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IDEMPOTENT LINEAR RELATIONS

M. LAURA ARIAS, MAXIMILIANO CONTINO, ALEJANDRA MAESTRIPIERI,
AND STEFANIA MARCANTOGNINI

Abstract. A linear relation E acting on a Hilbert space is idempo-
tent if E2 = E. A triplet of subspaces is needed to characterize a
given idempotent: (ranE, ran(I − E), domE), or equivalently, (ker(I −
E), kerE,mulE). The relations satisfying the inclusions E2 ⊆ E (sub-
idempotent) or E ⊆ E2 (super-idempotent) play an important role.
Lastly, the adjoint and the closure of an idempotent linear relation are
studied.

1. Introduction

The introduction of linear relations by von Neumann [16] was motivated
by the need to define the adjoint of a non-densely defined operator and
in considering the inverses of certain operators. Semi-projections, which
form the linear relation counterpart of the class of projection operators,
appear when solving least-squares problems of linear relations (see [13]).
Linear relations provide the appropriate framework when dealing with con-
trol problems subject to generalized or nonstandard boundary conditions.
In particular, they naturally occur if the normal equations, which are used
to characterize solutions of various standard constrained or unconstrained
least-squares problems, involve the adjoint of a non-densely defined linear
operator (cf. [14]).

A linear operator E is said to be a projection if E2 = E, that is, if domE

(the domain of E) is E−invariant and E2x = Ex for all x ∈ domE. For
any given projection E, if M := ranE (the range of E) and N := kerE

(the kernel of E) then

(1) M ⊆ domE, and (2) M∩N = {0}.

Unbounded (even non closable) projections were first considered by Ôta
[17]. He showed that any projection E is fully determined by its range
and kernel, and that the projection determined by (M,N ) is closed if and
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only if both M and N are closed. Further investigations on closed densely
defined projections were carried out by Andô [1]. We extended this work to
semiclosed projections in [2].

Cross and Wilcox [3] and Labrousse [12] studied the linear relations sat-
isfying (1) and E2 = E. Such linear relations are called semi-projections [12]
or multivalued linear projections [3]. As with projections, semi-projections
are fully characterized by the range and kernel, and in this case the multival-
ued part is given by their intersection. So a semi-projection is a projection if
and only if (2) holds. Dropping not just (2), but both (1) and (2), the result
is an idempotent relation; that is, a linear relation E such that E2 = E.

Any idempotent E verifies the twofold inclusion E2 ⊆ E ⊆ E2. When
a relation E only satisfies the left inclusion, it is termed sub-idempotent.
Similarly, E is super-idempotent if instead the other inclusion holds.

The purpose of this paper is to study idempotents, as well as sub- and
super-idempotents. Various characterizations of these classes are given, as
well as adjoints and closures of relations in these classes. Much was already
done for the class of semi-projections by Cross and Wilcox [3] (see also [12]).

Section 2 serves to introduce the notation and to give some preliminary
results. In Section 3 we show that for a full description, three subspaces
are needed; (ranE, ran(I − E), domE) for sub-idempotents and (ker(I −

E), kerE,mulE) for super-idempotents. Then we turn our attention to the
description of E2 when E is either sub- or super-idempotent, and we es-
tablish in either case that E2 is an idempotent. In Section 4 the results of
Section 3 are applied to obtain several characterizations of idempotents. The
main results of this section concern the representation of the class of idempo-
tents. These include two in which a triplet of subspaces uniquely determines
an idempotent whenever the so-called idempotency condition is satisfied.
Section 5 looks at the closure and adjoint of a relation E which is one of the
three classes. In general these operations do not yield idempotents. Neces-
sary and sufficient conditions are given for E∗ and E to be idempotent, and
we characterize those idempotents that are closed. Throughout, examples
are presented illustrating the very rich structure of all these classes.

2. Preliminaries

Throughout, H, K and E are complex and separable Hilbert spaces. As
usual, the direct sum of two subspaces M and N of a Hilbert space H is
indicated by M∔N . The orthogonal complement of a subspace M ⊆ H is
written as M⊥, or H⊖M interchangeably.
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We consider the inner product on H×K

〈 (h, k), (h′, k′) 〉 = 〈 h, h′ 〉+ 〈 k, k′ 〉 , (h, k), (h′, k′) ∈ H ×K,

with the associated norm ‖(h, k)‖2 = ‖h‖2 + ‖k‖2.

For S and T closed subspaces of H, Friedrichs [7] defined the cosine of
the angle between S and T as

c(S, T ) := sup {| 〈x, y 〉 |: x ∈ S ⊖ (S ∩ T ),y ∈ T ⊖ (S ∩ T ), ‖x‖ ,‖y‖ ≤ 1} .

On the other hand, the minimal angle between S and T was defined by
Dixmier [5] as the one whose cosine is

c0(S, T ) := sup {| 〈x, y 〉 | : x ∈ S, y ∈ T , ‖x‖ ,‖y‖ ≤ 1} .

In general, c(S, T ) ≤ c0(S, T ). However, when S ∩ T = {0} both angles
coincide.

Theorem 2.1 ([4, Theorem 13]). Let S, T be closed subspaces of H. The

following are equivalent:

i) c(S, T ) < 1;

ii) S + T is closed;

iii) S⊥ + T ⊥ is closed.

Lemma 2.2. Let S, T ,W be closed subspaces of H such that T ⊆ W and

T ∩ S = W ∩ S. Then

c(T ,S) ≤ c(W,S).

Proposition 2.3 ([11, Proposition 2.3.3, Corollary 2.3.1]). Let M,N be

operator ranges such that M+N is closed. Then

1. M∩N = M∩N .

2. (M∩N )⊥ = M⊥ +N⊥.

Linear relations. A linear relation from H into K is a linear subspace T of
the cartesian product H×K. The set of linear relations from H into K will
be denoted by lr(H,K), and lr(H) := lr(H,H). The domain, range, kernel
or nullspace and multivalued part of T ∈ lr(H,K) are denoted by domT,

ranT, ker T and mulT, respectively. When mul T = {0}, T is an operator.

Lemma 2.4 ([12, Proposition 1.21]). Let S, T ∈ lr(H,K). Then S = T if

and only if S ⊆ T, domT ⊆ domS and mul T ⊆ mulS.

Given T, S ∈ lr(H,K), T ∩ S and T +̂ S are the usual intersection and
sum of T and S as subspaces, respectively. In particular, mul(T ∩ S) =

mulT∩mul S and ker(T ∩ S) = ker T∩ker S, dom(T +̂ S) = domT+domS

and ran(T +̂ S) = ranT + ranS.
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The sum of two linear relations T, S ∈ lr(H,K) is the linear relation
defined by

T + S := {(x, y + z) : (x, y) ∈ T and (x, z) ∈ S}.

If T ∈ lr(H, E) and S ∈ lr(E ,K), the product ST is the linear relation
from H to K defined by

ST := {(x, y) : (x, z) ∈ T and (z, y) ∈ S for some z ∈ E}.

Given a subspace M of H, IM := {(u, u) : u ∈ M}. In particular, the
identity is I := IH.

Lemma 2.5. Let T ∈ lr(H). Then (u, v) ∈ I−T if and only if (u, u−v) ∈ T.

As a consequence, ker(I − T ) ⊆ ranT ∩ domT, ker(I − T ) ⊆ ker(I − T 2)

and ran(I − T 2) ⊆ ran(I − T ).

