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Abstract 

Plastic pollution in seafood has become a worldwide safety concern due to its possible 

harm to humans. This is the first study which has investigated the length-weight 

relationship, growth patterns and condition factor, together with the concentrations of 

microplastics (MPs) and mesoplastics (MesoPs) in Pleoticus muelleri from the Bahia 

Blanca Estuary (BBE), Argentina. Forty-nine individuals were collected from three 

sampling stations in the BBE, and each abdominal muscle with the gastrointestinal tract 

was analyzed. P. muelleri showed an isometric growth pattern (b = 3.0054) with values of 

K similar among the individuals collected (ranged between 0.80 and 0.91), considering 

them in good condition compared to other crustacean species around the world. 96% of 

shrimp presented transparent or black synthetic fibers as prevalent types, with an 

abundance average of (3.0 ± 2.90) MPs/g w.w. and (0.053 ± 0.16) MesoPs/g w.w., as well 

as a dominant size range of 0.5-1.5 mm, in accordance with recent studies in the same area. 

The linear regression analysis showed that K was independent of the concentration of MPs 

ingested by P. muelleri, with R2 ranging between 0.024 and 0.194 indicating that MPs 

contamination does not affect the nutritional condition of shrimp. SEM/EDX detected the 

presence of elements like C, O, K, and Mg, tissue residues and fractures on the surface of 

the analyzed fibers. FTIR confirmed different types of polymers in shrimp related to textile 

fabrics probably from untreated sewage discharges from nearby cities. The results of this 

research provide useful information for a better understanding of MPs contamination in 

seafood, suggesting P. muelleri as a suitable species for monitoring MPs in estuarine 

ecosystems. Likewise, more research is required to know the effects of MPs on food safety 

in humans.  
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1. Introduction 

Plastics, are one of the most used materials worldwide due to their low cost, 

malleability, high strength-to-weight ratio, and thermal and electrical insulating properties 

(Ardusso et al., 2021), which makes them practically impossible to replace, although they 

are negative for the environment (Wang et al., 2015; Barnes et al., 2009; Andrady, 2003). 

Aquatic and terrestrial ecosystems are threatened by the presence of the so-called “plastic 

pollution”. Microplastics (MPs, plastic particles <5 mm) are part of the plastic pool, and 

can be found in most marine environments. Their presence is mainly originated by the 

fragmentation of bigger plastic items by mechanical, physical, or chemical action. Thus 

MPs, as emerging pollutants, have become an important global environmental problem 

because of their wide distribution and their long residence time in the environment 

(Andrady, 2011). Furthermore, they can be unintentionally assimilated by organisms in 

different ways, like air-water inhalation, indirectly through web chains, or by direct 

ingestion (Anderson et al., 2016). Crustaceans such as shrimp ingest everything in their 

path including MPs from water and sediments, as well as copepods, fish larvae, and other 

item-prey which may also incorporate MPs from the aquatic environment (Curren et al., 

2020). Thereby, shrimp pose a threat when consumed by fish and top predators like whales, 

or by humans. Although the cephalothorax of shrimp is not consumed by humans, the 

abdominal muscle is, together with the gastrointestinal tract where MPs accumulate, posing 

a great risk to food safety (Curren et al., 2020; Fernández-Severini et al., 2020). Hence MPs 

can be detected at several trophic levels and can be extensively transferred throughout the 

food chain (Savoca et al., 2019). Nowadays, this transfer is a major concern, as fisheries 

and aquaculture provide a critical proportion of the world's food supply. Seafood safety 
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associated with MPs as a stressor is a key issue to consider therefore, studies focused on the 

presence of plastics, their characteristics, and seafood sanitary conditions are of utmost 

importance.  

