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Abstract

A nonlinear large rotations beam element is presented within the framework of an energy conserving algorithm which was presented
in previous works [Lens E, Cardona A, Géradin M. Energy preserving time integration for constrained multibody systems. Multibody
System Dyn 2004;11:41–61; Lens E. Energy preserving/decaying time integration schemes for multibody systems dynamics. PhD thesis,
Universidad Nacional del Litoral, Argentina; 2006]. Flexibility is dealt with easily in energy conserving algorithms only for finite element
models with displacement degrees of freedom. However, beam models which have rotation degrees of freedom are more cumbersome to
be handled. The beam model which we introduce in this paper has simplifications that lead to quite compact expressions of its different
terms. This kind of algorithms has many advantages, both theoretical and practical, because of its unconditional stability which is guar-
anteed even in the nonlinear regime.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Although the physical theory of beams undergoing large
rotations is widely known from long time (see for instance
[3–6]), the development of algorithms to simulate the time
response of beams is in continuous evolution.

The computation of the response of beams requires the
use of a time integration strategy that deserves particular
attention. The numerical solution of the equations of
motion of the system may give rise to difficulties of purely
numerical origin which come out in the form of instabilities
of the solution or in the form of high frequency oscilla-
tions. Time integration schemes that preserve the total
energy of the system guarantees at least the answer to the
instabilities, as it was shown by Hughes [7].
0045-7949/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Different energy preserving beam models have been pro-
posed in the bibliography. Bauchau [8] proposed a beam
model that consists of a geometrically exact, shear deform-
able beam undergoing arbitrary large displacements and
rotations but small strains. On the other hand, the model
of Ibrahimbegovic et al. [9] essentially represents a conve-
nient reparameterization of the classical beam model of
Love [10] and Reissner [3], proposed initially by Simo [5]
for straight beams, reworked by Cardona and Géradin
for multibody dynamics applications [6] and extended by
Ibrahimbegovic [11] to space curved beams. Romero and
Armero [12] proposed a finite element implementation of
the model presented by Simo [5] that corrects the lack of
objectivity due to the adopted spatial finite element inter-
polations. Bottasso et al. [13–17] developed a novel
approach for the integration of general nonlinear multi-
body dynamics problems that includes geometrically exact
beams, where schemes with preservation and dissipation of
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the energy are devised. More recently, Leyendecker et al.
[18] introduced modifications in the beam formulation of
Betsch and Steinmann [19,20] to obtain a time-stepping
scheme energy–momentum preserving by construction. In
a recent work, Bathe [21] proposed a quite simple method
of time integration for nonlinear dynamic analysis.
Although energy conservation is not satisfied algorithmi-
cally by this scheme, numerical experiences carried out
for the stiff pendulum example (modelled using a truss ele-
ment) displayed promising results in cases in which the
trapezoidal rule was unstable.

In this work a completely new nonlinear beam element is
introduced. The finite element model is developed in both a
classical and an energy preserving formulation. The ele-
ment is able to handle large 3D rotations and displace-
ments but small strains. The simplifications we made in
the kinematics allowed to obtain quite simple compact
expressions, very easy to adapt to the energy preserving
scheme. This simplicity of the expressions can be consid-
ered the goal of the new formulation.

Developments are carried out in the framework of an
energy preserving time integration scheme designed for
multibody systems analysis, where the beam element can
be used along with other mechanism finite elements like
rigid bodies and several joint elements. Details of this
scheme can be found in Refs. [1,2].

Examples of application for various test cases in 2D and
3D situations are presented, with comparison to results
from the literature, showing the performance of the pro-
posed new element. In particular, two examples involving
the dynamic impact of a beam are shown. These examples
are difficult to be solved with conventional time integration
schemes because of the widely excited vibration spectrum,
which includes not only axial vibration modes (as it is the
case in a truss element) but also flexural vibration modes,
superposed with the large displacements and rotations of
the beam.
Fig. 1. Description of beam kinematics.
2. Classical formulation of a nonlinear beam

2.1. Kinematics of a beam

The kinematic assumptions adopted are the following:

– the beam is initially straight,
– beam cross-sections remain plane and do not deform

during elastic deformation,
– shear deformation of the neutral axis is allowed,
– the rotational kinetic energy of cross-sections is taken

into account.

It is also assumed that the reference configuration of the
beam is chosen such that its longitudinal axis coincides
with axis x1 of the absolute frame and that its left end coin-
cides with the frame origin. Let (X0(s),RE) be the reference
configuration of the beam such that
X0ðsÞ ¼
1

L
ðXBsþ XAðL� sÞÞ s 2 ½0; L� ð1Þ

where XA, XB are the reference positions of the beam ele-
ment end nodes A and B, and RE ¼ E1 E2 E3½ � is the
rotation operator from global axes to principal axes of
the cross-section of the beam (Fig. 1).

The reference configuration of a point of relative coordi-
nates Y = (0,Y2,Y3) in local beam axes is

XðsÞ ¼ X0ðsÞ þ REY ð2Þ

where X0(s) = sE1 is the reference position of a cross-sec-
tion at distance s from the origin, s is the current parameter
along the beam neutral axis, REY is the vector describing
the material position of a point on the cross-section. The
section being undeformable, Y2 and Y3 are constants.