The inverse of T ∈ lr(H,K) is T−1 = {(y, x) : (x, y) ∈ T}. The following
identities can be easily checked

(2.1) T−1T = IdomT +̂({0} × ker T ) and TT−1 = IranT +̂({0} ×mulT ),

[9, Equation 2.4].
The closure T of a linear relation T from H to K is the closure of the sub-

space T in H×K, when the product is provided with the product topology.
The relation T is closed when it is closed as a subspace of H×K.

The adjoint of T is the linear relation from K to H defined by

T ∗ := JT⊥ = (JT )⊥,

where J(x, y) = i(−y, x). The adjoint is automatically a closed linear rela-
tion and T = T ∗∗ := (T ∗)∗. It is immediate that (T )∗ = T ∗. Since

T ∗ = {(x, y) ∈ K ×H : 〈 g, x 〉 = 〈 f, y 〉 for all (f, g) ∈ T},

we get that mulT ∗ = (domT )⊥ and ker T ∗ = (ranT )⊥. Therefore, if T is
closed both ker T and mul T are closed subspaces.

Theorem 2.6 ([3, Theorem 3.3]). Let T ∈ lr(H,K) be closed. Then ranT

is closed if and only if ranT ∗ is closed.

If T ∈ lr(H, E) and S ∈ lr(E ,K) then

(2.2) T ∗S∗ ⊆ (ST )∗.

If T, S ∈ lr(H,K) then

(2.3) (T +̂ S)∗ = T ∗ ∩ S∗,

and

(2.4) T ∗ + S∗ ⊆ (T + S)∗.
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Lemma 2.7 ([10, Lemma 2.10]). Let T, S ∈ lr(H,K). Then T +̂ S is closed

if and only if T ∗ +̂ S∗ is closed.

Theorem 2.8 ([15, Theorem 4.2]). Let A,B ∈ lr(H,K) such that A ⊆ B∗.

If

(2.5) kerA+ ranB = H and kerB + ranA = K,

then A = B∗ and B = A∗ and both A and B are closed with closed ranges.

3. Sub- and super-idempotents

A linear relation E ⊆ H × H is called an idempotent if E2 = E. If,
in addition ranE ⊆ domE, we say that E is a semi-projection. If E is an
idempotent operator then ranE ⊆ domE and we say that E is a projection.
Denote by Id(H) and Sp(H) the set of idempotents and the set of semi-
projections, respectively.

Semi-projections are studied in detail in [3] and [12] where, among other
results, it is proved that a semi-projection is uniquely determined by its
range and kernel. More precisely, if M and N are two subspaces of H then

(3.1) PM,N := IM +̂ (N × {0})

is the unique semi-projection with ranPM,N = M and kerPM,N = N .

Furthermore, domPM,N = M+N and mulPM,N = M∩N .

Semi-projections appear, for example, when solving least-squares prob-
lems for linear relations (see [13, Proposition 2.2]). More precisely, if T ∈

lr(H,K) then, by (2.1), T−1T = PdomT,ker T and TT−1 = PranT,mulT .

Proposition 3.1 ([3, Proposition 1.1]). Let E ∈ lr(H). Then E ∈ Sp(H)

if and only if E = PranE,kerE.

One of our goals is to get a representation similar to (3.1) for idempotent
relations. The range and kernel are not sufficient to fully describe an idem-
potent unless it is a semi-projection. We will see that a triplet of subspaces
is needed to characterize an idempotent relation.

Example 3.2. If M,S,S ′ are subspaces of H with M+̇S = M+̇S ′ and
S 6= S ′, it can be seen that the relations E = IM+̂({0} × S) and E ′ =

IM+̂({0} × S ′) are idempotent with ranE = ranE ′ = M∔ S and kerE =

kerE ′ = {0} although E 6= E ′ because mulE = S and mulE ′ = S ′.

Given a linear relation E, there are two semi-projections naturally as-
sociated with E, namely Pker(I−E),kerE and PranE,ran(I−E), as the following
lemma shows.
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Lemma 3.3. Let E ∈ lr(H). Then

Pker(I−E),kerE +̂ ({0} ×mulE) ⊆ E ⊆ PranE,ran(I−E) ∩ (domE ×H).

Proof. To see the first inclusion we only need to check that Iker(I−E) ⊆ E

but if u ∈ ker(I − E) then (u, 0) ∈ I − E whence (u, u) ∈ E. To prove the
second inclusion, let (u, v) ∈ E then (u, u − v) ∈ I − E so that (u, v) =

(v, v) + (u− v, 0) ∈ PranE,ran(I−E). �

From now on M,N and S are subspaces of H.

In view of the above lemma, we begin by studying the relations

(3.2) R := PM,N ∩ (S ×H) and T := PM,N +̂ ({0} × S).

Lemma 3.4. Let T,R ∈ lr(H) be defined as in (3.2). Then

1. domR = (M+N ) ∩ S, ranR = M∩ (N + S), kerR = N ∩ S and

mulR = M∩N .

2. domT = M + N , ranT = M + S, ker T = N + M ∩ S and

mul T = S +M∩N .

Proof. Use the definitions of R and T. �

Lemma 3.5. Let R, T ∈ lr(H) be defined as in (3.2). Then

1. I − R = PN ,M ∩ (S ×H) and R−1 = PS,N ∩ (M×H).

2. I − T = PN ,M +̂ ({0} × S) and T−1 = PM,S +̂ ({0} × N ).

Proof. By Lemma 2.5, (x, y) ∈ I − R if and only if (x, x − y) ∈ R, or
equivalently (x, x− y) ∈ PM,N ∩ (S ×H). Then (x, y) ∈ I −R if and only if
x = m+ n ∈ S, m ∈ M, n ∈ N and x− y = m. Therefore y = x −m = n

so that (x, y) = (m+n, n), m+n ∈ S. Hence (x, y) ∈ PN ,M∩ (S ×H). The
other inclusion is similar.

To prove the formula for R−1, let (x, y) ∈ R. Then (x, y) = (m + n,m)

where m ∈ M, n ∈ N and m + n =: s ∈ S. Therefore (x, y) = (s, s − n)

with s− n = m ∈ M so that (y, x) = (s− n, s) ∈ PS,N ∩ (M×H). Hence
R−1 ⊆ PS,N ∩ (M×H). The reverse inclusion is similar.

The proof of item 2 follows in a similar fashion. �

Lemma 3.6. Let R, T ∈ lr(H) be defined as in (3.2). Then

1. R2 ⊆ R.

2. T ⊆ T 2.

Proof. 1 : By Lemmas 3.4 and 3.5, it easily follows that ker(I−R) = ranR∩

domR. If (x, y) ∈ R2 then there exists z ∈ H such that (x, z), (z, y) ∈ R.

So that z ∈ ker(I − R), or equivalently (z, z) ∈ R. Hence (x − z, 0) =
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(x, z) − (z, z) ∈ R and (0, y − z) = (z, y) − (z, z) ∈ R. Therefore (x, y) =

(x− z, 0) + (z, z) + (0, y − z) ∈ R.

2: By Lemmas 3.4 and 3.5, it easily follows that ran(I − T ) = ker T +

mulT. If (x, y) ∈ T then (x, x − y) ∈ I − T so that x− y ∈ ker T +mulT.