The length-weight relationship and condition factor in crustaceans have been well-

documented in different marine species worldwide (Wong et al., 2015; Uddin et al., 2016; 

Sousa et al., 2019). This relationship is an important tool in fisheries and aquaculture 

management as it provides information on growth patterns and on the general condition of 

the organism, reflecting fluctuations in the uptake and allocation of energy (Guino-o, 

2012). Thus, these parameters are influenced by many factors such as the reproductive 

cycle (Chu et al., 1995), water temperature, nutrient supply, and by pollutants (Castilho et 

al., 2007). Another important parameter for the management of culture systems is Fulton’s 

condition factor (K), used to quantify an animal’s physical wellbeing, and a useful 

complement to growth estimates of crustaceans (Piratheepa et al., 2013). It is important to 

point out that there are no available studies in the literature, concerning the length-weight 

relationship or condition factor K of Pleoticus muelleri, making the present study the first 

one to use this tool. It is necessary to strengthen the knowledge about different aspects of 

its biology to maintain an effective conservation plan. 

This study is focused on Pleoticus muelleri Argentine red shrimp, a highly 

consumed seafood species, commonly available in local markets and also exported to many 

countries for human consumption. Argentina, at the moment, is the second most important 

exporter of shrimp in Latin America (179,000 tons), increasing year by year. Lately, shrimp 

have been considered as one of the most valuable fishery resources in Bahia Blanca Estuary 

(BBE) (FAO, 2016; Secretaria de Agricultura, Ganadería y Pesca, 2021). Since MPs may 
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affect the health of commercially exploited organisms, food security, and human health, the 

analysis of MPs abundance, distribution, and composition as well as the sanitary state of 

the red shrimp is of significant relevance. To better understand the biological aspect and its 

implication for fishery management, we investigated the length-weight relationship, growth 

patterns, and condition factors of this species, together with the possible interaction with 

ingested MPs. We hypothesize that, in P. muelleri, the presence of MPs is high and may 

represent a risk to food safety.  

 

2. Materials and Methods 

2.1. Research area  

The Bahía Blanca Estuary (BBE) is located on the southwest Atlantic coast (38° 45′ 

– 39° 25′ S and 61° 45′ – 62° 30′ W), with an extension of about 2.300 km2. This estuary is 

a mesotidal temperate system and has an irregular triangular shape, divided into inner, 

middle, and external zones. The area comprises three main channels (Principal, Embudo, 

and Bermejo), two bays (Falsa and Green) and Brightman cove. There are NE-SW oriented 

islands which are not covered by the tides, while there are wetlands covered by the sea at 

least twice a day. Furthermore, this estuary is strongly influenced by the wind and presents 

low fluvial input, which is only significant on rainy seasons (Piccolo & Perillo, 1990). 

 BBE represents one of the most important coastal environments of South America, 

from an economic and ecological perspective, with heavy maritime traffic. In the inner 

zone are the cities of Bahía Blanca (~ 300.000 inhab.), Punta Alta, and General Daniel 

Cerri, along with one of the most important petrochemical and industrial parks from 

Argentina, formed by petroleum, chemicals, and plastic industries producing polyvinyl 
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chloride and different types of polyethylene which could be a potential source of primary 

microplastics. Furthermore, most of these industries, as well as the neighboring cities 

discharge their effluents in the estuary with partial or no treatment (Fernández-Severini et 

al., 2019). The Principal channel, with a length of 67 km, gives access to the most 

important deep-water port system in the Argentine Atlantic which includes the ports of 

Ingeniero White, Galván, Rosales, Cuatreros and Belgrano, being the last one the largest 

Argentine naval base (Biancalana et al., 2018). Also, the “Natural Maritime Reserve 

(Reserve of Multiple Uses Bahía Blanca, Bahía Falsa, and Bahía Verde)” (Ley 12.101/98) 

is located in the middle and external zones of the estuary. This reserve protects and 

preserves numerous islands such as Bermejo, Green, Embudo, among others, as well as an 

important number of streams and channels until they reach the open sea. Hence, these sites, 

which are a highly productive and eutrophic ecosystem, represent an important economic 

area for many artisanal fisheries, being P. muelleri one of the most commercialized species. 

