a new generalized entropy,
which we denoted by Sγ. The duality relations characterizing the entropies Sq and Sγ seem
to be exceptional, in that the concomitant differential equations can be solved analytically.
In many other cases, the differential equations resulting from duality relations have to be
treated numerically. The investigation of these equations, associated with thermostatistical
scenarios different from, or more general than, those based on the entropies Sq and Sγ,
would certainly be worthwhile. It would also be valuable to identify new duality relations
admitting an analytical treatment. The exploration of the ensuing thermostatistical scenar-
ios may suggest interesting new applications of generalized entropies. Another promising
direction for future research is to extend the present study to scenarios involving non-trace-
form entropies [31], or involving escort mean values [27,32]. We would be delighted to see
further advances along these or related lines.
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