Hence x − y = n + s for some n ∈ ker T and s ∈ mul T. Then (x, y + s) =

(x, y)+(0, s) ∈ T and (y+ s, y) = (x−n, y) = (x, y)− (n, 0) ∈ T. Therefore
(x, y) ∈ T 2. �

Definition 3.7. E ∈ lr(H) is called sub-idempotent if E2 ⊆ E and super-

idempotent if E ⊆ E2.

Lemma 3.8. If E ∈ lr(H) is sub- (super-idempotent) then E2 is sub-

(super-idempotent).

Proof. Use that if A,B ∈ lr(H) and A ⊆ B then A2 ⊆ B2. �

Lemma 3.9. Let E ∈ lr(H).

1. If E is sub-idempotent then kerE2 = kerE, ker(I−E2) = ker(I−E)

and mulE2 = mulE.

2. If E is super-idempotent then ranE2 = ranE, ran(I−E2) = ran(I−

E) and domE2 = domE.

Proof. By Lemma 2.5, ker(I − E) ⊆ ker(I − E2) always holds. If E is sub-
idempotent then I − E2 ⊆ I − E and then ker(I − E2) ⊆ ker(I − E). The
other assertions follow similarly. �

Proposition 3.10. Let E ∈ lr(H). Then the following are equivalent:

i) E is sub-idempotent;

ii) E = PranE,ran(I−E) ∩ (domE ×H);

iii) ker(I − E) = ranE ∩ domE;

iv) PranE∩domE,kerE ⊆ E;

In this case, mulE ∩ domE = ranE ∩ kerE.

Proof. Set R := PranE,ran(I−E) ∩ (domE ×H). By Lemma 3.3, E ⊆ R and
domE = domR.

i) ⇒ ii): Suppose that E2 ⊆ E. To see that E = R we apply Lemma
2.4 by showing that mulR ⊆ mulE. Let w ∈ mulR = ranE ∩ ran(I − E).

Then there exist u, v ∈ H such that (u, w) ∈ E and (v, w) ∈ I − E. Then
(v, v − w) ∈ E, so that (u + v, v) ∈ E. Hence (u + v, v − w) ∈ E2 ⊆ E.

Therefore (0, w) = (u+ v, v)− (u+ v, v − w) ∈ E.

ii) ⇒ iii): Follows from Lemma 3.4.
iii) ⇒ iv): PranE∩domE,kerE = Pker(I−E),kerE ⊆ E, by Lemma 3.3.
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iv) ⇒ i): Let (u, v) ∈ E2. Then there exists w such that (u, w), (w, v) ∈
E. Then (w,w) ∈ E because w ∈ ranE ∩ domE and IranE∩domE ⊆ E.

Hence (u, v) = (u− w, 0) + (w,w) + (0, v − w) ∈ E.

In this case, mulE = ranE ∩ ran(I − E). By Lemma 3.5, I − E is also
sub-idempotent; then kerE = ran(I−E)∩domE. Therefore ranE∩kerE =

ranE ∩ ran(I − E) ∩ domE = mulE ∩ domE. �

Corollary 3.11. The set of sub-idempotents is

{PM,N ∩ (S ×H)}.

Proof. By Proposition 3.10, any sub-idempotent belongs to the set. Con-
versely, if R := PM,N ∩ (S ×H), by Lemma 3.6, R is sub-idempotent. �

Remark 3.12. Let E ∈ lr(H) be sub-idempotent. Then E = PM,N∩(S×H)

if and only if ranE = (N + S) ∩ M, ran(I − E) = (M + S) ∩ N and
domE = (M+N ) ∩ S.

In fact, since E is sub-idempotent, by Proposition 3.10,

E = PranE,ran(I−E) ∩ (domE ×H).

So that, if ranE = (N +S)∩M, ran(I−E) = (M+S)∩N and domE =

(M + N ) ∩ S, then E = P(N+S)∩M,(M+S)∩N +̂(((M + N ) ∩ S) × H) =

PM,N ∩ (S ×H). The converse follows from Lemma 3.4.

Proposition 3.13. Let E ∈ lr(H). Then the following are equivalent:

i) E is super-idempotent;

ii) E = Pker(I−E),kerE +̂ ({0} ×mulE);

iii) ran(I − E) = kerE +mulE;

iv) E ⊆ PranE,kerE+mulE.

In this case, domE = ranE ∩ domE + kerE.

Proof. i) ⇒ ii): Suppose that E ⊆ E2 and let (u, v) ∈ E, so that there
exists w such that (u, w), (w, v) ∈ E. Then (u − w, 0) ∈ E, (0, v − w) ∈ E

and (w,w) = (u, v)− (u− w, 0)− (0, v −w) ∈ E. Therefore (w, 0) ∈ I −E

and (u, v) = (w,w) + (u− w, v− w) ∈ Pker(I−E),kerE +̂ ({0} ×mulE). This
shows that E ⊆ Pker(I−E),kerE +̂ ({0} ×mulE). The other inclusion always
holds (see Lemma 3.3).

ii) ⇒ iii): Follows from Lemma 3.4.
iii) ⇒ iv): By Lemma 3.3, E ⊆ PranE,ran(I−E) = PranE,kerE+mulE.

iv) ⇒ i): Let (u, v) ∈ E. Then (u, v) = (x + y, x), with x ∈ ranE,

y ∈ kerE +mulE. So y = y1 + y2 with (y1, 0), (0, y2) ∈ E. Then (x+ y, x+

y2), (x+ y2, x) ∈ E so that (x+ y, x) = (u, v) ∈ E2.
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In this case, domE ⊆ dom(PranE,kerE+mulE) = ranE + kerE. So that
domE ⊆ ranE ∩ domE + kerE. The other inclusion always holds. �

Corollary 3.14. The set of super-idempotents is

{PM,N +̂ ({0} × S)}.

Proof. By Proposition 3.13, any super-idempotent belongs to the set. Con-
versely, if T := PM,N +̂ ({0}×S), by Lemma 3.6, T is super-idempotent. �

Remark 3.15. Let E ∈ lr(H) be super-idempotent.
Then E = PM,N +̂ ({0} × S) if and only if ker(I − E) = M +N ∩ S,

kerE = N +M∩S and mulE = S +M∩N .

In fact, since E is super-idempotent, by Proposition 3.13,

E = Pker(I−E),kerE +̂ ({0} ×mulE).

So that, if ker(I−E) = M+N∩S, kerE = N+M∩S and mulE = S+M∩

N , then E = PM+N∩S,N+M∩S+̂({0}× (S +M∩N )) = PM,N +̂ ({0}×S).

The converse follows from Lemma 3.4.

Corollary 3.16. Let E ∈ lr(H). Then E is sub-idempotent if and only if

I − E is sub-idempotent if and only if E−1 is sub-idempotent. An analogue

result holds if E is super-idempotent.

Proof. Use Lemma 3.5 and Corollaries 3.11 and 3.14. �

Proposition 3.17. The following statements hold:

1. Let E be sub-idempotent. Then E ∈ Id(H) if and only if domE =

ranE ∩ domE + kerE.

2. Let E be super-idempotent. Then E ∈ Id(H) if and only if mulE ∩

domE = ranE ∩ kerE.

Proof. 1: If E ∈ Id(H) then, by Proposition 3.13, domE = ranE∩domE+

kerE. Conversely, since E is sub-idempotent, by Proposition 3.10,

T := PranE∩domE,kerE +̂ ({0} ×mulE) ⊆ E

and mulE ⊆ mulT. Since domE = ranE ∩ domE + kerE = domT, by
Lemma 2.4, E = T. Then, by Proposition 3.13, E is super-idempotent, so
that E ∈ Id(H).

