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Abstract In this Comment we argue that the so-called He-Laplace variational

iteration method merely yields the Taylor series of the solution to a partial dif-

ferential equation. The straightforward application of the textbook power series

method is far simpler and more efficient because it gives us closed-form analytic

recurrence relations for the expansion coefficients. We also argue that the time se-

ries of the solution is unsuitable for the analysis of nonlinear problems in chemical

kinetics and population dynamics which require expressions valid for sufficiently

large time. Besides, Nadeem and He [J. Math. Chem. (2021) 59:1234-1245] applied

the approach to some tailor-made toy problems with known exact solutions that

do not appear to exhibit any physical application whatsoever.

In a recent paper published in this journal Nadeem and He [1] (NH from now

on) proposed an alternative approach for the study of some partial differential

equations of supposed interest in chemical kinetics and population dynamics. The

so-called He-Laplace variational iteration method couples the variational itera-

tion method with the Laplace transform. By means of the homotopy perturbation

method they obtained results with the aid of the so-called He’s polynomials. NH

showed results for some chosen Fisher-type equations. The purpose of this Com-

ment is the analysis of the results just mentioned.
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As a first example NH chose

∂ω

∂t
=

∂2ω

∂x2
+ ω(1− ω), ω(x, 0) = µ. (1)

Since the initial condition is independent of x we try ω(x, t) = ω(t) and the problem

reduces to a textbook differential equation

∂ω

∂t
= ω(1− ω), ω(0) = µ. (2)

Any student in a first course on Calculus will surely be able to obtain the exact

result to this extremely simple differential equation

ω =
µet

1 + µ(et − 1)
. (3)

Obviously, this problem is of no physical or chemical interest whatsoever and there

is no need of an approximate method because its exact solution is already known.

However, NH applied the remarkable He-Laplace method and merely obtained the

Taylor series of ω(t) about t = 0. NH appeared to be aware of this fact but they

never took advantage of it. Instead of resorting to the elaborate homotopy per-

turbation method and the celebrated He’s polynomials, in what follows we simply

apply the straightforward power-series method and look for a solution of the form

ω(x, t) =

∞∑
j=0

ωj(x)t
j . (4)

If we insert this expansion into the differential equation (1) we easily obtain a

recurrence relation for the coefficients ωj :

ωn+1 =
1

n+ 1

∂2ωn

∂x2
+ ωn −

n∑
j=0

ωjωn−j

 , n = 0, 1, . . . , ω0 = µ. (5)

This simple recurrence relation, which can be easily programmed in any computer

algebra software, yields all the coefficients of the Taylor series (4) for the exact

solution (3). By means of the remarkable He-Laplace method NH obtained the

first terms up to order O
(
t4
)
. There is no doubt that the straightforward textbook

Taylor-series approach is by far simpler and more efficient.

In order to illustrate the application of equation (5) to a somewhat more real-

istic toy model, in what follows we assume that ω(x, 0) = f(x) is a differentiable
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function. One can easily verify that the first terms are

ω0(x) = f(x), ω1(x) = f ′′(x)− f(x)2 + f(x),

ω2(x) =
1

2

{
f iv(x) + 2f ′′(x) [1− 2f(x)]− 2f ′(x)2 ,

+f(x)
[
2f(x)2 − 3f(x) + 1

]}
. (6)

There is no point in a large-order calculation because it is not clear if the model

exhibits any physical application and because the expansions of the form (4) are

utterly useless.

We want to stress the following fact: by means of the remarkable He-Laplace

method NH simply obtained the Taylor series about t = 0 of an extremely simple

toy problem with no physical interest whatsoever. Besides, this Taylor series is

commonly useless in the case of chemical kinetics and population dynamics where

one requires the solution for large values of t. For example, the radius of conver-

gence of the Taylor series for the solution (3) of equation (2) is |tc|, tc = ln
(

µ−1
µ

)
.

Note that if µ ≫ 1 then tc = −1/µ− 1/(2µ2) + . . . and the series is valid only for

t < |tc| ≈ 1/µ ≪ 1.

