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We show that the meaning of the eigenvalues of a radial equation derived from a power-

series method was misunderstood. The roots stemming from the truncation of the power
series through a three-term recurrence relation are not the energies of the quantum-

mechanical model under study but isolated particular eigenvalues of different models.
The supposed dependence of the intensity of the magnetic field on the quantum numbers

is just an artifact of the truncation method.
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In a recent paper, Ahmed1 studied the relativistic quantum dynamics of a spin-0

scalar particle that interacts with a scalar potential in the presence of a uniform

magnetic field and a quantum flux in the background of the Kaluza–Klein theory.

He solved the Klein–Gordon equation and analyzed the relativistic analogue of the

Aharonov–Bohm effect for bound states. He showed that the energy levels depend

on the global parameters characterizing the spacetime, scalar potential and the

magnetic field which break their degeneracy. Ahmed considered four cases where

the relevant dynamical equations are separable in cylindrical coordinates. In order

to solve the resulting radial equation, Ahmed resorted to the Frobenius power-

series method and obtained exact analytical expressions for the eigenvalues for

some restricted values of the model parameters. This restriction comes from the

truncation of the power series so that the radial part of the eigenfunction reduces

to a polynomial times and exponential factor. In this way, Ahmed predicted a

dependence of the intensity of the magnetic field on the quantum numbers. The
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purpose of this Comment is the analysis of the effect of the truncation of the power

series on the physical conclusions derived by the author.

In what follows, we briefly discuss the examples studied by Ahmed. In the first

one (Case A), he derived the eigenvalue equation[
d2

dρ2
+ 1

ρ
d
dρ + ζ − j2

ρ2
− ρ2 − η

ρ
− θρ

]
ψ(ρ),

ζ =
λ

Ω
, η =

a√
Ω
, θ =

b

Ω3/2
,

λ = E2 − k2 − q2 −m2 − 2ηcηL − 2mω
l − qΦ

2π

α
,

Ω =
√
m2ω2 + η2

L, j =

√√√√(l − qΦ
2π

)2

α2
+ η2

L, ω =
qB0

2m
,

a = 2mηc, b = 2mηL,

(1)

where m is the mass of the particle, E is the energy, B0 is the intensity of the

magnetic field, Φ is the Aharonov–Bohm flux, α is a wedge parameter, ηc and ηL
are the parameters in the Cornell-type potential S(r) = ηc/r+ηLr, l = 0±1,±2 the

rotational quantum number and q and k constants introduced during the separation

of variables.

Ahmed solved the eigenvalue equation (1) by means of a suitable ansatz and

a power-series method that leads to a three-term recurrence relation for the co-

efficients. We will analyze this approach later on but for the time being we just

outline his results and conclusions. From a truncation condition based on two equa-

tions, Ahmed derived an analytical expression for the energies that he denoted En,l,

where n appears to be a radial quantum number (which it is not as shown below).

In particular, for n = 1, Ahmed obtained E1,l and called it the ground-state en-

ergy. However, the ground-state energy is supposed to be the lowest eigenvalue and

should not depend on any quantum number (unless there is degeneracy which is

not the case here). In addition to it, the polynomial solution for n = 1 appears

only for some particular values Ω1,l that are roots of a cubic equation. The author

states that “The magnetic field B1,l
0 is so adjusted that Eq. (22) can be satisfied

and we have simplified by labeling as . . .” and shows expressions for ω1,l and B1,l
0 .

Unfortunately, Ahmed did not indulge in the analysis of the physical meaning of

these particular values of B1,l
0 . In the conclusions he only stated that “We have ob-

served a quantum effect due to the dependence of the magnetic field on the quantum

numbers of the system which we determined by a relation for the different radial

modes n = 1, 2, . . .” It is clear that E1,l and E1,l′ , l 6= l′, are eigenvalues of two

different models with potential parameters determined by Ω1,l and Ω1,l′ . With the
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same reasoning, we conclude that the eigenvalues En,l do not provide the spectrum

of a given quantum-mechanical model but are eigenvalues of different problems.

