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Abstract

The multiscale method called Pseudo-Direct Numerical Simulation (P-DNS) is presented
as a Reduced Order Model (ROM) aiming to solve problems obtaining similar accuracy
to a solution with many degrees of freedom (DOF). The theoretical basis of P-DNS is
other than any standard ROM. However, from a methodological point of view, P-DNS
shares the idea of an offline computation, as ROM does, providing the set of
coefficients, as a database or table, needed to solve the main problem. This work
highlights the advantages and disadvantages of both methodologies. In particular, the
drawback of the standard ROM concerning problems where space and time are not
separated variables is discussed. The so-called Idelsohn’s benchmark is possibly the
most elemental test that can be proposed to point out this drawback. This
one-dimensional heat transfer problem with a moving heat source shows that, unlike
ROMs, P-DNS can solve it by reducing the number of degrees of freedom as much as
needed.
Keywords: Reduced Order Models, Pseudo direct numerical simulation, Transient
advection diffusion reaction problems, Idelsohn’s benchmark, Multi-scale methods

Introduction
Today, numerical simulation is a standard tool in engineering. It is used for prediction
and decision making, or simply for a better understanding of a particular physical phe-
nomenon. Usually, in particular industrial applications, normally 2D or 3D with very
complex geometries, a large number of degrees of freedom (DOF) are needed to obtain
an accurate representation of current scenarios. Although classical methods are the stan-
dard to solve such problems, their significant computational effort precludes getting fast
answers. Therefore, alternative numerical approaches are required. One of them is the
Reduced Order Models (ROM).
ROM take advantage of the fact that the response of complex models can be often

approximated, with reasonable precision, by the output of a surrogate model, seen as the
projection of the initial problem on a lower-dimensional functional basis [1–3]. A classical
categorization of ROM distinguishes a posteriori from a priori methods:
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• The a posteriori methods are built after calculating solutions of the problem. The
most classical example is the Proper Orthogonal Decomposition (POD) method [4–
7], which is based on a statistical procedure called Principal Component Analysis
(PCA).

• The a priori methods are constructed without the need to compute any solution to
the problem.However, avoiding the calculation of snapshots implies the need to solve
a sequence of nonlinear problems. A representative example of this type of method is
Proper Generalized Decomposition (PGD) [8–13]. This method assumes, as a basic
principle, that the solution of the governing equation can be approximated by a finite
sum of the product of functions depending only on one variable.

Regardless of the strategy to obtain the modes, ROM assume that the problem requires
a small number of modes to achieve an acceptable solution. If this is not the case, ROM
have no advantage in solving the problem. From a methodological point of view, ROM
proceed following two clearly defined operations: (1) the calculation of the base modes to
be used, an operation that can be performed online in the case of a posteriori methods or
offline, in the case of a priori methods, and (2) the solution of the problem in the obtained
reduced base.
On the other hand, the recently presentedmultiscalemethod P-DNS (for Pseudo-Direct

Numerical Simulation) [14–16] reduces the solution to a fewdegrees of freedom, problems
which require a large number of degrees of freedom to be acceptably represented.
The theoretical basis of P-DNS is other than any standard ROM. In effect, the P-DNS

method solves a problem by viewing it as a multiscale problem. The solution is computed
on a relatively coarse scale, taking into account the contribution of a finer scale separately.
However, from a methodological point of view, it shares the same target as ROM. Indeed,
P-DNS solveswith a fewdegrees of freedom, i.e. fewunknowns at the coarse scale problem,
reaching similar precision to a single scale solution considering many DOF.
Both methodologies require the computation of a series of parameters that, in many

cases, is done offline. ROM needs the evaluation of the modes, while the P-DNS method
demands calculating specific terms added by the fine scale in a representative volume
element (RVE) by means of a fine mesh.
In this way, both methodologies can manage the large number of DOF needed to solve