2: If E ∈ Id(H) then, by Proposition 3.10, mulE ∩ domE = ranE ∩

kerE. Conversely, since E is super-idempotent, by Proposition 3.13, E ⊆

PranE,ran(I−E). By Lemma 3.3, E ⊆ PranE,ran(I−E) ∩ (domE ×H) := R and
domR = (ranE + ran(I − E)) ∩ domE = domE. Also, mulR = ranE ∩

ran(I − E) = ranE ∩ (kerE + mulE) = ranE ∩ kerE + mulE = mulE.
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Then E = R, and by Proposition 3.13, E is sub-idempotent. Therefore
E ∈ Id(H). �

Theorem 3.18. Let E ∈ lr(H). Then

1. E is sub-idempotent if and only if

E2 = Pker(I−E),kerE +̂ ({0} ×mulE).

2. E is super-idempotent if and only if

E2 = PranE,ran(I−E) ∩ (domE ×H).

In either case, E2 ∈ Id(H).

Proof. 1: Set P := Pker(I−E),kerE +̂ ({0} ×mulE).

If E2 = P then, since P ⊆ E always holds, E2 ⊆ E and E is sub-
idempotent.

Conversely, if E2 ⊆ E, by Lemma 3.9, P = Pker(I−E2),kerE2 +̂ ({0} ×

mulE2) ⊆ E2. Also, mulE2 = mulE ⊆ mulP. It only remains to see that
domE2 ⊆ domP to apply Lemma 2.4 and get that E2 = P. Let x ∈

domE2; then there exists w ∈ ranE ∩ domE such that (x, w), (w, y) ∈ E

for some y ∈ H. But, by Proposition 3.10, ranE∩domE = ker(I−E); then
w ∈ ker(I −E) or (w,w) ∈ E. Hence (x− w, 0) ∈ E and x = x− w + w ∈

kerE + ker(I −E) = domP.

2: Set Q := PranE,ran(I−E) ∩ (domE ×H).

If E2 = Q, since E ⊆ Q always holds, E ⊆ E2 and E is super-
idempotent.

Conversely, if E ⊆ E2, by Lemma 3.9, E2 ⊆ Q = PranE2,ran(I−E2) ∩

(domE2×H). Also, domQ = domE = domE2. It only remains to see that
mulQ ⊆ mulE2 to apply Lemma 2.4 and get that E2 = Q. By Lemma
3.4 and Proposition 3.13, mulQ = ranE ∩ ran(I − E) = ranE ∩ (kerE +

mulE) = ranE ∩ kerE + mulE ⊆ ranE ∩ kerE + mulE2, where the
inclusion holds because E ⊆ E2. To see that ranE ∩ kerE ⊆ mulE2, let
u ∈ ranE ∩ kerE. Thus (u, 0) ∈ E and (y, u) ∈ E for some y ∈ domE.

Hence (y, 0) ∈ E2 and (y, u) ∈ E2. Therefore (0, u) ∈ E2, i.e. u ∈ mulE2.

Finally, suppose that E is sub-idempotent then E2 is sub-idempotent.
Since E2 = P, it is also super-idempotent and then E2 ∈ Id(H). The case
when E is super-idempotent is similar. �

Corollary 3.19. Let E ∈ lr(H). Then:

1. E is sub-idempotent if and only if kerE2 = kerE, ker(I − E2) =

ker(I − E), mulE2 = mulE and E2 is super-idempotent.
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2. E is super-idempotent if and only if ranE2 = ranE, ran(I −E2) =

ran(I − E), domE2 = domE and E2 is sub-idempotent.

Proof. If E is sub-idempotent then, by Lemma 3.9 and Theorem 3.18, the
result follows. Conversely, by Proposition 3.13,

E2 = Pker(I−E2),kerE2 +̂ ({0} ×mulE2) = Pker(I−E),kerE +̂ ({0} ×mulE).

Then, by Theorem 3.18, E is sub-idempotent. The case when E is super-
idempotent is similar. �

The following example shows that there are linear relations which are
sub-idempotent but not super-idempotent and viceversa.

Example 3.20. 1. Take R := PM,N ∩ (S ×H), with M∩S+N ∩S (

(M+N )∩S. Then R is sub-idempotent but not super-idempotent.
In fact, by Lemma 3.4, domR ∩ ranR+ kerR = M∩S +N ∩ S (

(M+N ) ∩ S = domR. Then, by Proposition 3.17, R is not super-
idempotent.

2. Take T := PM,N +̂ ({0}×S), with S+N ∩M ( S+N ∩ (M+S).

Then T is super-idempotent but not sub-idempotent. Indeed, by
Lemma 3.4, mulT = S + N ∩M ( S + N ∩ (M + S) = ranT ∩

ran(I−T ). Therefore, by Proposition 3.10, T is not sub-idempotent.

Remark 3.21. If E is a super-idempotent operator on H, since mulE =

{0}, by Proposition 3.13, E = Pker(I−E),kerE and ker(I − E) ∩ kerE = {0}.

So that E is a projection.
If E is a sub-idempotent operator then E = PranE,ran(I−E)∩(domE×H)

and {0} = mulE = ranE ∩ ran(I − E). Then E is a restriction of a
projection and E is a projection if and only if domE = ranE+ran(I−E).

4. Idempotent linear relations

We begin this section with a list of corollaries regarding idempotent
relations which follow immediately from the results in the previous section
and the fact that E ∈ Id(H) if and only if E is sub- and super-idempotent.

Corollary 4.1 ([12, Propositions 2.2 and 2.4]). Let E, F ∈ lr(H). Then

E ∈ Id(H) if and only if I − E ∈ Id(H) if and only if E−1 ∈ Id(H).

Proof. Apply Corollary 3.16. �

Example 4.2. Suppose that E is a projection on H. By Corollary 4.1, E−1

is idempotent but since domE−1 = ranE and ranE−1 = domE, then E−1

may not even be a semi-projection.
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Corollary 4.3. Let E ∈ lr(H). The following are equivalent:

i) E ∈ Id(H);

ii) E = Pker(I−E),kerE +̂ ({0} ×mulE) = PranE,ran(I−E) ∩ (domE ×H);

iii) E = PranE,ran(I−E) ∩ (domE ×H) and domE = ranE ∩ domE +

kerE;

iv) E = Pker(I−E),kerE +̂ ({0} × mulE) and mulE ∩ domE = ranE ∩

kerE.

Proof. Apply Propositions 3.10, 3.13 and 3.17. �

Corollary 4.4. Let E ∈ Id(H). Then

1. domE = ker(I −E) + kerE.

2. ranE = ker(I − E) + mulE.

3. kerE = ran(I − E) ∩ dom(E).

4. mulE = ranE ∩ ran(I − E).

Proof. Use Propositions 3.10 and 3.13. �

Corollary 4.5. The set of idempotent linear relations can be expressed as

{PM∩S,N∩S +̂ ({0} × (M∩N ))}.

Alternatively,

{PM+S,N+S ∩ ((M+N )×H)}.

Proof. If E ∈ Id(H) then E is sub-idempotent and, by Corollary 3.11,
E = PM,N ∩ (S × H) for some subspaces M,N ,S ⊆ H. Then, by The-
orem 3.18 and Lemma 3.4, E = E2 = Pker(I−E),kerE +̂ ({0} × mulE) =

PM∩S,N∩S +̂ ({0} × (M∩N )).