Before proceeding with the next example let us first address the somewhat

trivial problem of expanding ωα, α real, in t-power series

ωα =

∞∑
j=0

ωα,jt
j . (7)

The coefficients ωα,j can be easily expressed in terms of the coefficients ωj by

means of the following expression

ωα,n+1 =
1

(n+ 1)ω0

α n∑
j=0

(n+ 1)ωj+1ωα,n−j −
n−1∑
j=0

(j + 1)ωα,j+1ωn−j

 ,

n = 0, 1, . . . , ωα,0 = ωα
0 . (8)

Note that this strategy is far more efficient than the celebrated He’s polynomial

formula [1]

The second example is

∂ω

∂t
=

∂2ω

∂x2
+ ω(1− ω6), ω(x, 0) =

(
1 + e3x/2

)−1/3

. (9)



4 Francisco M. Fernández

In this case the recurrence relation for the coefficients of the Taylor series (4) is

given by

ωn+1 =
1

n+ 1

(
∂2ωn

∂x2
+ ωn − ω7,n

)
, n = 0, 1, . . . , ω0 =

(
1 + e3x/2

)−1/3

, (10)

where ω7,n can be calculated by equation (8). This recurrence relation yields all

the results produced by the remarkable He-Laplace method in a much simpler and

straightforward way. By simple comparison we realize that the NH’s term for p1

is wrong (in fact it corresponds to their example 3).

As in the previous example, the only outcome of the application of the re-

markable He-Laplace method are the first few coefficients of the Taylor series

about t = 0 for an exactly-solvable toy model with no physical utility (at least,

the authors did not mention any). As said above, this series is completely useless

for most physical purposes that commonly require large values of t. In order to

illustrate this fact we consider the exact solution to the differential equation (9)

ω(x, t) =
{
1

2
tanh

(
−3

4

[
x− 5

2
t
])

+
1

2

}1/3

, (11)

that we will compare with the Taylor-series expansion of fifth order. Figure 1

shows that there is a discrepancy between exact and approximate results when

t = 1. We have chosen the value of t slightly larger than the values considered

by NH (0 ≤ t ≤ 0.5) but not too large. The reader may easily verify that for

t = 2 the time series yields utterly ridiculous results. NH chose a range of values

of t that does reveal the discrepancy and, consequently, their approach appears

to be sound. It is not difficult to explain the numerical results shown in Figure 1.

In this case the time series converges for t < |tc(x)| = (2/5)
√

x2 + 4π2/9 which

clearly reveals the failure of the approach in the neighbourhood of x = 0 because

|tc(x)| ≥ |tc(1)| = 4π/15 < 1.

The third example is

∂ω

∂t
=

∂2ω

∂x2
+ ω(1− ω)(ω − a), ω(x, 0) =

(
1 + e−x/

√
2
)−1

, (12)

and the recurrence relation for the coefficients of the Taylor series is

ωn+1 =
1

n+ 1

∂2ωn

∂x2
− aωn + (a+ 1)

n∑
j=0

ωjωn−j −
n∑

j=0

ωn−j

j∑
k=0

ωkωj−k

 ,

n = 0, 1, . . . , ω0 = ω(x, 0). (13)
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Fig. 1 Exact solution ω(x, 1) to the differential equation (9) (continuous line) and fifth-order

expansion (dashed line)

From this recurrence relation we can obtain as many coefficients as desired because,

as explained above, one can easily write a program for that purpose. We again

stress the fact that this exactly-solvable toy problem does not appear to exhibit

any physical utility and that the expansion of ω(x, t) about t = 0 is unsuitable for

the description of the dynamical problem at large t.

Summarizing: by means of the remarkable He-Laplace variational iteration

method NH were only able to obtain the Taylor series of ω(x, t) about t = 0. We

have shown that the straightforward power-series method is simpler and consider-

ably more efficient because it enables us to derive closed-form recurrence relations

for the systematic calculation of the coefficients. The celebrated He’s polynomials [1]

do not appear to be suitable for obtaining such compact expressions. However, it

is most important to note that any expansion of the form (4), disregarding the way

we derive it, is unsuitable for most applications to chemical kinetics and population

dynamics where it is relevant to know what happens at long times.
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