many current problems of the industry. However, as will be shown later in this work, the
P-DNSmethod has amajor advantage because it considers the degrees of freedom of both
the fine and the coarse-scale. In particular, theDOFof the fine-scale are taken into account
through the terms of the equations evaluated offline. On the other hand, ROM supposes
that many base modes, fundamentally the high-frequency ones, do not participate in the
solution and, therefore, are eliminated. For this reason, if all or a large number of modes
are required to represent the solution, ROM find a severe obstacle turning impossible to
reduce the number of degrees of freedom.
Another different use of ROMs is the one carried out in multiscale methods, when the

scales are very different from each other [17]. In thesemethodologies, themodel is treated
as two separatedmodels,where the fine scale is solved in aRepresentativeVolumeElement
(RVE) using a ROM. In this way, the efficiency of the fine scale solution is improved. P-
DNS also takes these ideas of multiscale methods and the separation of the fine-scale in
RVEs. But the scales do not need to be different from each other. The main originality
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Fig. 1 Schematic representation of the Idelsohn’s benchmark

is that the fine scale is solved offline, through a parametrization of the variables, which
allows significantly increase of the computational efficiency of the coarse scale solution
compared with the use of a ROM only in the fine scale.
Many of the problemswhich demand great number of basemodes are those in which no

separation variables in space and time is possible. In this sense, one of the simplest problem
to be solved is the so-called Idelsohn’s benchmark [18,19], a one-dimensional heat transfer
problemwith amoving source (see Fig. 1). In this case, the existing drawbacks in the ROM
are reflected. Moreover, this test will be used to show that, unlike ROM, P-DNS can solve
it by reducing the number of degrees of freedom as much as needed.
In summary, the main idea behind this article is to consider P-DNS as another ROM

method with some additional capabilities to deal with transient problems where space
and time cannot be considered as separate variables. As a consequence of this objective,
some particular novelties in P-DNS applied to unsteady problems, crucial to face such
problems, are presented.
The organization of this paper is as follows: after a brief description of the P-DNS

method for advection–diffusion–reaction problems, the approach is generalized for tran-
sient problems including those with a space-time variable source. The Idelsohn’s bench-
mark will be solved by reducing orders in the number of DOF comparing the differ-
ent solutions from some recent ROM references. Finally, to show all the advantages of
the proposed P-DNSmethod, other transient advection–diffusion–reaction problems are
computed by reducing the number of DOF.

The Pseudo-Direct Numerical Simulationmethod for
advection-diffusion-reaction problems
Next, a summary is given about theP-DNSmethod applied to problemsof advection, diffu-
sion and reaction (ADR) one-dimensional, stationary, without internal source. A complete
development of P-DNS for n-dimensional problems and vector equations (Navier–Stokes)
can be found in the references [14].
Actually, the numerical solution of the stationary 1D ADR problem without an internal

source has no real gain, since there is an analytical solution for this problem. However,
it is useful to understand the method and generalize to problem in which no analytical
solution is possible.
The equation to solve is

− d
dx

(
k
dT
dx

)
+ u

dT
dx

+ rT = 0 (1)
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where T is the unknown scalar variable of the problem, k is the diffusivity coefficient that
will be considered constant and positive, u is an advection velocity of thematerial that will
be considered constant, positive or negative, and r is a constant coefficient representing a
reaction/absorption phenomenon that can also be positive or negative.
The boundary conditions are

T = T, or − k
dT
dx

= q at x = 0 and x = L (2)

being T and q known constant values for the Dirichlet and the Neumann boundary
conditions.
Considering a Galerkin FEM-type approximation with linear shape and weighting func-

tions N (x), the equation to be solved, after a standard integration by parts, reads

nel∑
e=1

∫
He

[dNe
i

dx

(
k
dT
dx

− uT
)

+ Ne
i rT

]
dx = 0 (3)

where the sum is made over the nel elements of lengthHe and the shape functions of each
element, considering the linear case with local coordinates centered at x = 0, are:

Ne
1 =

(
1
2

− x
He

)
and Ne

2 =
(
1
2

+ x
He

)
with x ∈ [−He/2, He/2]. (4)