After elastic deformation, and according to the hypoth-
eses, the current configuration of the same point can be
described as

xðsÞ ¼ X0ðsÞ þ uðsÞ þ RðsÞREY ð3Þ

where u(s) = x0 � X0 is the displacement of the cross-sec-
tion from its reference position, being x0(s) the new abso-
lute position of the cross-section. This displacement field
of the centerline along the beam axis is interpolated linearly
as usual

uðsÞ ¼ NAðsÞuA þ NBðsÞuB ð4Þ

where NA(s), NB(s) are linear shape functions, and uA, uB

are the displacements at nodes A and B of the beam. The
displacements at the middle of the beam write

u0:5 ¼
1

2
ðuA þ uBÞ ð5Þ

The rotation R(s) in Eq. (3) describes the finite rotation
of the cross-section at point s from the reference to the
actual configuration, i.e. the current orientation of the
cross-section. Let RA and RB be the finite rotations (3 · 3
orthogonal matrices) at nodes A and B of the beam. Finite
rotations are objects that lie on a curved manifold (the so
called special orthogonal group SO3) and do not form vec-
tor space. For this reason, we are not able to interpolate
the rotations field as we did for the displacements (note
that 1

2
ðRA þ RBÞ is not orthogonal unless both rotations

have a common axis).
We will express the rotation at the mid-point of the

beam in the form
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R0:5 ¼ RAH ¼ RBHT ð6Þ
where the rotation increment H is written

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
RT

ARB

q
¼ expðe/Þ ð7Þ

Here, / is the axial vector of three rotation parameters cor-
responding to the rotation H and e/ the associated skew-
symmetric matrix, ruled by

e/ ¼ 0 �/3 /2

/3 0 �/1

�/2 /1 0

0B@
1CA ð8Þ

The deformation of the beam in material frame is com-
puted as [22]

DðsÞ ¼ RT
E RðsÞT dx

ds
� dX

ds

� �
ð9Þ

which, owing to (1)–(3), can be put in the form

DðsÞ ¼ CðsÞ þ eK ðsÞY ð10Þ
where

– C(s) is the deformation of the neutral axis

CðsÞ ¼ RT
ERðsÞT E1 þ

du

ds
ðsÞ

� �
� i1 ð11Þ

with iT
1 ¼ ð 1 0 0 Þ. The deformation at the middle of

the beam is thus interpolated in the form

C0:5 ¼ RT
ERT

0:5 E1 þ
uB � uA

L

� �
� i1 ð12Þ

– K(s) is the curvature vector of the neutral axis extracted
from the skew-symmetric matrix eK ðsÞ and has for
expression

eK ðsÞ ¼ RT
E RðsÞT dR

ds
ðsÞ

� �
RE ð13Þ

By approximating the derivative of R as the difference
between rotations at the beam nodes over the beam
length, we may write the curvature tensor at the mid-
point of the beam in the form
eK 0:5 ¼ RT
E

H �HT

L
RE ð14Þ

We remark that this form of computing the curvature is
not fully consistent with the particular character of rota-
tions. However, this expression may be acceptable when-
ever rotations at nodes A and B do not differ too much
between them.

The corresponding axial curvature vector is then
expressed

K0:5 ¼ RT
E

2vectðHÞ
L

ð15Þ

where the vector part of a matrix A is defined: [vect(A)]i =
eijkAkj/2.
2.2. Rotations and derivatives of rotations at the middle of

the beam

In order to compute the different terms of the beam for-
mulation, we will need to differentiate the expressions of
deformations (Eqs. (12) and (15)). Therefore, we will neces-
sitate derivatives of the rotation operator in terms of rota-
tion parameters at the nodes.

The middle rotation has been expressed as

R0:5 ¼ RAH ¼ RA expðe/Þ ð16Þ

The variation of rotations at the middle of the beam then
results

dR0:5 ¼ RAd eHAH þ RAHde/ ¼ R0:5dgH0:5 ð17Þ

with HA, H0.5 the axial rotation vectors corresponding to
RA, R0.5. Therefore

d eH0:5 ¼ RT
0:5RAd eHAH þ de/ ¼ de/ þHTd eHAH ð18Þ

and then, in terms of axial vectors we write

dH0:5 ¼ d/þHTdHA ð19Þ

From the definition (Eq. (7)), H2 ¼ RT
ARB, and therefore,

the variation of H may be computed giving

HdH þ dHH ¼ RT
ARBd eHB � d eHART

ARB ð20Þ

Since dH = Hd/, then

H2de/ þHde/H ¼ H2d eHB � d eHAH2 ð21Þ

and in terms of axial vectors, we write

d/þHTd/ ¼ dHB �HT2
dHA ð22Þ

Finally, the variation of / may be computed as follows:

d/ ¼ ½I þHT��1 dHB �HT2
dHA

� �
ð23Þ

where I is the identity matrix.
By replacing the latter equation into Eq. (19), we get

dH0:5 ¼ ½I þHT��1dHB � ð½I þHT��1
HT � IÞHTdHA

ð24Þ

By noting that the following identity holds for any
orthogonal matrix H:

ð½I þHT��1
HT � IÞHT ¼ ½I þHT��1 � I ð25Þ

we finally get the expression of variations of the rotational
vector at the middle of the beam

dH0:5 ¼ ½I þHT��1dHB � ð½I þHT��1 � IÞdHA ð26Þ

Note that Eqs. (23) and (26) are exact and do not make any
approximation for the evaluation of the derivatives.