Conversely, if E = PM∩S,N∩S +̂ ({0} × (M ∩ N )) for some subspaces
M,N ,S ⊆ H then, by Corollary 3.14, E is super-idempotent. By Lemma
3.4, mulE∩domE = M∩N∩S = ranE∩kerE. Therefore, by Proposition
3.17, E ∈ Id(H). The second equality follows in a similar way. �

Proposition 4.6. Let E ∈ lr(H). Then E ∈ Id(H) if and only if domE ⊆

ranE + kerE and IranE∩domE ⊆ E.

Proof. If E ∈ Id(H) then, by Proposition 3.13, domE ⊆ ranE+kerE and,
by Proposition 3.10, IranE∩domE ⊆ E.

Conversely, since IranE∩domE ⊆ E, PranE∩domE,kerE ⊆ E. By Proposition
3.10, E2 ⊆ E. If domE ⊆ ranE+kerE then domE = ranE∩domE+kerE.

Therefore, by Proposition 3.17, E2 = E. �
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4.1. The idempotency condition. This subsection is devoted to get a
representation of idempotent relations similar to the representation of semi-
projections (3.1).

Proposition 4.7. There exists E ∈ Id(H) such that

(4.1) M ⊆ ker(I −E), N ⊆ kerE and S ⊆ mulE.

Moreover, E0 := PM+S,N+S ∩ ((M + N ) × H) is the smallest idempotent

satisfying (4.1).

Proof. By Lemma 3.4, M ⊆ (M + S) ∩ (M + N ) = ker(I − E0), N ⊆

(N + S) ∩ (N +M) = kerE0 and S ⊆ (S +M) ∩ (S +N ) = mulE0. By
Corollary 3.11, E0 is sub-idempotent.

It is easy to check that E0 = P(M+N )∩(M+S),N +̂ ({0} × S) so that, by
Corollary 3.14, E0 is super-idempotent. Then the idempotent E0 satisfies
(4.1).

Now, if E ∈ Id(H) satisfies (4.1) then (M + S) ∩ (M +N ) ⊆ ranE ∩

domE so that, by Proposition 4.6, I(M+N )∩(M+S) ⊆ E. Since N × S ⊆

kerE ×mulE, we get that E0 ⊆ E. �

Proposition 4.8. Let X ,Y ,Z be subspaces of H. Then there exists F ∈

Id(H) such that

(4.2) ranF ⊆ X , ran(I − F ) ⊆ Y and domF ⊆ Z.

Moreover, F0 := PX∩Z,Y∩Z +̂ ((X ∩ Y) ×H) is the largest idempotent sat-

isfying (4.2).

Proof. By Lemma 3.4, ranF0 = X ∩Z∩(Y∩Z+X ∩Y) ⊆ X , ran(I−F0) =

Y ∩Z ∩ (X ∩Z +X ∩Y) ⊆ Y and domF0 = (X ∩Z +Y ∩Z)∩X ∩Y ⊆ Z.

By Corollary 3.14, F0 is super-idempotent. It is easy to check that F0 =

PX ,Y∩((Z∩X+Z∩Y)×H) so that, by Corollary 3.11, F0 is sub-idempotent.
Then the idempotent F0 satisfies (4.2).

Now, if F ∈ Id(H) satisfies (4.2) then, by Corollary 4.4, ranF ∩domF ⊆

X∩Z, kerF = ran(I−F )∩domF ⊆ Y∩Z and mulF = ranF∩ran(I−F ) ⊆

X ∩ Y . Then, by Corollary 4.3, F = PranF∩domF,kerF +̂ ({0} × mulF ) ⊆

F0. �

In what follows we characterize the triplets for which there is equality in
(4.1) or in (4.2).

Proposition 4.9. The following are equivalent:

i) There exists E ∈ Id(H) such that M = ker(I − E), N = kerE and

S = mulE;
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ii) (M+N ) ∩ S = M∩N ;

iii) (M+N ) ∩ (M+ S) = M and M∩N = M∩S.

In this case, E = PM,N +̂ ({0} × S) is the unique idempotent satisfying

item i).

Proof. i) ⇒ ii): Applying Corollary 4.4 to E and I − E, it follows that
(M+N )∩S = (ker(I −E) + kerE)∩mulE = domE ∩mulE = domE ∩

ran(I −E) ∩ ranE = ker(I −E) ∩ kerE = M∩N .

ii) ⇒ iii): Suppose that (M+N )∩S = M∩N . Then M∩N ⊆ S. So
that M∩N = S ∩M∩N := W. From M∩S +N ∩S ⊆ (M+N )∩S =

M∩N , we get M∩S ⊆ N and N∩S ⊆ M. Therefore, M∩S = N∩S = W.

Let x ∈ (M+N )∩ (M+S), so that x = m+n = m′ + s with m,m′ ∈ M,

n ∈ N and s ∈ S. Then m + n −m′ = s ∈ (M +N ) ∩ S = M∩N and
x = m′ + s ∈ M+M∩N = M. The other inclusion always holds.

iii) ⇒ i): Define E := PM,N +̂ ({0} × S). Then domE = M +N and
ranE = M + S. So that ranE ∩ domE = (M + S) ∩ (M + N ) = M.

By Lemma 3.4, kerE = M ∩ S + N = M ∩ N + N = N and mulE =

M∩N +S = M∩S+S = S. Then, by Corollary 4.3, E ∈ Id(H). Finally, if
E1 satisfies (i) then, by Proposition 4.7, E ⊆ E1. Since domE = M+N =

domE1 and mulE = S = mulE1, by Lemma 2.4, E = E1. �

If (M+N )∩S = M∩N , it is easy to check that any triplet having M,N

and S as components satisfies the corresponding equality (see Corollary
4.15).

Proposition 4.10. Let X ,Y ,Z be subspaces of H. The following are equiv-

alent:

i) There exists F ∈ Id(H) such that X = ranF, Y = ran(I − F ) and

Z = domF ;

ii) X ∩ Y + Z = X + Y ;

iii) X = X ∩ Y + X ∩ Z and X + Y = X + Z.

In this case, F = PX ,Y ∩ (Z ×H) is the unique idempotent satisfying item

i).

Proof. i) ⇒ ii): By Corollary 4.4, X ∩Y+Z = ranF ∩ran(I−F )+domF =

mulF +domF = mulF +ranF ∩domF +kerF = ranF +kerF = X +Y .

ii) ⇒ iii): X + Y = X ∩ Y +Z ⊆ X +Z ⊆ X + Y because Z ⊆ X + Y .

Then X +Y = X +Z. Since X ⊆ X ∩Y +Z then X ⊆ (X ∩Y +Z)∩X =

X ∩ Y + X ∩ Z. The other inclusion always holds.
iii) ⇒ i): Define F := PX ,Y ∩ (Z ×H). Since Z ⊆ X + Y , Y ⊆ X + Z,

and X ⊆ Y + Z, it follows that domF = (X + Y) ∩ Z = Z, ranF =
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X ∩ (Y +Z) = X and ran(I −F ) = Y ∩ (X +Z) = Y . Also, Z ⊆ X +Y =

X ∩ Y + X ∩ Z + Y = X ∩ Z + Y . Then Z = X ∩ Z + Y ∩ Z, so that
domF = ranF ∩ domF + kerF. Therefore, by Corollary 4.3, F ∈ Id(H).