A simple analysis of Eq. (1) reveals that the behavior of ψ(ρ) at origin and

infinity is determined by the terms j2/ρ2 and ρ2, respectively. Therefore, Eq. (1)

exhibits bound states (square-integrable solutions ψ(ρ)) for all real values of η and

θ and, consequently, for all positive values of Ω. This fact makes the existence

of particular values of Ω and B0 most intriguing. The only possible explanation

is that Ahmed argued that the factor H(ρ) in the ansatz for ψ(ρ), “is the Heun

polynomials” because it is a solution to a biconfluent Heun’s equation. However,

the simple analysis just carried above shows that the polynomial solutions are

merely some particular square-integrable solutions that appear for particular values

of the model parameters. Do they have any physical meaning or are they just a

mathematical curiosity? We will try to answer this question later on.

Ahmed derived the equations for Case B in detail; however, as far as we un-

derstand Case B is merely Case A with ηL = 0. For this reason, we do not deem

it necessary to abound in details and simply discuss the author’s results and con-

clusions. The author repeated the whole calculation procedure unnecessarily and

derived an analytical expression for the energies En,l. In particular, for n = 1, he

obtained E1,l for some particular values of ω1,l or B1,l
0 . In this case, the author

states that “Equation (37) corresponds to the allowed values of the energy level

for the radial mode n = 1 of the system in the context of Kaluza–Klein theory.”

If this sentence suggests that there are no other eigenvalues beyond those given by

the truncation condition, then it is wrong as argued above and as shown later on

in this Comment.

The author also went through a detailed calculation for Case C, which is, in our

opinion, unnecessary because it is a particular case of Case A with ηc = 0. Therefore,

we will not outline all the equations and simply comment on Ahmed’s results and

conclusions. As before, he derived an analytical expression for the energies En,l and,

in particular, for E1,l that is valid for particular values of the model parameters

Ω1,l, ω1,l and B1,l
0 . In this case, he states that “Equation (57) corresponds to the

allowed values of relativistic energy level for the radial mode n = 1 of the system

subject to linear confining potential in the background of Kaluza–Klein theory.”

However, as argued above, such particular values of the field intensity do not make

sense.

As a special case of Case C, Ahmed considered the limit of vanishing magnetic

field B0 → 0 and went through the calculation procedure once more (unnecessarily

in our opinion). In this case, he obtained En,l and, in particular, E1,l for particular

values of ηL.

In order to analyze Ahmed’s results and conclusions with more detail and some-

what more rigorously, we consider the general eigenvalue equation[
1

ρ

d

dρ
ρ
d

dρ
− γ2

ρ2
− a

ρ
− bρ− ρ2 +W

]
R(ρ) = 0 (2)
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and only assume that γ, a and b are arbitrary real parameters. We are interested

in those solutions R(ρ) that are square integrable:∫ ∞
0

|R(ρ)|2ρ dρ <∞, (3)

which only take place for particular values of W = Wν,|γ|(a, b), ν = 0, 1, . . . . It

is convenient, for present purposes, to label the eigenvalues with the value of |γ|
instead of the actual quantum number l on which γ may depend. Since the be-

havior of R(ρ) at origin and at infinity is determined by the terms γ2ρ−2 and ρ2,

respectively, it is clear that there are square-integrable solutions for all real values

of a and b. More precisely, the eigenvalues Wν,|γ|(a, b) are continuous functions of

a and b that satisfy the Hellmann–Feynman theorem2,3

∂W

∂a
=

〈
1

ρ

〉
> 0,

∂W

∂b
= 〈ρ〉 > 0. (4)

In order to obtain exact solutions to Eq. (2), we apply the Frobenius method

by means of the ansatz

R(ρ) = ρs exp

(
− b

2
ρ− ρ2

2

)
P (ρ), P (ρ) =

∞∑
j=0

cjρ
j , s = |γ|. (5)

The expansion coefficients cj satisfy the three-term recurrence relation

cj+2 = Aj(a, b)cj+1 +Bj(W, b)cj , j = −1, 0, 1, 2, . . . , c−1 = 0, c0 = 1,

Aj(a, b) =
2a+ b(2j + 2s+ 3)

2(j + 2)[j + 2(s+ 1)]
, Bj(W, b) =

4(2j + 2s−W + 2)− b2

4(j + 2)[j + 2(s+ 1)]
.