Even if the beam suffers large finite rotations, we may
consider that rotations at both extreme nodes are not very
different between them (i.e. RA ’ RB). Note that the
approximation for the computation of the curvature tensor
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(Eq. (14)) is based on this fact. Then, by retaining first
order terms in the Taylor series expansion

½I þHT��1 ¼ 1

2
I þ 1

4
1þ 1

12
k/k2 þ 1

120
k/k4

�
þ 17

20160
k/k6 þ � � �

�e/ ð27Þ

we may write

dH0:5 ’
I

2
þ
e/
4

" #
dHB þ

I

2
�
e/
4

" #
dHA ð28Þ

By a similar reasoning, we get

d/ ’ I

2
þ
e/
4

" #
dHB �

I

2
� 3e/

4

" #
dHA ð29Þ
2.3. Deformations variations

In order to compute the beam internal forces, we need to
obtain the expressions of the derivatives of the axial strains
and curvatures.

The variation of the material axial deformation C0.5, Eq.
(12), is written

dC0:5 ¼ �RT
Ed eH0:5RT

0:5 E1 þ
uB � uA

L

� �
þRT

ERT
0:5

duB � duA

L

� �
ð30Þ

If we now replace the approximation obtained for the var-
iation of the rotation parameters at the middle of the beam,
Eq. (28), we get

dC0:5 ¼ gC0:5 þ i1

� �
RT

E

I

2
þ
e/
4

" #
dHB

þ gC0:5 þ i1

� �
RT

E

I

2
�
e/
4

" #
dHA þ RT

ERT duB � duA

L

� �
ð31Þ

By differentiating Eq. (15), the variation of the curva-
tures axial vector at the beam mid-point may be written
as follows:

dK0:5 ¼ RT
E

HT � trðHÞI
L

� �
d/ ¼ RT

E

L
dev½HT�d/ ð32Þ

where dev½H � ¼ H � trðHÞI . By using Taylor series devel-
opments, we may express HT and tr(H) in the form

HT ¼ I � e/ þ 1

2!
e/2 � 1

3!
e/3 þ � � �

trðHÞ ¼ 3� k/k2 þ 1

6
k/k4 þ � � �

ð33Þ

Then, after replacement into Eq. (32), and by using Eq.
(29), we get
dK0:5 ¼ �
2RT

E

L
I þ

e/
2
þ � � �

" #
d/

¼ RT
E

L
� I � e/h i

dHA þ ½I þ e/�dHB

n o
ð34Þ

From now on, we will omit the index 0.5 and notate di-
rectly C, K, . . . for quantities evaluated at the middle of
the beam.

Note that K ¼ 2RT
E/=L, and therefore

RT
E/ ¼ L

2
K ð35Þ

By replacing the latter equation into Eqs. (31) and (34), we
obtain the final expression of the variation of axial defor-
mation C and curvature K at the mid-point

dC ¼
gCþ i1

2

 !
I þ L eK

4

" #
RT

EdHB þ
gCþ i1

2

 !
I � L eK

4

" #
RT

EdHA

þRT
ERT duB � duA

L

� �
ð36Þ

dK ¼ � I

L
�
eK
2

" #
RT

EdHA þ
I

L
þ
eK
2

" #
RT

EdHB

If we now define matrix B which relates strains varia-
tions at the mid-point with variations of nodal displace-
ments and rotations

BT ¼

� RRE
L 0

� 1
2
RE I þ L

4
eKh i gCþ i1

� �
� RE

L I þ L
2
eKh i

RRE
L 0

� 1
2
RE I � L

4
eKh i
ð gCþ i1Þ RE

L I � L
2
eKh i

0BBBBBB@

1CCCCCCA
ð37Þ

we may write the deformation variations in the form

dC

dK

� �
¼ Bdq ¼ B

duA

dHA

duB

dHB

0BBB@
1CCCA ð38Þ
2.4. Discretized form of the dynamic equilibrium equations

The discretized form of the internal virtual work takes
the form

dWint ¼
Z L

0

ðNTdCþMTdKÞds ¼
Z L

0

dqTBTRds

¼ dqTF int ð39Þ
with the internal forces

F int ¼
Z L

0

BTRds ð40Þ

The virtual work of external forces may be put in a sim-
ilar discretized form

dWext ¼ dqTFext ð41Þ
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Finally, the virtual work of the inertia forces

dWiner ¼
Z L

0

l€xT
0 dx0 þ ðJ _Xþ eXJXÞTdH

� �
ds ð42Þ

is also discretized in terms of displacement parameters. We
have

dWiner ¼ dqTF iner ð43Þ
where the discretized inertia loads take the following form:

F iner ¼
Z L

0

PðsÞT
l€x0

TTðJ _Xþ eXJXÞ

� �
ds ð44Þ

in which P(s) is the matrix of shape functions

PðsÞ ¼
N 1I 0 N 2I 0

0 N 1I 0 N 2I

� �
ð45Þ

Velocities are treated as quasi-coordinates, i.e. they take
the form of linear combinations of generalized coordinate
time derivatives

v ¼ TðqÞ _q ¼
_x

X

� �
ð46Þ

T is the tangent operator, function of the adopted rotation
parameters. By adopting Euler parameters, the T operator
is defined by the following expression:

TðeÞ ¼ 2 e0I þ 1

e0

eeT � ee� �
ð47Þ

Let us now split the expression (44) of inertia forces into
relative and gyroscopic inertia forces

F iner ¼ Frel þ Fgyro ð48Þ

The relative inertia forces are those involving the second
time derivatives of the parameters and may be expressed in
terms of a mass matrix

Frel ¼M€q ð49Þ
with the expression of the tangent mass matrix

M ¼
Z L

0

PðsÞT
mI 0

0 TTJT

� �
PðsÞds ð50Þ

where J is the material expression of the inertia of the
cross-section.