Finally, if F1 satisfies (i) then, by Proposition 4.7, F1 ⊆ F. Since domF =

Z = domF1 and, by Corollary 4.4, mulF = X ∩ Y = mulF1, then F =

F1. �

It is easy to see that item iii) of Proposition 4.9 is equivalent to

M = (M+N ) ∩ (M+ S),

N = (N +M) ∩ (N + S),

S = (S +M) ∩ (S +N ).

In a symmetric fashion item iii) of Proposition 4.10 is equivalent to

X = X ∩ Y + X ∩ Z,

Y = Y ∩ X + Y ∩ Z

Z = Z ∩ X + Z ∩ Y .

In view of Propositions 4.9 and 4.10, the set of idempotent linear relations
can be given in terms of subspaces.

Corollary 4.11. The set of idempotent linear relations can be expressed as

{PM,N +̂({0} × S) : (M+N ) ∩ S = M∩N}.

Alternatively;

{PX ,Y ∩ (Z ×H) : X ,Y ,Z ⊆ H subspaces, X ∩ Y + Z = X + Y}.

Proposition 4.12. If

(4.3) (M+N ) ∩ S = M∩N

then

X := M+ S, Y := N + S and Z := M+N

satisfy

(4.4) X ∩ Y + Z = X + Y .

Conversely, if the subspaces X ,Y ,Z satisfy (4.4) then

M := X ∩ Z, N := Y ∩ Z and S := X ∩ Y

satisfy (4.3).

Proof. By Proposition 4.9, X ∩ Y = (M + S) ∩ (N + S) = S. Therefore
X ,Y ,Z satisfiy (4.4). Conversely, by Proposition 4.10, M+N = X ∩ Z +

Y ∩ Z = Z. Therefore M,N ,S satisfy (4.3). �
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Summarizing, by Propositions 4.9 and 4.10, we get that E ∈ Id(H) is
characterized by any of the following triplets:

ker(I − E), kerE and mulE

or

ranE, ran(I −E) and domE,

and Proposition 4.12 shows how to get one triplet from the other. Any of
these triplets provides a unique representation of an E ∈ Id(H); namely,

E = Pker(I−E),kerE +̂ ({0} ×mulE)

or

E = PranE,ran(I−E) ∩ (domE ×H).

The first representation of E ∈ Id(H) resembles the representation (3.1) of
semi-projections. So, from now on, we use this representation rather than
the second one.

Definition 4.13. The subspaces M,N ,S satisfy the idempotency condition

(IC) if

(M+N ) ∩ S = M∩N .

Example 4.14. 1. M,N ,M∩N satisfy the IC.
2. (M+N )∩ (M+ S), (N +M)∩ (N + S) and (S +M)∩ (S +N )

are the “minimal” subspaces of those with the IC containing M,N

and S, respectively (see Proposition 4.7).
3. N ∩ S,M ∩ S and M ∩ N are the “maximal” subspaces of those

with the IC contained in M,N and S, respectively (see Proposition
4.8).

4. If (M+̇N ) ∩ S = {0} then M,N and S satisfy the IC.
5. If M+N ∩ S = M∩N then M,N and S satisfy the IC.
6. If T ∈ lr(H) then ranT ∩ domT, ker T and mul T satisfy the IC if

and only if mul T ∩ domT = ranT ∩ ker T.

In the sequel, given M,N , S subspaces of H satisfying the IC, we write

PM,N ,S := PM,N +̂ ({0} × S).

In other words, PM,N ,S is the unique idempotent with ker(I−PM,N ,S) = M,
kerPM,N ,S = N and mulPM,N ,S = S. We emphasize here that throughout
this paper, the notation PM,N ,S is used for PM,N +̂ ({0} × S) only when
M,N , S satisfy the IC. By Proposition 4.12,

PM,N ,S = PM+S,N+S ∩ ((M+N )×H).
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In particular, PM,N = PM,N ,M∩N .

Corollary 4.15. Let M,N ,S be subspaces of H satisfying the IC. Then

P−1
M,N ,S = PM,S,N and I − PM,N ,S = PN ,M,S .

5. The closure and adjoint

This section is devoted to study the closure and the adjoint of sub-, super-
and idempotent relations. The adjoint and the closure of semi-projections
are again semi-projections. The following formulae for E∗ and E where
proved in [3] and [12].

Proposition 5.1. If E = PM,N then

E∗ = PN⊥,M⊥ and E = PM,N .

Moreover, E is closed if and only if M and N are closed.

Example 5.2. Let M and N be subspaces of H such that M∩N = {0} but
M∩N 6= {0} and M⊥ ∩N⊥ 6= {0}. Let E be the projection onto M with
kernel N . Then, by Proposition 5.1, E∗ and E are both semi-projections
but they are not projections.

We begin by studying the closure and the adjoint of sub- and super-
idempotents.

Lemma 5.3. Let M,N ,S be closed subspaces of H. Then

1. PM,N ∩ (S ×H) is closed.

2. PM,N +̂ ({0}×S) is closed if and only if M⊥ +N⊥+S⊥ is closed.

Proof. By Proposition 5.1, PM,N is closed. Since S × H is closed, item 1

follows.
By Lemma 2.7, PM,N +̂ ({0} × S) is closed if and only if

P ∗
M,N +̂ ({0} × S)∗ = PN⊥,M⊥ +̂ (S⊥ ×H)

is closed. But it is easy to check that

PN⊥,M⊥ +̂ (S⊥ ×H) = (M⊥ +N⊥ + S⊥)×H.

The latter is closed if and only if M⊥ +N⊥ + S⊥ is closed. �

Corollary 5.4.

PM,N +̂ ({0} × S) = PM,N +̂ ({0} × S)

if and only if M⊥ +N⊥ + S⊥ is closed.
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Lemma 5.5. Let M,N ,S be operator ranges in H such that M+N + S

is closed. Then

PM,N ∩ (S ×H) = PM,N ∩ (S ×H).

Proof. Consider T1 = PM,N and T2 = S ×H. Then T1 and T2 are operator
ranges (see [6]) and T1+̂T2 = PM,N +̂ (S × H) = (M + N + S) × H is
closed because M+N + S is closed. Then, applying Propositions 2.3 and
5.1, PM,N ∩ (S ×H) = PM,N ∩ S ×H = PM,N ∩ (S ×H). �

In the next result we characterize the super-idempotents that are closed
and, in particular, the closed idempotent relations.

Proposition 5.6. Let E be super-idempotent and set M := ker(I−E),N =

kerE and S = mulE. Then the following are equivalent:

i) E is closed;

ii) M,N ,S and M⊥ +N⊥ + S⊥ are closed.

Proof. By Proposition 3.13, E = PM,N +̂ ({0} × S). If E is closed, N =

kerE and S = mulE are closed. Also, since I is bounded, I −E = (I −

E)∗∗ = I−E∗∗ = I−E = I−E. So that I−E is closed and M = ker(I−E) is
closed. Then, by Lemma 5.3, M⊥+N⊥+S⊥ is closed. The converse follows
applying Lemma 5.3 once again. �

As a corollary we get a characterization of the closed idempotents.

Theorem 5.7. Let E = PM,N ,S . Then E is closed if and only if M,N ,S

and M⊥ +N⊥ + S⊥ are closed.

Our next goal is to study the adjoint and closure of idempotent relations.
In general, these operations are not closed on Id(H) (see Examples 5.18 and
5.19).

Proposition 5.8.

(PM,N +̂ ({0} × S))∗ = PN⊥,M⊥ ∩ (S⊥ ×H).