However, it receives sediments from the dredging of the Principal channel and Galván port, 

which could carry pollutants to the area (Truchet et al., 2019). Jo
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Figure 1. Map of the study area, the Bahía Blanca Estuary (BBE). The dots show the 

sampling stations: VC, Vieja channel; EC, Embudo channel; GI, Green Island.  

2.2. Field sampling 

P. muelleri were collected during spring/summer 2019, by artisanal fisherman, from 

three sampling stations in the BBE (Figure 1): Vieja channel (VC) (38° 50' 01.1'' S - 62° 

12' 34.7'' W), Embudo channel (EC) (38° 55' 59.99" S - 62° 9' 0" W), and Green Island (GI) 

(39° 15' 23.5'' S - 62° 11' 40.3'' W). VC is located in the middle zone of the estuary and 

represents the area where the cities of Bahía Blanca, Punta Alta, and Ingeniero White 

discharge their untreated sewage waters, which have proved to be toxic for the 

zooplanktonic fraction and to modify environmental quality parameters (Tombesi et al., 
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2000; Biancalana et al., 2012; Dutto et al., 2012; Berasategui et al., 2018). EC and GI, are 

placed in the external zone, and make up the “Natural Maritime Reserve”. A total of 49 

organisms were randomly selected, specifically 20 shrimp came from EC, 19 from GI, and 

10 from VC. The organisms were collected by anchoring shrimp fishing nets and 

immediately frozen in the same boat, so they were not subjected to intestinal purification. 

Shrimp were immediately transported in iceboxes to the laboratory at −20°C for 

preservation until further analysis. Each shrimp was washed with distilled water 

(previously filtered through 0.22 μm - pore size membrane filter) and biometric data (total 

wet weight (g) and length (cm)) were determined according to the methodology described 

by Fernandez-Severini et al. (2020). Then, each organism was dissected by discarding the 

cefalotorax and keeping the abdominal muscle with the gastrointestinal tract, and placed 

individually in a previously conditioned glass beaker.  

 

2.3. Cleaning procedure 

In order to prevent airborne MPs contamination, the samples were processed in a 

laboratory with restricted access and all the materials used during the analyses were 

conditioned according to the methodology described by Fernandez-Severini et al. (2020) 

and Forero-López et al. (2021a). Cotton lab coats, facemasks, and nitrile gloves were worn 

during laboratory work. Moreover, reactive solutions and distilled water used to prepare 

these solutions were filtered through a 0.22 μm-pore size membrane filter before their use 

to ensure the elimination of MPs from reagents. Control blanks (n = 3) were utilized to 

assess MPs contamination levels during sample processing analysis. MPs found in the 

blanks (mean: 4 items ± 4.35) were subtracted from the number of items found in the 

samples. 
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2.4. Laboratory analysis 

MPs extraction from shrimp abdominal muscles containing the gastrointestinal tract 

was based on the methodology proposed by Thiele et al. (2019). The tissues of each 

individual were placed in a glass beaker within 10 to 15 mL of 10% KOH solution and 

quickly covered with a watch glass and aluminum foil to prevent airborne particle 

contamination. Periodic manual agitation at 60°C for 48 hours was carried out until the 

tissue was completely digested, that is, without visual appreciation of it. Additional KOH 

solution was added as it evaporated during digestion. Once the samples were cooled, they 

were neutralized with 1.5 M citric acid until reaching a pH 7, verified by indicator strips. 

Each sample was vacuum filtered through a glass fiber filter (0.70 μm-pore size) and placed 

in conditioned glass Petri dishes. A stereomicroscope (Leica S8 APO) and an optical 

microscope (Nikon Eclipse LV100) were used to identify, record, photograph, and classify 

plastic debris based on their size as MPs (˂ 5 mm) or MesoPs (˃ 5mm), colour, and shape 

(fragment, pellet, fiber, or films). Items grouped as MPs were also classified in five size 

ranges ˂0.5 mm, 0.5–1.5 mm, 1.5–2.5 mm, 2.5–3.5 mm, 3.5–5 mm.  