The gyroscopic inertia forces collect the missing terms

Fgyro ¼
Z L

0

PðsÞT
0

TTðJ _T þ eXJTÞ _e

� �
ds ð51Þ

The last results allow us to express the dynamic equilibrium
virtual work expression in the condensed form

dqT½F int þ F iner � Fext� ¼ 0 ð52Þ
For arbitrary kinematically admissible displacement

variations, and provided that the end loads include the
reaction forces from neighbouring elements, equilibrium
of the beam element is obtained in the form

F int þ Frel þ Fgyro � Fext ¼ 0 ð53Þ
2.5. Deformation energy

The strain energy is computed by integrating the density
of strain energy along the beam length. This integral may
be approximated using one Gauss point at the middle of
the beam, giving

V ¼ 1

2

Z L

0

CðsÞ
KðsÞ

� �
� C

CðsÞ
KðsÞ

� �
ds ’ 1

2

C

K

� �
� C

C

K

� �
L

ð54Þ

where C is the matrix of elastic coefficients, which may
takes usually the form

C ¼ diag EA GA2 GA3 GJ EI2 EI3ð Þ ð55Þ

Here EA is the axial stiffness, GA2 and GA3 are the shear
bending stiffnesses along the transverse axes, GJ is the tor-
sional stiffness and EI2 and EI3 are the bending stiffnesses.

The internal forces are evaluated by differentiation of
the strain energy of the element

dV ¼
dC

dK

� �
� CL

C

K

� �
¼

duA

dHA

duB

dHB

0BBB@
1CCCA � F int ð56Þ

After replacing Eq. (38) in the latter, we get the expression
of the vector of internal forces of the beam

F int ¼ BT N

M

� �
L

¼

�RREN

� 1
2
RE I þ L

4
eKh i
ð gCþ i1ÞNL� RE I þ L

2
eKh i

M

RREN

� 1
2
RE I � L

4
eKh i
ð gCþ i1ÞNLþ RE I � L

2
eKh i

M

0BBBBB@

1CCCCCA
ð57Þ

where
N
M

� �
¼ C

C

K

� �
is the vector of internal efforts and

moments at the middle point evaluated in material axes.

After differentiating the internal forces vector, we get the
tangent stiffness S

DF int � Dq ¼ SDq ¼ BTCLB

DuA

DHA

DuB

DHB

0BBB@
1CCCAþ ðDBTDqÞ � L

N

M

� �

ð58Þ

The first term on the RHS is the so-called material tangent
matrix

Smat ¼ BTCLB ð59Þ

The second term on the RHS of Eq. (58) is the geometric
stiffness matrix, which may be written in the form
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SgeoDq ¼ DjN ;M BTL
N

M

� �� �
� Dq ð60Þ

where DjN,M{} Æ Dq denotes the Frechet derivative along
the direction Dq with N, M held constant.

The following derivatives may be verified by performing
some algebra:

DjN ;Mð�RRENÞ �Dq

¼ 1

2
RRE

eN I � L eK
4

" #
RT

EDHA �
1

2
RRE

eN I þ L eK
4

" #
RT

EDHB

ð61Þ

DjN ;M �1

2
RE I þ L

4
eK� � gCþ i1

� �
NL

� �
�Dq

¼ 1

2
RE I þ L

4
eK� � eN RT

ERTDuA

þRE I þ L
4
eK� � eN ð gCþ i1Þ I � L

4
eK� ��

�1

2
gðCþ i1Þ �N

h i
I � L

2
eK� ��

RT
E

L
4
DHA

� 1

2
RE I þ L

4
eK� � eN RT

ERTDuB

�RE I þ L
4
eK� � eN ð gCþ i1Þ I þ L

4
eK� ��

þ1

2
gðCþ i1Þ �N

h i
I þ L

2
eK� ��

RT
E

L
4
DHB ð62Þ

DjN ;M �RE I þ L
2
eK� �

M

� �
�Dq

¼ 1

2
RE
fM I � L

2
eK� �

RT
EDHAþ

1

2
RE
fM I þ L

2
eK� �

RT
EDHB

ð63Þ

Then, the geometric stiffness matrix is expressed as follows:

Sgeo ¼

SguAuA SguAHA SguAuB SguAHB

SgHAHA SgHAuB SgHAHB

SguBuB SguBHB

symm SgHBHB

0BBB@
1CCCA ð64Þ

where

SguAuA ¼ 0

SguAHA ¼
1

2
RRE

eN I � L
4
eK� �

RT
E

SguAuB ¼ 0

SguAHB ¼ �
1

2
RRE

eN I þ L
4
eK� �

RT
E

SgHAHA ¼ RE

 
I þ L

4
eK� � eN ð gCþ i1Þ I � L

4
eK� �

� 1

2

g
ðCþ i1Þ �N þ 4

L
fM" #

I � L
2
eK� �!