As previously stated, the idea of P-DNS is to split the unknown T into a coarse scale,
called Tc, and a fine-scale, which will be called Tf . The idea is that the sum of both is
a continuous but completely arbitrary function. However, certain restrictions on both
functions, Tc and Tf , are imposed without violating the arbitrariness of the sum of them.
Thus, Tc is considered the standard FEM approximation in a coarse mesh with elements
of dimension He. In a given element, we define the coarse field as

Tc = Tc(x = 0) + Gx with G = dTc
dx

. (5)

On the other hand, it will be imposed on Tf in each element the following restriction:

Tf

(
x = −He

2

)
= Tf

(
x = He

2

)
= 0 (6)

which implies that the integral of the derivative of Tf in each element satisfies:

∫
He

dTf

dx
dx = 0. (7)

As can be seen, these constraints maintain the arbitrariness of the sum function T .
Incorporating this split into Eq. (3) the contribution of each coarse element to the sum is

∫
He

[
dNci
dx

(
k
d(Tc + Tf )

dx
− u(Tc + Tf )

)
+ Ncir(Tc + Tf )

]
dx = 0 (8)
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where for simplicity, we have isolated an arbitrary element of the coarse mesh and called
Nci the two weight-functions of that element. For the fine scales the equation to be solved
is

nelf∑
j=1

{∫
h

[dNfj

dx

(
k
d(Tc + Tf )

dx
− u(Tc + Tf )

)
+ Nfjr(Tc + Tf )

]
dx

}
= 0 (9)

where the coarse element has been subdivided in nelf elements of dimension h being Nfj
the weight-functions corresponding to the fine-scale.
The other main idea of P-DNS is to solve the Eq. (9) offline, only once, for a dimen-

sionless element that can represent all the possible configurations that can occur in this
problem. In this particular case, this Representative Volume Element (RVE) is considered
coincident with an element of the coarse mesh. However, as can be seen in other P-DNS
publications [14–16], an RVE has not necessarily a one-to-one correspondence with an
element of the coarse mesh.
After imposing the restrictions (5), (6), and (7) the Equation of the coarse scale (8)

remains

∫
He

[
dNci
dx

(
k
dTc
dx

− uTc

)
+ NcirTc

]
dx +

∫
He

[
−dNci

dx
uTf + NcirTf

]
dx

︸ ︷︷ ︸
−dNci

dx
u

∫
He

Tf dx + r
∫
He

NciTf dx

= 0

(10)

where can be seen that, according to Nci ’s definition, the only terms needed to be known
from the fine scale are

τ =
∫
He

Tf dx , and τx =
∫
He

xTf dx. (11)

As previously stated, the fine scale problem, see Eq. (9), is solved offline only once and
forever, for a dimensionless RVE, preserving the following dimensionless variables,

PeHe = uHe
k

, and wHe = rH2
e

k
(12)

obtained after using the following non-dimensional definitions for the variables involved:

T̂ = T
TM

; Ĥ = H
He

; Ĝ = GHe
TM

; x̂ = x
He

; τ̂ = τ

TMHe
; τ̂x = τx

TMH2
e
; f̂ = fH2

e
kTM

(13)

where the symbol ˆ indicates a dimensionless quantity, TM is the average value of the
unknown inside each element and f is an external source.
In Fig. 2 a graphical description of what the whole process is presented, although as will

be seen later, the final methodology is modified in order to make it efficient. P-DNS uses a
multiscale approach where the global problem is solved on a coarse mesh. The fine scales
are solved in separate problems, where for each coarse element e, a particular problem
with (PeHe ,wHe ) is solved with boundary conditions given by the coarse scale field Tc.
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given an arbitrary problem in coarse mesh with              and BCs at 

for each element e in the coarse mesh, solve a fine scale problem preserving 

upscale

downscale

}
RVEs

Fig. 2 A graphical description of the general idea in the P-DNS methodology for solving an arbitrary ADR
problem. Due to the linearity of the problem, the superposition theorem allows splitting the fine scale into two
canonical problems