Proof. Apply (2.3) and Proposition 5.1. �

By the above proposition, we get that the adjoint of a super-idempotent
is always sub-idempotent. However, a similar statement is no longer valid if
we interchange the sub- and super-idempotent condition.

Proposition 5.9.

(PM,N ∩ (S ×H))∗ = PN⊥,M⊥ +̂ ({0} × S⊥)
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if and only if

M+N + S is closed and PM,N ∩ (S ×H) = PM,N ∩ (S ×H).

Proof. Set R := PM,N ∩ (S × H). If R∗ = PN⊥,M⊥ +̂ ({0} × S⊥) then, by
Corollary 5.4, M+N + S is closed. Also, R = R∗∗ = PM,N ∩ (S ×H).

Conversely, if R = PM,N ∩ (S ×H) then, by Proposition 5.1,

R∗ = PN⊥,M⊥ +̂ ({0} × S⊥) = PN⊥,M⊥ +̂ ({0} × S⊥),

because M+N + S is closed. �

Corollary 5.10. Let M, N and S be operator ranges of H such that M+

N + S is closed. Then

(PM,N ∩ (S ×H))∗ = PN⊥,M⊥ +̂ ({0} × S⊥).

Proof. Apply Lemma 5.5 and Proposition 5.9. �

Corollary 5.11. Let E ∈ lr(H) be sub-idempotent. Then E∗ is super-

idempotent if and only if ranE + ran (I − E) + domE is closed and E =

PranE,ran (I−E) ∩ (domE ×H).

Proof. If E∗ is super-idempotent then, by Proposition 3.13,

E∗ = Pker(I−E∗),kerE∗ +̂ ({0}×mulE∗) = Pran(I−E)⊥,ranE⊥ +̂ ({0}×domE⊥).

Then, by Lemma 5.3, ranE + ran (I − E) + domE is closed and, by (2.3)
and Proposition 5.1, E = PranE,ran (I−E)∩ (domE×H). Conversely, since E

is sub-idempotent, by Proposition 3.10, E = PranE,ran(I−E) ∩ (domE ×H).

Then, by Proposition 5.9, E∗ = Pran(I−E)⊥,ranE⊥ +̂ ({0} × domE⊥). Then,
by Proposition 3.13, E∗ is super-idempotent. �

As a corollary of Proposition 5.9 we get the following characterization of
those idempotents admitting an idempotent adjoint.

Theorem 5.12. Let E = PM,N ,S . Then E∗ ∈ Id(H) if and only if

E = PM+S,N+S ∩ ((M+N )×H)

and M+ S +N + S +M+N is closed.

Proof. The result follows applying Proposition 5.9 to E = PM+S,N+S ∩

((M+N )×H). �

Proposition 5.13. Let E = PM,N ,S. Then the following are equivalent:

i) E∗ ∈ Id(H);

ii) E∗ = PN⊥∩S⊥,M⊥∩S⊥,M⊥∩N⊥;

iii) (N⊥ +M⊥) ∩ S⊥ = N⊥ ∩ S⊥ +M⊥ ∩ S⊥.
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Proof. Since Pker(I−E∗),kerE∗ +̂ ({0}×mulE∗) = PN⊥∩S⊥,M⊥∩S⊥,M⊥∩N⊥ and
E∗ is sub-idempotent, the result follows from Proposition 3.17 and Corollary
4.3. �

Corollary 5.14. Let E = PM,N ,S . Then the following are equivalent:

i) E∗ and E ∈ Id(H);

ii) (N⊥ +M⊥) ∩ S⊥ = N⊥ ∩ S⊥ +M⊥ ∩ S⊥ and

(M+ S+N + S)∩M+N = M+ S∩M+N +N + S∩M+N ;

iii) E∗ = PN⊥∩S⊥,M⊥∩S⊥,M⊥∩N⊥ and

E = PM+S∩M+N ,N+S∩M+N ,M+S∩N+S .

Using results about the adjoint of linear relations [15] and operator
ranges [11], we give examples of closed idempotent linear relations with
idempotent adjoint and idempotent linear relations admitting idempotent
adjoint and idempotent closure.

Proposition 5.15. Let E = PM,N ,S such that M+S and N are closed. If

N⊥ ∩ S⊥ +N⊥ ∩M⊥ = N⊥

then E is closed and E∗ ∈ Id(H).

Proof. It follows by Theorem 2.8 applied to A = PN⊥∩S⊥,M⊥∩S⊥,M⊥∩N⊥ and
B = PM,N ,S . �

Proposition 5.16. Let E = PM,N ,S where M, N and S are operator

ranges. If M+N + S is closed then E∗ ∈ Id(H) and E ∈ Id(H).

Proof. If M + N + S is closed, since S = (M + S) ∩ (N + S), applying
Proposition 2.3 to M+ S and N + S, we get that

(5.1) S⊥ = M⊥ ∩ S⊥ +N⊥ ∩ S⊥.

Then (M⊥ +N⊥) ∩ S⊥ ⊆ S⊥ = M⊥ ∩ S⊥ +N⊥ ∩ S⊥. Therefore, (M⊥ +

N⊥) ∩ S⊥ = M⊥ ∩ S⊥ +N⊥ ∩ S⊥ and, by Proposition 5.13, E∗ ∈ Id(H).

Applying again Proposition 2.3 to M+N and S, it follows that

((M+N ) ∩ S)⊥ = M⊥ ∩ N⊥ + S⊥.

So that M⊥ ∩ N⊥ + S⊥ is closed. Therefore, by (5.1), M⊥ ∩ N⊥ +M⊥ ∩

S⊥ +N⊥ ∩ S⊥ is closed. Then, from the same arguments in the first part
of the proof applied to E∗, it follows that E ∈ Id(H). �

Remark 5.17. By Proposition 5.16, if H is finite-dimensional then the
adjoint of every idempotent linear relation is idempotent.
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Now, we are in a position to give an example of an idempotent E such
that E∗ /∈ Id(H).

Example 5.18. Let X be an infinite dimensional Hilbert space and set
H := X × X × X . Take M := X × {0} × {0} and N := {0} × X × {0}.

Let Z := {0}× {0}×X and W := {(x, x, 0) : x ∈ X} ⊆ M∔N . Following
similar arguments as those found in [8, page 28], we can construct a closed
subspace S such that S ∩W = {0} and c0(S,W) = 1, so that S ∔W is not
closed and S ⊆ W + Z := Π.

The subspace M∔N = X ×X ×{0} is closed and M∔Π = H. In fact,
if x ∈ M∩Π then there exists α ∈ X such that x = (α, 0, 0) ∈ Π. But also
x = (β, β, γ) with β, γ ∈ X . So that α = β = 0 = γ and x = 0. Also, given
x = (α, β, γ) ∈ H then x = (α− β, 0, 0) + (β, β, γ) ∈ M∔ Π.

Now, let us see that M ∔ S is closed. In fact, M∩S ⊆ M∩ Π = {0}.

Then M∔ S ⊆ M∔ Π so that,

c0(M,S) ≤ c0(M,Π) < 1.