 

2.5. Plastic characterization  

In order to delve into the chemical composition, characterization of the surface 

morphology and atomic composition of MPs, fibers larger than 500 μm were manually 

separated with a hypodermic needle or dissection tweezers and resuspended in distilled 

water, with subsequent vacuum filtering through a nitrocellulose filter (0.45 μm pore size, 

Millipore). MPs were analyzed by Nicolet iN10 FTIR infrared microscope and by a dual-
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stage ISI DS 130 SEM with an EDAX 9600 quantitative energy dispersive X-ray analyzer 

according to the methodology described by Forero-López et al. (2021c). 

 

2.6. Length-weight and condition factor measurements 

The length-weight relationship of shrimp was expressed in allometric form (Li et 

al., 2016):    

W = a Lb 

where W is the weight (g), L is the total length (cm), a is the constant showing the 

initial growth index, and b is the slope showing the growth coefficient. If shrimp retains the 

same shape, it grows isometrically (b = 3). When weight increases more than length (b > 3), 

it shows positive allometric however, when the length increases more than weight (b < 3), it 

indicates negative allometric (Li et al., 2016). The proper fit of the growth model was given 

by the determination coefficient (R2). The correlation coefficient (r) was calculated between 

the weight and total length of shrimp.  

To evaluate the nutritional condition of shrimp, condition factor (K) by Fulton 

(1904) was calculated for each individual (VC, EC and GI) and adapted for decapod 

crustacean (Lalrinsanga et al., 2012):        

  K = (( W / L3 ) × 100) 

where W is the total weight (g) and L the total length (cm) of the organism. 

 

2.7. Statistical analysis  
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Statistical analyses of the concentration of MPs found in shrimp were performed 

using the free software R Core Team (2017). Also, an analysis of variances (ANOVA-one 

way) was performed to evaluate the statistical differences between the concentrations MPs 

found in abdominal muscle with the gastrointestinal tract of the shrimps from each sample 

station, previous verification of the homoscedasticity of the variances, and the normal 

distribution of the residues.   

On the other hand, a linear regression analysis was carried out for each sampled 

station, considering condition factor as the dependent variable and the abundance of MPs as 

the independent variable, in order to observe if a dependence relationship existed between 

them. 

 

3. Results and discussion 

All the collected P. muelleri individuals presented a good correlation regarding their 

body weight and their body length. In general, the body weight varied between 1.34 and 

35.4 g, whereas the samples of the abdominal muscle weighed between 0.56 and 14.58 g. 

The body length of shrimp varied between 5.5 and 16.2 cm. The values of length and 

corresponding weight of shrimp were plotted in Figure 2. The estimated (b) value given in 

the allometric equation was 3.0054 (W = 0.008 L3.0054), with R2 of 0.95. Thereby, the slope 

(b) of regression was 3, corresponding with an isometric growth of P. muelleri at BBE (t = 

0.0518, p > 0.95), meaning the shrimp retained the shape while growing. The correlation 

coefficient (r) between total length and body weight of the shrimp was 0.94 (r > 0.5), 

showing that the length-weight relationship was positively correlated. Since this is the first 
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study analyzing the length-weight relationship in P. muelleri, there is no data to compare. 

However, similar results were seen in other species like Penaeus monodon, which recorded 

a (b) value of 3.2183 in pooled shrimp (W = 0.0039 L3.2183) and a coefficient of 

determination (R2) of 0.97, corresponding to an isometric growth (Piratheepa et al., 2013). 