RT
E

L
4

SgHAuB ¼
1

2
RE I þ L

4
eK� � eN RT

ERT ¼ �ST
guAHA

SgHAHB ¼ RE

 
I þ L

4
eK� � eN gCþ i1

� �
I þ L

4
eK� �

þ 1

2

g
ðCþ i1Þ �N þ 4

L
fM" #

I þ L
2
eK� �!

RT
E

L
4

SguBuB ¼ 0

SguBHB ¼
1

2
RRE

eN I þ L
4
eK� �

RT
E ¼ �SguAHB

SgHBHB ¼ RE

 
I � L

4
eK� � eN ð gCþ i1Þ I þ L

4
eK� �

� 1

2

g
ðCþ i1Þ �N � 4

L
fM" #

I þ L
2
eK� �!

RT
E

L
4

3. Formulation of a beam with energy conservation

The energy preserving time integration scheme that
serves as framework for the development of our energy pre-
serving beam element was presented elsewhere [22,1,2]. The
scheme is based on the application of the mid-point rule to
the rate equations for the generalized coordinates q and
velocities v leading to the following relationships:

_qnþ1
2
¼ 1

h
ðqnþ1 � qnÞ; _vnþ1

2
¼ 1

h
ðvnþ1 � vnÞ ð65Þ

By making use of these equations we discretize in time the
equilibrium equation (53) in the form

F int
nþ1

2

þ Frel
nþ1

2

þ Fgyro
nþ1

2

� Fext
nþ1

2

¼ 0 ð66Þ

Next we will find the corresponding expressions for each
term of the equilibrium equation, to finally demonstrate
the energy preservation of the proposed formulation in
the absence of non-conservative external forces.
3.1. Computation of the time discrete inertia terms

The inertia terms are computed by following a corota-
tional approach, obtaining expressions for the mass matrix
and the gyroscopic and inertia forces that have a similar
pattern as that of a rigid body model (see [22,1,2]).

By adopting linear shape functions N1 and N2 in the P(s)
matrix of Eq. (45), the corresponding mid-point expres-
sions result

Mnþ1
2
¼ Tnþ1

2

Z L

0

PðsÞT
mI 0

0 J

� �
PðsÞds

¼ L
6

2mI 0 mI 0

0 4J 0 2J

mI 0 2mI 0

0 2J 0 4J

26664
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being ai
nþ1

2

and Ai
nþ1

2

the translational and rotational accel-

eration vectors of the i node at time t ¼ nþ 1
2

Fgyro
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2

¼
TT

nþ1
2

0

0 TT
nþ1

2

24 35 L
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The mid-point gyroscopic forces can also be expressed
as

Fgyro
nþ1

2

¼ 1

h
Gnþ1

2
ðqnþ1 � qnÞ ð70Þ

where the mid-point expression of the skew-symmetric ma-
trix G for the beam element writes

Gnþ1
2
¼

0 0 0 0

0 � 2L
3

g
J 2XA
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2
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2

� �� �
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0 0 0 2L
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g
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2
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� �� �

26666666664
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ð71Þ
3.2. Computation of the time discrete internal forces

The key aspect in achieving energy conservation for
the beam is the computation of internal stresses at the
mid-point in time. Indeed, when the mid-point rule is
applied for time integration the work produced by the
discrete internal forces of Eq. (52) takes the form
FT�

int
nþ1

2

ðqnþ1 � qnÞ. The vector of discrete internal forces at

tnþ1
2

is constructed in order to satisfy the following
condition:

ðqnþ1 � qnÞ
T
F�int

nþ1
2

¼Vnþ1 �Vn ð72Þ

The strain energy of the beam has the expression

V ¼ 1

2

N

M

� �
�

C

K

� �
L ð73Þ
and therefore
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Then, if we build a strain matrix Bnþ1
2

(using the discrete
directional derivative concept of Gonzalez [23,24]) such that

C

K

� �
nþ1

�
C

K

� �
n

¼ Bnþ1
2
ðqnþ1 � qnÞ ð75Þ

energy will be preserved provided internal forces at the
mid-point are computed in the averaged form

F�int
nþ1

2

¼ BT
nþ1

2

N

M

� �
nþ1

2

L ð76Þ

The expressions of the internal efforts N and moments
M evaluated at the middle point are

Nnþ1
2
¼ 1

2
ðNnþ1þNnÞ

¼CN RT
E

4L
½ðRT

Anþ1þRT
Bnþ1ÞxABnþ1þðRT

AnþRT
BnÞxABn��CN i1

ð77Þ

Mnþ1
2
¼ 1

2
ðMnþ1þMnÞ¼

CM RT
E

2L
vectðRT

Anþ1RBnþ1þRT
AnRBn�2IÞ

ð78Þ

with the corresponding variations

dNnþ1
2
¼CN RT

E
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gRT
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with