Hence M∔ S is closed. In a similar way, N ∔ S is closed.
Also M,N and S satisfy the IC: in fact (M∔N )∩S = (M∔N )∩S∩Π =

W ∩ S = {0} = M ∩ N , where we used that (M ∔ N ) ∩ Π = W. Set
E := PM,N ,S. Since M,N ,S are closed and M⊥ + N⊥ + S⊥ = H, E is
closed, by Proposition 5.6. Now, since S∔W ⊆ S∔(M∔N ), it follows that
1 = c0(S,W) ≤ c0(S,M∔N ). Then c0(S,M∔N ) = 1 and M+N +S is
not closed. But, since M∔N , M∔S and N ∔S are closed, if E∗ ∈ Id(H)

then, by Proposition 5.13, E∗ = PN⊥∩S⊥,M⊥∩S⊥,M⊥∩N⊥ and, by Proposition
5.6, N + S +M+ S +M+N = M +N + S is closed, which is absurd.
Hence E∗ 6∈ Id(H).

The same example provides an idempotent F such that F /∈ Id(H) and
also a linear relation T 6∈ Id(H) such that T ∗ ∈ Id(H).

Example 5.19. Let H and M,N ,S be as in Example 5.18. Set E :=

PM,N ,S and F := PN⊥∩S⊥,M⊥∩S⊥,M⊥∩N⊥. Then E, F ∈ Id(H) and since
M∔N , M∔ S and N ∔ S are closed,

E = PM+S,N+S ∩ ((M+N )×H) = PM+S,N+S ∩ (M+N ×H) = F ∗.

Hence E∗ = F . By Example 5.18, F 6∈ Id(H).

On the other hand, set T := F then T 6∈ Id(H) and T ∗ = F ∗ = E ∈

Id(H).
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If E = PM,N ,S then the inclusions

(5.2) PM,N +̂ ({0} × S) ⊆ E ⊆ PM+S,N+S ∩ (M+N ×H)

always hold with equalities when E is a semi-projection. In the next propo-
sition we provide conditions to get equalities in (5.2).

Proposition 5.20. Let E = PM,N ,S. Then:

1. If E∗ ∈ Id(H) then E = PM+S,N+S ∩ (M+N ×H).

2. E = PM,N +̂ ({0} × S) if and only if M⊥ +N⊥ + S⊥ is closed.

3. If E∗ ∈ Id(H) and M⊥ + N⊥ + S⊥ is closed then there is equality

in (5.2) and

E = PM+N∩S,N+M∩S,S+M∩N .

Moreover,

E = PM+S,N+S ∩ ((M+N )×H).

Proof. 1: Use Theorem 5.12.
2: Use Corollary 5.4.
3: From 1 and 2, E is sub- and super-idempotent. Then E ∈ Id(H) and

Corollary 5.14 gives the formula for E. Finally, using Lemma 3.4 we get that
kerE = N +M∩S, ker(I − E) = M+N ∩ S and mulE = S +M∩N ,

ranE = M+ S, ran(I −E) = N + S and domE = M+N . �

If E is a closed semi-projection then E∗ is a semi-projection, and ranE

and ran(I − E) = kerE are both closed. In general, this is no longer true
for closed idempotents. In what follows, we characterize those closed idem-
potents E with ranE and ran(I −E) closed such that E∗ is idempotent. In
this case, by Theorem 2.6, ranE∗ and ran(I − E∗) are closed.

Proposition 5.21. Consider E = PM,N ,S such that E is closed. Then the

following are equivalent:

i) E∗ ∈ Id(H), ranE and ran(I − E) are closed;

ii) M+N + S is closed and M+N ∩ S = M∩N .

Proof. If i) holds, by Corollaries 4.1 and 4.4, M+ S and N + S are closed
and, applying Theorem 5.12, M+N + S = M+N +N + S +M+ S is
closed. On the other hand, by Theorem 5.12 again, E = E = PM+S,N+S ∩

(M+N ×H) then M +N = domE = (M +N + S) ∩M+N = M +

N + S ∩ M+N , so that S ∩ M+N ⊆ M + N . Then S ∩ M+N =

S ∩ (M+N ) = M∩N , where we used that M,N and S satisfy the IC.
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Conversely, if ii) holds then M+N ∩ S = M∩N = M∩S = N ∩ S,

because M,N and S satisfy the IC. Then, by Lemma 2.2 and Theorem 2.1,

c(M,S) ≤ c(M+N ,S) < 1.

So that, by Theorem 2.1, ranE = M+ S is closed. Likewise, ran(I −E) =

N + S is closed. Therefore, M+ S + N + S + M+N = M+N + S

is closed. Also, since E ⊆ PM+S,N+S ∩ (M+N × H), dom(PM+S,N+S ∩

(M+N × H)) = M + N + S ∩ M+N = M + N = domE and
mul(PM+S,N+S ∩ (M+N × H)) = M ∩ S + N ∩ S = S = mulE, us-
ing Theorem 5.12, it follows that E∗ ∈ Id(H). �

Theorem 5.22. Let E = PM,N ,S . Then the following are equivalent:

i) E∗ ∈ Id(H), E = PM,N +̂ ({0} × S), ranE and ran(I − E) are

closed;

ii) M⊥ + N⊥ + S⊥ and M+N + S are closed and M+N ∩ S =

M∩S +N ∩ S.

In this case, E ∈ Id(H) and

(5.3) E = PM+N∩S,N+M∩S,S+M∩N .

Proof. Assume that item i) holds. Then E is super-idempotent and, by
Lemma 5.3, M⊥ +N⊥ + S⊥ is closed. Since E∗ ∈ Id(H) then E = (E∗)∗

is sub-idempotent and hence E ∈ Id(H). Therefore E = Pker(I−E),kerE,mulE

and applying Lemma 3.4, formula (5.3) follows.
By Lemma 3.4, ranE = M+ S and ran(I −E) = N + S. Then M+ S

and N + S are closed and, by Propositions 5.13 and 5.6 applied to E,

N + S + M+ S + M+N = N + S + M + M+N = S + M+N is
closed. On the other hand, by Corollary 5.14,

E = PM+S∩M+N , N+S∩M+N , N+S∩M+S .

Then

M+N ∩ S = M+N ∩M+ S ∩ N + S ∩ S = ker(I −E) ∩ kerE ∩ S

= (M+N ∩ S) ∩ (N +M∩S) ∩ S

= M∩S +N ∩ S.

Conversely, assume that item ii) holds. By Lemma 5.3,

E = PM,N +̂ ({0} × S).

Since M+N∩S = M∩S+N∩S, it follows that M+N∩S = (M+N )∩S .

From this fact it can be seen that

ker(I − E) = M+N ∩ S, kerE = N +M∩S and mulE = S +M∩N
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satisfy the IC. Then E ∈ Id(H).

Since mulE is closed, it follows that

ker(I − E) + kerE +mulE = M+N + S +M∩N

= M+N + S

is closed. In a similar fashion, it can be seen that

ker(I −E) + kerE ∩mulE = ker(I −E) ∩ kerE.

Then, by Proposition 5.21 applied to E, E∗ ∈ Id(H) and ranE, ran(I −E)

are closed. �

Corollary 5.23. Let E = PM,N ,S such that M+N ∩ S = M ∩ N ,

M+N + S and M⊥ + S⊥ +N⊥ are closed. Then:

1. E∗ ∈ Id(H);

2. E = PM,N ,S ;

3. ranE and ran(I − E) are closed.

Proof. Since M+N∩S = M∩N = M∩N∩S and also (M∩S+N∩S) ⊆

M+N ∩ S = M∩N , then M ∩N = N ∩ S = M ∩ S. We then apply
Theorem 5.22 to get that E∗ ∈ Id(H), E = PM,N ,S+M∩N = PM,N ,S and
ranE and ran(I − E) are closed. �
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