(6)

If the truncation condition cn+1 = cn+2 = 0, cn 6= 0, n = 0, 1, . . . , has physically

acceptable solutions for a, b and W then we obtain exact eigenfunctions because

cj = 0 for all j > n. This truncation condition is equivalent to Bn = 0, cn+1 = 0 or

W (n)
s = 2(n+ s+ 1)− b2

4
, cn+1(a, b) = 0, (7)

where the second equation determines a relationship between the parameters a and

b. On setting W = W
(n)
s the coefficient Bj takes a simpler form

Bj(W
(n)
s , b) =

2(j − n)

(j + 2)[j + 2(s+ 1)]
. (8)

It is clear that the truncation condition (7) cannot provide all the bound-state

solutions to the eigenvalue equation (2) because it forces a relationship between

the model parameters a and b. As stated above, there are bound states for all

−∞ < a, b < ∞ and those coming from the truncation condition are valid in a

considerably more restricted domain of these model parameters. More precisely,

there are bound states in the whole a − b plane and polynomial solutions only for
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some curves cn+1(a, b) = 0 in this plane. For this reason, this kind of models is

commonly called quasi-exactly solvable or conditionally solvable (see Refs. 4 and 5

and references therein).

Since Bj(W
(n)
s , b) is independent of a and b and Aj(−a,−b) = −A(a, b) we con-

clude that cj(−a,−b) = (−1)jcj(a, b). The coefficient cj(a, b) is a polynomial func-

tion of order j in each of the variables a and b; therefore, the condition cn+1(a, b) = 0

has solutions of the form a
(n,i)
s (b) or b

(n,i)
s (a), i = 1, 2, . . . , n+1, and it can be proved

that all the roots are real.6,7 The exact solutions to the radial eigenvalue equation

(2), given by the truncation method, are of the form

R(n,i)
s (ρ) = ρs exp

(
− b

2
ρ− ρ2

2

)
P (n,i)(ρ), P (n,i)(ρ) =

n∑
j=0

c
(n,i)
j,s ρj . (9)

These solutions already satisfy Eqs. (2) and (3) but, as stated above, they are not

the only allowed solutions to the radial eigenvalue equation.

For a given value of b all the roots W
(n,i)
s = W

(n)
s = 2(n + s + 1) − b2

4 , i =

1, 2, . . . , n + 1, have the same value; on the other hand, for a given value of a the

roots W
(n,i)
s , i = 1, 2, . . . , n + 1, are points on the inverted parabola W

(n,i)
s =

2(n+ s+ 1)− [b(n,i)
s ]2

4 .

As an illustrative example, we choose b = 0 that is equivalent to Ahmed’s

Case B. In this case, we have W
(n)
s = 2(n + s + 1) and arrange the roots so

that a
(n,i)
s > a

(n,i+1)
s , i = 1, 2, . . . , n. Since cj(−a) = (−1)jcj(a) then the roots

of cn+1 = 0 satisfy a
(n,i)
s = −a(n,n+2−i)

s , i = 1, 2, . . . , n+1
2 for n odd and a

(n,i)
s =

−a(n,n+2−i)
s , i = 1, 2, . . . , n2 , a

(n,j)
s = 0, j = n

2 + 1, for n even. In other words, the

roots a
(n,i)
s are symmetrically distributed with respect to the W -axis in the a−W

plane. Ahmed failed to realize the existence of such a multiplicity of roots, a fact

of fundamental importance as discussed in what follows.

It follows from the Hellmann–Feynman theorem (4) and the chosen arrange-

ment of roots that (a
(n,i)
s ,W

(n)
s ) is a point on the curve Wi−1,s(a) = Wi−1,s(a, 0).

In order to verify this fact, we need the actual eigenvalues Wν,s that should be

obtained by means of a suitable approximate method because the eigenvalue equa-

tion (2) is not exactly solvable.4,5,7 Here, we resort to the well-known Rayleigh-Ritz

variational method that is known to yield upper bounds to all the eigenvalues8,9

and, for simplicity, choose the non-orthogonal basis set of Gaussian functions{
ϕj,s(ρ) = ρs+j exp

(
−ρ

2

2

)
, j = 0, 1, . . .