CN ¼ diag EA GA2 GA3ð Þ; CM ¼ diag GJ EI2 EI3ð Þ
ð80Þ

dMnþ1
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where

xABn ¼ ðE1Lþ uBn � uAnÞ
xABnþ1 ¼ ðE1Lþ uBnþ1 � uAnþ1Þ

ð82Þ

In order to arrive to the expression of Bnþ1
2
, we will use

the approximation R0:5 ’ RAþRB
2

in the computation of the
axial strains giving
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C0:5 ¼ RT
E

RT
A þ RT

B

2
E1 þ

uB � uA

L

� �
� i1 ð83Þ

Note that the increment in average rotations between the
initial and final time instants may be written

2DR ¼ 2ðRnþ1 � RnÞ
¼ ðRAnþ1 � RAnÞ þ ðRBnþ1 � RBnÞ
¼ RAnþ1

2
ðFA � FT

AÞ þ RBnþ1
2
ðFB � FT

BÞ

¼ RAnFADfHA þ RBnFBDfHB ð84Þ

where we use the notation

Dð�Þ ¼ ð�Þnþ1 � ð�Þn ð85Þ

to indicate the difference from quantities at time tn+1 with
respect to quantities at time tn.

Note also that the mean average rotation between the
initial and final time instants results

Rnþ1 þ Rn
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4
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Finally, using Eqs. (83)–(86), we get the identity
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where

xABnþ1
2
¼ E1Lþ uBnþ1

2
� uAnþ1

2

� �
ð88Þ

After truncation of the exponential series H ¼ expðe/Þ ¼
I þ e/ þ � � � to first order, we may approximate the skew of
/ in the form

e/ ’ ffiffiffiffiffiffiffiffiffiffiffiffi
RT

ARB

q
� I ’ 1

2
ðRT

ARB � IÞ ð89Þ

By using the latter expression into Eq. (14), we get the fol-
lowing approximation for the curvatures vector at the mid-
point of the beam which is suitable for implementation of
the energy conserving time integration algorithm

K0:5 ¼
RT

E

L
vectðRT

ARB � IÞ ð90Þ

Indeed, the time increment of the curvatures at the mid-
point of the beam may be written

Knþ1 � Kn ¼
RT

E

L
vectðRT

Anþ1RBnþ1 � RT
AnRBnÞ ð91Þ
The term between parentheses on the RHS may be trans-
formed giving
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some algebraic steps, we can verify that
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and therefore, the curvatures time increment is written
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Finally, using Eqs. (87) and (94), we get
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After replacement into Eq. (76), we obtain the expres-
sion of the averaged internal forces
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ME
nþ1

2
¼ REMnþ1

2

NE
nþ1

2
¼ RENnþ1

2

ð98Þ

We may see, by comparing with Eq. (57), the time averaged
character of the internal forces vector F�int

nþ1
2

.

The tangent stiffness matrix S* is obtained by differenti-
ation of the internal forces vector, as we did previously in
Section 2.5. It is worth noting that in this case the stiffness
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is not symmetric, which is characteristic of the energy con-
serving algorithm.

The tangent stiffness matrix has the following
expression:

S� ¼

S�11 S�12 S�13 S�14

S�21 S�22 S�23 S�24

S�31 S�32 S�33 S�34

S�41 S�42 S�43 S�44
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The corresponding terms S�ii are
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3.3. Energy preservation

To demonstrate the energy preservation of the formula-
tion, we have to prove the nullity of the virtual work of
inertia and internal discrete forces of the beam when there
are no external forces acting on the system. In order to do
that, we pre-multiply the discrete expressions of F�int

nþ1
2

and
F iner

nþ1
2

by the displacements jump Dq

DWint þ DWiner ¼ DqTF�int
nþ1

2

þ DqTF iner
nþ1

2

¼ 0 ð100Þ

where the internal forces at the mid-point F�int
nþ1

2

were com-

puted in the averaged form of Eq. (76) and verify

Vnþ1 �Vn ¼ DqTF�int
nþ1

2

ð101Þ

It only remains to verify that the work done by the iner-
tial forces over a time step is the jump of kinetic energy. In
order to do that we pre-multiply first the expression (68) by
DqT, obtaining
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Fig. 2. Right-angle cantilever beam subject to out-of-plane loading.
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Fig. 3. Right-angle cantilever beam subject to out-of-plane loading: out-
of-plane displacements of the tip for both models of 10 and 20 elements.
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After some algebra we obtain that
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the kinetic energy expression for the beam element.
For the gyroscopic forces we have that

DqTFgyro
nþ1

2

¼ DqTGnþ1
2
_qnþ1

2
¼ 0 ð106Þ

that become perfectly null due to the skew-symmetry of the
matrix Gnþ1

2
(Eq. (71)).

4. Results and discussion

In this section we present several numerical simulations
to show the behaviour of the new beam formulation.

The two first examples are intended to compare the per-
formance of the element with results from the literature,
verifying the exact conservation of the total energy of the
system and the convergence rate of the algorithm.

The third and fourth examples are test cases of particu-
lar interest, since they involve solving the impact of beams
with a rigid wall. These test cases, with a wide frequency
spectrum excited both in axial and flexural deformation,
could not be solved using conventional formulations based
on the HHT time integration scheme [6,25].