In the case of Macrobrachium felicinium pooled shrimp there was an isometric growth with 

a (b) slope of 3.003 (W = 0.0016 L3.003) and an R2 of 0.99 (Okayi & Iorkyaa, 2004). 

 

Figure 2. Length-weight relationship of P. muelleri. 

As can be seen in Table 1, condition factor K was similar for the individuals 

collected from VC, EC, and GI at BBE, with an average of (0.80 ± 0.1), (0.85 ± 0.1), and 

(0.91 ± 0.2), respectively. The lack of information related to K factor for other shrimp 

species does not allow intercomparisons, but it places this study as a potential starting point 

for future research. Nevertheless, the values found here are similar to those obtained with 

other crustacean species all around the world, where the authors argued that they were in 
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good condition. Recently, Rossiter et al. (2021) studied different species of Macrobrachium 

sp giant prawn, and reported a condition factor of (1.12 ± 0.23). Another study in the 

oriental Macrobrachium nipponense river prawn showed K ranged between 0.78 to 1.34 

(Aminisarteshnizi, 2021). Also, Kaka et al. (2019) studied different penaeid shrimp species 

in Kenya and found K values between (0.76 ± 0.084) and (0.45 ± 0.02), being these results 

similar to those obtained in this study.  

Of the 49 shrimp collected at the different sampling sites, 96% presented MPs; 

however, shrimp from EC showed higher total content of MPs in the abdominal muscle 

than organisms from VC and GI. A total of 295 plastic particles were found in shrimp 

samples with an average of (3.0 ± 2.90) MPs per gram of wet weight (items/g w.w.) and 

(0.053 ± 0.16) MesoPs/g w.w.. A previous study carried out by our group reported a mean 

concentration of 1.31 MPs/g w.w. for P. muelleri individuals collected from the inner zone 

of the estuary (Fernández-Severini et al., 2020), using a different digestion method. Some 

authors have reported that the technique employed to digest the tissue from organisms can 

affect the visual identification of plastic particles due to incomplete digestion or physical 

damage of plastic items (Fernandez-Severini et al., 2020; Hara et al., 2020). The mean MPs 

concentration found in the abdominal muscle of P. muelleri in the present study was 

similar, or comparatively lower, than those reported for other shrimp species worldwide. 

Hossain et al. (2020) reported an average of (3.40 ± 1.23) MPs/g w.w. in Penaeus monodon 

and (3.87 ± 1.05) MPs/g w.w. in Metapenaeus monocerous from the Bengal Bay, 

Bangladesh. Recently, a study on Metapenaeus affinis white shrimp, one of the most 

important fish resources of the Persian Gulf, showed an average abundance of (4.31 ± 1.7) 

MPs/g w.w. (Keshavarzifard et al., 2021). Also, Gurjar et al. (2021), studied three different 
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shrimp species in the northeastern part of the Arabian Sea, and estimated the highest 

average value of (70.32 ± 34.67) MPs/g w.w. in pooled shrimp.  

Table 1. Morphometric results, condition factor (K), microplastic (MPs) and 

mesoplastics (MesoPs) content in P. muelleri in each sample site. 

 

Sampling 

sites 

FC(K) Body weight (g) Body length (cm) Abdominal muscle  

weight (g) 

Plastic particles 

 

Total 

plastic 

particles 

Abundance 

VC 0.80 2.88 – 9.20 

(5.52 ± 1.96) 

7.2-10.2 

(8.74± 0.92) 

1.07 – 3.57 

(2.15 ± 0.73) 

65 3.69 ± 2.02 MPs/g.w.w 

     4 0.40 ± 0.12  MesoPs/g.w.w 

EC 0.85 1.41 - 35.4 

(9.82 ± 8.93) 

5.5-16.2 

(9.96 ± 3.08) 

0.63 – 14.58 

(3.98 ± 3.60) 

158 3.54 ± 3.52 MPs/g.w.w 

1 0.029 ± 0.13 MesoPs/g.w.w 

GI 0.91 1.34 – 13.05 

(6.53 ± 2.58) 