}
. It is worth noticing that the chosen ba-

sis set takes into account the correct behavior of the bound states at origin and

infinity. Besides, it is complete because the eigenfunctions of the dimensionless

two-dimensional harmonic oscillator with potential V (ρ) = γ2

ρ2 + ρ2 are linear com-

binations of these Gaussian functions. Figure 1 shows the first eigenvalues Wν,0(a)

calculated in this way (blue, continuous lines) and the roots W
(n)
0 given by the trun-

cation condition (red points). There is no doubt that the former connects the latter

exactly as stated above. This figure makes it clear that the roots W
(n)
s given by the

truncation condition are, by themselves, meaningless if one does not arrange and
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Fig. 1. (Color online) Eigenvalues W
(n)
0 (b = 0) from the truncation condition (red points) and

Wν,0(a) (blue, continuous lines) obtained by means of the variational method.

connect them properly. Figure 1 also shows an horizontal line at W = W
(10)
0 (red,

dashed) that connects all the roots a
(10,i)
0 , i = 1, 2, . . . , 11. It should be clear, from

the discussion above, that the exact eigenvalue W
(n)
s is shared by n + 1 different

quantum-mechanical problems given by model parameters a
(n,i)
s , i = 1, 2, . . . , n+1.

This fact is also revealed, from a different angle, by the application of supersym-

metric quantum mechanics4 and other suitable algebraic approaches.5

From the results above, we draw the following conclusions (for simplicity we

restrict ourselves to the case b = 0): first, the actual eigenvalues of the radial

equation (2), Wν,s(a), ν = 0, 1, . . ., are continuous functions of −∞ < a <∞. They

are associated to square-integrable functions Rν,s(ρ). Clearly, there are no allowed

values of a. Second, the truncation of the Frobenius expansion for R(ρ) leads to

polynomial solutions R
(n,i)
s (ρ) that occur for some values of W

(n)
s , n = 1, 2, . . .

and a
(n,i)
s , i = 1, 2, . . . , n + 1. The integer n is not a quantum number but merely

an artifact of the arbitrary truncation condition cn 6= 0, cn+1 = cn+2 = 0. Note

that from this truncation procedure stems another relevant integer, i, that Ahmed

overlooked completely. The roots W
(n)
s and W

(n′)
s are not part of the spectrum

of a given quantum-mechanical model but solutions to different problems with

parameters a
(n,i)
s , i = 1, 2, . . . , n+ 1 and a

(n′,i′)
s , i′ = 1, 2, . . . , n′ + 1. Neither W

(n)
s

nor a
(n,i)
s have any physical meaning. From a mathematical point of view, they are

particular values of the eigenvalue and model parameter, respectively, for which the

eigenvalue equation admits polynomial solutions. They are useless artifacts of the

truncation method unless one is able to organize and connect them properly as we

have done in Fig. 1. Third, the allowed values of B0 and ηL conjectured by Ahmed

have no physical meaning because the radial eigenvalue equation exhibits square-

integrable solutions for any pair of values of such model parameters. The allowed

values of the energy are determined by the requirement of square-integrability and

not for the desire that the radial part of the wavefunction exhibits a polynomial

factor.
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Ahmed, based on his work on several earlier papers, applied the same approach

basically to the same equation and drew similar conclusions. For this reason, it

is worth revealing the origin of the misunderstanding. Several years ago, Verçin10

derived a radial eigenvalue equation similar to (2) with b = 0, applied the power-

series method and argued that there are bound states if and only if the series

terminates. He concluded that there are bound states only for certain discrete values

of the magnetic-field intensity. Later, Myrheim et al.11 analyzed Verçin’s results

more rigorously finding that there are square-integrable solutions for all values of the

magnetic field. Therefore, the existence of allowed cyclotron frequencies or allowed

magnetic field intensities was proved to be an artifact of the truncation method.

Unfortunately, Myrheim et al.11 did not stress this point with sufficient clarity and

left room for one of the greatest misunderstandings in the field of mathematical

physics. It is worth mentioning that Fig. 2 in their paper shows that the energy is

a continuous function of the Coulomb coupling, somewhat similar to what we do

in present Fig. 1. Furtado et al.12 managed to derive the same radial eigenvalue

equation for another problem. Although they were aware of the results derived

by both Verçin10 and Myrheim et al.,11 they surprisingly overlooked (or did not

understand or who knows what) the latter more rigorous analysis and, based on

the former, concluded that the cyclotron frequency and the magnetic field should

depend on the quantum numbers. This mistake gave rise to a series of papers in

which the authors conjectured that cyclotron frequencies, oscillator frequencies,

field intensities and other physical quantities should have some particular discrete

values in order to have bound states.13–32
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