4.1. Right-angle cantilever beam subject to out-of-plane

loading

This test has been proposed in Ref. [26] where the
authors use quadratic beam elements. Refs. [27,28] also
took this example to compare their results. An L shape
cantilever beam is set into motion by applying an out-of-
plane concentrated load at its elbow as is depicted in
Fig. 2. The applied force is linearly increasing on
0 6 t 6 1 to reach the maximum value of 50 and then is
decreasing on 1 6 t 6 2 to reach the 0 value. In the remain-
ing time until t = 30 the cantilever is undergoing free vibra-
tions of finite amplitude with combined bending and
torsion. Each leg of the L has a length of 10. Beam prop-
erties are EA = 1 · 106, EI = GJ = 1 · 103, Aq = 1 and
Jq = diag(20,10,10). The computations are carried out
for a constant time step of h = 0.125, with finite element
models using 10 and 20 elements. The computed response
for out-of-plane displacements of the tip and the elbow
are plotted in Figs. 3 and 4, respectively. Note that the
beam is really subjected to very large displacements and
rotations in 3D, being the amplitude of the vibration of
the same order of the magnitude as the structure dimen-
sions. We found a good agreement between our simula-
tions and those of the literature [27,28,26]. A convergence
study of displacements is depicted in Fig. 5, where curves
A and B provide the convergence rate for the beam formu-
lation presented here, using the energy preserving scheme
and the HHT scheme respectively. The curve C is obtained
by using the beam model documented in Refs. [28,22].
Finally, Fig. 6 shows that total energy is perfectly con-
served as it was expected.

4.2. Force driven flexible beam in a helicoidal motion

This example was presented by Ibrahimbegovic and Al
Mikdad in Ref. [27] and deals with the helicoidal motion
of a flexible straight beam initially placed in the horizontal
plane (Fig. 7). One end of the beam is constrained to slide
along the vertical axis and is subjected to a constant force
F = 4 and a torque M = 80 applied both simultaneously
during 0 6 t 6 2.5. Computations are performed with the
time step h = 0.01 for a finite element model that consists
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of 10 beam elements. Beam properties are EA = 1 · 104,
EI = GJ = 1 · 103, Aq = 1 and Jq = diag(20,10,10).

The dynamic responses for displacement components of
the free end are plotted in Figs. 8–10. Fig. 11 plots the total
energy of the system. The results match with those of [27].

4.3. Two impact problems

The examples introduced in this section were chosen in
order to emphasize the performance of the new beam for-
mulation, by solving two problems that could not be solved
with another more complex beam formulation that
employed the HHT integration scheme [6,25].
4.3.1. Contact model

The point contact condition between two bodies can be
expressed as an inequality q P 0. If the bodies are assumed
to be deformable under hypothesis of small deformations,
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Fig. 10. Force driven flexible beam in a helicoidal motion: Z-displacement
of the free end.

Y
di

sp
la

ce
m

en
t o

ft
he

fr
ee

en
d

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50
Time [s]

Force driven beam in helicoidal motion

Fig. 9. Force driven flexible beam in a helicoidal motion: Y-displacement
of the free end.
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Fig. 12. (a) Non-inter-penetration case: a = 0 and q > 0 and (b) inter-
penetration case: q = �a.

Fig. 13. Elastic potential: piecewise linear contact force.
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a new variable a can be introduced at the contact point,
defined as the approach (Fig. 12). When inter-penetration
occurs we have a > 0 and q < 0. Without inter-penetration
we have that a = 0 and q > 0. By combining both situations
we arrive to the contact condition q + a P 0, which implies
q = �a for the case of inter-penetration (for further details
see [29,30]). A suitable phenomenological model for the
contact forces expressed as a function of the approach
between the contact bodies must be introduced, where
the magnitude of a will depend on the chosen potential
contact model. In this work we will adopt an elastic poten-
tial by using a piecewise linear contact force like that plot-
ted in Fig. 13, where the contact stiffness ks is displayed.

By using again the discrete directional derivative concept
[23,24], the expression of the elastic forces for the energy
preserving integration scheme must satisfy the condition
established by Eq. (72)

ðqnþ1 � qnÞ
oV
oq

�
nþ1

2

¼ V nþ1 � V n ð107Þ
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Fig. 15. Impact of a flexible physical pendulum on a rigid stop: x- and
y-displacements for the flexible model of impact with ks = 1 · 108 N/m.
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where the potential V(q) has for expression

V ¼
Z q

q0

f ðqÞdqþ V 0 ð108Þ

hence the elastic force expression for the energy preserving
scheme writes

oV
oq

�
nþ1

2

¼ 1

qnþ1 � qn

Z qnþ1

q0

f ðqÞdq�
Z qn

q0

f ðqÞdq

¼ 1

qnþ1 � qn

Z qnþ1

qn

f ðqÞdq ð109Þ

By computing the derivative of this expression with
respect of qnþ1

2
, we obtain the stiffness contribution as

K ¼ 2

ðqnþ1 � qnÞ
2

f ðqnþ1Þðqnþ1 � qnÞ �
Z qnþ1

qn

f ðqÞdq

¼ 2
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4.3.2. Impact of a physical pendulum on a rigid stop

This example deals with the impact of a physical pendu-
lum on a rigid stop. The pendulum is 1 m long and is sub-
jected to the action of the gravitational field. The beam
properties are: cross-section area A = 0.0005 m2, section
inertias Ix = 2 · 10�7 m4 and Iy = Iz = 1 · 10�7 m4, elastic
modulus E = 2.1 · 1011 N/m2, mass density q = 7800 kg/
m3 and Poisson modulus m = 0.3. The pendulum was mod-
elled using 10 beam elements. Fig. 14 shows an schematic
draw of the model. The initial condition is depicted in
the figure, i.e. the pendulum is dropped from its horizontal
position with zero initial velocity.