6-11.2 

 (8.81 ± 1.25) 

 0.52- 5.15 

   (2.23 ± 1.0) 

67 2.15 ± 2.43  MPs/g.w.w 

 

In particular, MPs content in shrimp from VC (middle zone) ranged from 2.68 to 

6.80 MPs/g w.w., with a mean value of (3.69 ± 2.02) MPs/g w.w.. The external zones EC 

and GI presented ranges from 0 to 9.62 MPs/g w.w. (mean = (3.54 ± 3.52) MPs/g w.w.) 

and 0 to 11.22 MPs/g w.w. (mean = (2.15 ± 2.43) items/g w.w.), respectively (Table 1). 

The analysis of variances (ANOVA-one way) showed no statistical differences between 

sample sites according to MPs content in P. muelleri (F = 1.54, p = 0.225). The linear 

regression analysis showed that condition factor K was independent of MPs concentration 

found in P. muelleri on each sample site, with a coefficient of determination (R2) of 0.170 

in VC, 0.024 in EC, and 0.194 in GI. Therefore, K seemed to be independent of the content 

of MPs ingested by the animal. Our results agree with those reported by Devriese et al. 
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(2015), where no correlation was observed between K of Crangon crangon brown shrimp 

and the ingestion level of MPs, indicating that MPs contamination does not affect the 

nutritional condition of shrimp. In the same way, and analyzing other species, Foekema et 

al. (2013) found no significant association between K of seven fish species of the North Sea 

and the presence of ingested plastic particles. 

Fibers were the most common morphotype found and varied from 0.059 to 7.44 mm 

in size while plastic particles between 0.5 and 1.5 mm were the most common, representing 

44.75% of the total MPs detected at all sampling stations. Size ranges from 1.5 to 2.5 mm, 

˂0.5 mm, and 2.5 - 3.5 mm represented percentages of 22.71%, 22.03%, and 3.74%, 

respectively. Size range from 1.5 to 2.5 mm was predominant at VC and GI, while the 

range ˂0.5 mm was predominant at EC (see Figure 3). These results are in accordance with 

those described by Forero-López et al. (2021c), who reported the presence of plastic 

particles with size ranges from 0.047 to 13.5 mm in the water column during the same 

sampling period. Otherwise, MesoPs (> 5 mm) were also found, representing 1.69% of total 

plastic particles (Figure. 3a), with mean value of (0.40 ± 0.12) MesoPs/g w.w. at VC, 

while at EC was (0.029 ± 0.13) MesoPs/g w.w.. Villagran et al. (2020) and Fernández-

Severini et al. (2020) reported the same predominant size ranges of MPs and the presence 

of MesoPs in equivalent tissues of regional decapod organisms such as Neohelice granulata 

burrowing crab and P. muelleri shrimp. Furthermore, this size range pattern was in 

accordance with the results shown in recent studies in other shrimp species in the world (Li 

et al., 2021; Pradit et al., 2021; Yan et al., 2021; Daniel et al., 2020; Hossain et al., 2020). 

Regarding other types of locally-consumed seafood, Amarilladesma mactroides and 

Brachidontes rodriguezii mussels, presented an abundance of (0.33 ± 0.1) MPs/g w.w. and 
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(0.17 ± 0.07) MPs/g w.w., respectively, (Truchet et al., 2021b) which were lower than those 

presented in this study for P. muelleri. 

Different plastic colours were recorded as can be seen in Figure 3b. Transparent 

MPs were the most abundant fibers found in shrimp samples from VC (52.16%) and EC 

(37.71%), while black and blue fibers were most abundant at GI with percentages of 

26.87% and 26.37%, respectively, while other colours such as red, yellow, grey, and green 

were also observed (Figure 3b). The predominance of blue, black, and transparent plastic 

particles in the water column, bivalves, and crustacean from the BBE and Claromecó 

beaches, was previously reported (Villagran et al., 2020; Fernandez-Severini et al., 2020; 

Forero-López et al., 2021a and c; Truchet et al., 2021b). A study in southeastern Brazil 

showed the same coloured pattern in the Atlantic ghost crab (Ocypode quadrata), where 

most of the microfibers were black (39%), blue (38%), and transparent (7%) (Lopes Costa 

et al., 2019). Another study, in the Persian Gulf, reported similar results in tissues of M. 

affinis samples, in which white/transparent MPs (43%) were the most abundant followed by 

blue (21%) and black (18%) (Keshavarzifard et al., 2021). 
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Figure 3. (a) Percentage of range sizes and (b) colours of plastic particles found in the 

abdominal muscle of P. muelleri from each sampling site at BBE. 
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3.1. Chemical composition of MPs 

 

Figure 4. SEM micrograph of the fibers found in the digestive tract of P. muelleri obtained 

at different magnifications: (a) 176x, (b) 519x, (c) 964x, and (d) 875x. 

SEM/EDX microphotographs showed the presence of tissue residues, fractures, and 

pits on the surface of the analyzed fibers (Figure 4). Mechanical degradation of textiles 

caused by washing processes has been assessed as the main source of MPs in watercourses 

and oceans (De Falco et al., 2019; Henry et al., 2019). The appearance of irregular, acicular 

crystals of different sizes, whose nucleation and growth result from the evaporation of 

potassium citrate-containing water residues (formed by the neutralization of KOH with 
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citric acid) during the drying period, was also observed (McGinty et al., 2020). An EDX 

analysis of these crystals revealed the presence of C, O, K, and Mg elements (Figure 5a, 

spectrum 21) in their composition. On the other hand, Figure 5b shows a SEM/EDX 

analysis on two different surface sites of multicolour synthetic fiber. All the EDX 

spectrums exhibit a strong C peak, followed by O, and a peak of K (Figure 5b). In 

particular, peaks of P and S also were detected on the fiber surface.   

 

Figure 5. SEM/EDX micrograph of the fibers found in the abdominal muscle of P. 

muelleri obtained at different magnifications: (a) 176x, (b) 519x, (c) 964x, and (d) 875x. 
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The spectroscopic analysis was performed on 25 randomly selected fibers larger 

than 0.5 mm (500 µm) in order to be manipulated with precision tweezers and transferred 

to the reflectance mirror of the spectrometer. Practically all the fibers analyzed 

corresponded to textile in which the main polymer was the cellulose-based matrix, followed 

by polyester (polyethylene terephthalate) and two-component mixed materials. 62.5% of 

the analyzed fibers were cellulose-based materials presenting the typical pattern of a 

glycoside (1427 and 1314 cm-1 corresponding to C-H and in-plane O-H bending, 

respectively; 1160, 1108, and 1053 cm-1 corresponding to different stretching modes of C-

O bond; and 899 cm-1 assigned to the β-glycosidic C-O-C stretching) (Abderrahim et al., 

2015; Comnea-Stancu et al., 2017). In Figure 6a, the spectrum of a representative 

cellulosic fiber is compared with the spectrum of pure microcrystalline cellulose. Some of 

these fibers presented this characteristic pattern, but with the appearance of new signals at 

1733, and 1577 and 1538 cm-1 (marked with arrows in Figure 6a). Those peaks were 

assigned to the oxidized functional groups which appeared as result of the glycosidic ring 

degradation (Zghari et al., 2018). 12.5% of the fibers showed good correlation with 

polyester or polyethylene terephthalate patterns (aromatic overtones at 1964 cm-1, C=O 

stretching at 1715 cm-1, aromatic C=C stretching at 1508 cm-1, and C-CH2 rocking at 720 

cm-1) (Figure 6b). Finally, 20.8% of fibers correspond to cotton-polyamide blend with the 

appearance of glycosidic signals, as well as new and intense bands such as Amide I and 