Several tests were performed for different time step sizes
and for different values of the contact stiffness ks. Figs. 15–
Fig. 14. Impact of a flexible physical pendulum on a rigid stop.
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Fig. 16. Impact of a flexible physical pendulum on a rigid stop: energy
preserving for the flexible impact model with ks = 1 · 108 N/m.
18 show the time responses of x and y displacements of the
tip of the beam and energies for a contact value of
ks = 1 · 108 N/m (the highest value of contact stiffness used
in all tests) while Figs. 19–22 are the plots for
ks = 1 · 105 N/m (the lowest contact value).

Very rapid vibration oscillations are excited in the beam
after the first impact, specially for higher values of the con-
tact coefficient ks, as it can be seen in Figs. 17 and 18. For
this reason, the tip of the beam is rapidly oscillating at the
time of approaching the stop at second impact, and the
computation of motion after impact may present very dif-
ferent responses.

Fig. 23 shows the convergence study for different values
of the coefficient ks. The error is measured as
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Fig. 17. Impact of a flexible physical pendulum on a rigid stop: kinetic
energy for the flexible impact model, with ks = 1 · 108 N/m.
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Fig. 18. Impact of a flexible physical pendulum on a rigid stop:
deformation energy for the flexible impact model, with ks = 1 · 108 N/m.
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Fig. 19. Impact of a flexible physical pendulum on a rigid stop: x- and
y-tip displacements for the flexible impact model with ks = 1 · 105 N/m.
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Fig. 20. Impact of a flexible physical pendulum on a rigid stop: energy
preserving for the flexible impact model with ks = 1 · 105 N/m.
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� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXt¼tf

t¼ti

½u1ðtÞ � u2ðtÞ�2
vuut ð111Þ

considering u1 as the exact solution, computed with the
smallest time step size used in computations. The sample
times are chosen at 1.00 s, 1.01 s, 1.02 s, 1.03 s, 1.04 s and
1.05 s. It can be seen that for decreasing ks, the accuracy
grows. The integration scheme verifies first order accuracy,
although it is usually second order accurate for 2D stan-
dard problems. This loss of accuracy is caused by the dis-
continuities introduced by the impact problem.
4.3.3. Oblique impact of an elastic bar against a rigid wall

This example is a modification of that presented in Ref.
[31], adding complexity to the model. In that case the flex-
ible bar was modelled using truss-type elements instead of
the beam elements of our model, which is then able to
account for flexural behaviour.

Fig. 24 sketches the problem. An elastic bar impacts
against a vertical rigid wall with an angle of incidence h
and always moves in an horizontal line. The initial config-
uration is defined by h = 35.2� and v0 = 2 m/s. The bar is
1 m long, with a mass m = 20 kg and is made of a material
with a Young modulus of 1 · 109 N/m2, Poisson ratio 0.3
and mass density q = 7850 kg/m3. The total time integra-
tion is 4 s and the contact stiffness is ks = 1 · 107 N/m.
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Fig. 21. Impact of a flexible physical pendulum on a rigid stop: kinetic
energy for the flexible impact model, with ks = 1 · 105 N/m.
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Fig. 22. Impact of a flexible physical pendulum on a rigid stop:
deformation energy for the flexible impact model, with ks = 1 · 105 N/m.
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convergence study for different values of ks.
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Fig. 24. Flexible beam against rigid wall.
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The finite elements model consists of 20 beam elements and
the time step size adopted is Dt = 1 · 10�4 s.

Fig. 25 shows the x-coordinate time evolution of the two
edges of the bar. It can be clearly seen the first impact, the
subsequent rotation of the bar, the second impact and then
the bar bouncing away. Energies are plotted in Fig. 26,
where it can be observed that the total energy is exactly
conserved.

We remark that our results can be compared with those
presented by Garcı́a Orden and Goicolea [31]. However, we
should take into account that in their model they only con-
sidered axial deformation effects. Owing to this fact, the
responses of the kinetic and deformation energies com-
puted with our beam model differ from theirs.
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5. Conclusions

A large rotations nonlinear beam finite element model
was developed, in both a classical formulation and an
energy conserving formulation. The element makes several
simplifications that lead to compact expressions and is sim-
ple to be adapted to the energy conserving algorithm.

Full analytical expressions of the internal forces, inertia
forces, stiffness and mass matrices are given in the text,
allowing the reader to easily implement the element. The
intermittent contact problem was also introduced, by using
a simple model that relates contact forces with the inter-
penetration between bodies.

Examples of application to different test cases in 2D and
3D situations have been presented, with comparison of
results with those of the literature. The numerical results
show the element is able to handle large displacements
and rotations under hypothesis of small strains, with an
excellent agreement between the obtained results and those
found in literature. The formulation presented in this work
leads to the same convergence rates as reported in bibliog-
raphy for 3D examples of beams formulated using differ-
ent time integration schemes with energy preservation
[18,13,28,22].
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