Amide II at 1635 and 1535 cm-1 in the carbonyl region, confirming the presence of this 

functional group (Peets et al., 2017). In Figure 6c the spectrum of a representative fiber of 

this kind is compared with the spectrum of 30% polyamide - 70% cotton fabric. All these 

materials are widely used as textile fibers, thus, are expected to be found in places affected 

by domestic discharges. As was previously reported, BBE receives poorly treated 
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wastewater effluents. Forero-López et al. (2021c) found a mean value of 6162 MPs/m3 in 

the water column of BBE, where the highest concentrations were detected in the middle 

zone of the estuary, a site that receives untreated sewage effluents from the Bahía Blanca 

city. Previous works reported the presence of semi-synthetic cellulosic materials, 

polypropylene, and polyethylene fibers in shrimp from the VC sampling site. Cellulose and 

polyamide were observed in brown shrimp (M. monocerous) and tiger shrimp (P. 

monodon) from offshore waters of the Northern Bay of Bengal, Bangladesh (Hossain et al., 

2020). Likewise, cellulose-based materials were identified as the dominant plastic type in 

P. australiensis freshwater glass shrimp from Victoria, Australia (Nan et al., 2020). 

From the analyzed fibers, just one item (4.2%) was not properly identified. The 

spectrum exhibits a pronounced signal at the carbonyl group region (1704 cm-1). No match 

was achieved with the references used (personal spectra library recorded at the same 

experimental conditions) or Omnic 8 software library. However, a certain correspondence 

with poly (acrylic acid) could be made, indicating the presence of this monomer as a 

component of a blend, or the presence of some acrylate as a constituent of the polymer. Jo
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Figure 6. FT-IR spectra of microplastics particles found in the abdominal muscle of P. 

muelleri at BBE: (a) cellulose, (b) poly ethylene terephthalate, and (c) cotton-polyamide 

(70:30). 
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Natural or man-made cellulosic materials are widely used in various fields (e.g.: 

textiles, paper, engineering, medical, or construction) due to their high mechanical strength, 

large surface area, flexibility, and biodegradability (Pengiran et al., 2021), which is why 

they were reported as the main constituent of oceanic fibers all over the world (Suaria et al., 

2020). The presence of additives such as dyes, flame retardants, or fabric softeners, can 

modify both physicochemical properties and surface charge, and thus their 

biodegradability, resulting in distinct toxic effects on organisms (Ventura et al., 2020; Kim 

et al., 2019). There are limited studies on the ecotoxicity of natural microfibers on aquatic 

organisms. Kim et al., 2021 reported that natural microfibers (lyocell) were more toxic to 

Daphnia magna than synthetic microfibers such as polypropylene or polyethylene 

terephthalate. On the other hand, Wang et al. (2020) informed that cellulose nanofibrils 

were key factors to induce oxidative stress in Scenedesmus obliquus, Daphnia magna, and 

Danio rerio. However, in South America, especially in BBE, there are no studies on the 

effects of cellulosic fibers and their additives in local organisms.  

 

4. Conclusions 

In the present study, a significant number of MPs, mainly semi-synthetic textile 

fibers, were detected in P. muelleri from the BBE. In turn, the widespread presence of these 

microplastic fibers could be related to the untreated sewage water discharge of domestic 

effluents from the cities of Bahía Blanca, Punta Alta, and Ingeniero White. As condition 

factor K, showed that shrimp were in good condition, not being affected by the 

concentrations of MPs in the BBE. However, the collateral damage induced by the 
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ingestion of MPs, which may contain chemicals or bacteria, was not investigated in this 

study and could describe a possible health problem. Since P. muelleri is a seafood species 

widely consumed by humans, more research on MPs levels and their effects is required to 

assess comprehensive risk factors that could affect food safety. 
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