Each of these fine scale problems differ in the dimensionless numbers that reign and also
the boundary conditions to apply dictated by the coarse solution through its nodal values,
i.e. its mean value and its first derivative. In order to make the computation efficient, it is a
matter of bringing all these problems to the same reference domain, the RVE, of arbitrary
size, seeking to minimize the number of computations necessary to cover all the different
situations that occur in the coarse mesh. In addition, due to the linearity of the problem,
the superposition theorem can be applied. Every combination of the different averages
and slopes can be represented by only two cases with an average value of unit value for the
dimensionless variable, i.e. T̂M = 1, and Ĝ = 0 or Ĝ = 1 for the slope. Finally a scaling
with the current mean value and slope of each coarse element is done.
Therefore, the value of τ̂ and τ̂x for an arbitrary Ĝ can be evaluated as:

τ̂ = τ̂ 0 + (τ̂ 1 − τ̂ 0)Ĝ, (14a)

τ̂x = τ̂x
0 + (τ̂x1 − τ̂x

0)Ĝ (14b)

and then using Eq. (13)

τ = τ̂TMHe = [
τ̂ 0 + (τ̂ 1 − τ̂ 0)Ĝ

]
TMHe = τ̂ 0TMHe + (τ̂ 1 − τ̂ 0)GH2

e , (15a)

τx = τ̂xTMH2
e = [

τ̂x
0 + (τ̂x1 − τ̂x

0)Ĝ
]
TMH2

e = τ̂x
0TMH2

e + (τ̂x1 − τ̂x
0)GH3

e (15b)

Each one of the fine scale problems generates a solution in the RVE that allows computing
the response of the fine scales (τ , τx) to upscale to the coarse mesh. The process ends
when the contribution of the fine scales is introduced as source terms over the coarse
scale problem as shown in Eq. (10).
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solution of arbitrary ADR problems

...

fill database

RVE RVE

OFFLINE

ONLINE

for each (Pe,w) compute

use database

Fig. 3 A graphical description of the actual P-DNS methodology for 1D ADR problems. To fill the database,
NPe × Nw × 2 RVE problems were solved. This offline work is done once and used online to solve any coarse scale
1D ADR problem

Instead of carrying out the entire process on the fly, an a priori and offline stage is
proposed for the preparation of a database. This latter is a table which serves for the
online consulting using as input the dimensionless pair (Pe,w). The outputs are four
dimensionless values (τ̂ 0, τ̂ 1, τ̂x0, τ̂x1), the integrals represented by Eq. (11), that enable
computing the dimensional τ and τx using Eq. (15). The number of RVE solutions required
tobuild this database, once a timeand for anyADRproblem, is proportional toNPe×Nw×2
beingNPe andNw the number of samples used to discretize the range of the dimensionless
inputs. Each of these problems is solved on the RVE domain of total length Ĥ = 1
discretized with a mesh as fine as accuracy needs.
The Fig. 3 shows the actual P-DNS methodology applied to arbitrary one-dimensional

ADR problems. The online work is shown at the top, which includes the entire set of
ADR problems that could be posed, each one represented by the advection, diffusion and
reaction coefficients plus the coarse mesh discretization. At the bottom, the offline work
done once and for all to fill the database associated with generic ADR problems.
Replacing the values obtained in Eqs. (15a) and (15b) in the Equation of the coarse

scale (10), the solution to the ADR problem at the coarse scale is calculated. This solution
presents the same precision as the one obtained if the problem were solved with a mesh
as fine as the one we used to solve the RVE offline, with the consequent saving in time and
memory. In the ADR case, the analytical solution of the RVE problem is known. By using
that solution to compute the RVE outputs, the exact result at machine precision would
have been obtained, regardless of the number of elements used in the coarse mesh. This
is an ideal case to check the validity of this methodology. However, this situation is lost if
more spatial dimensions are included and in consequence the RVE mesh size should be
adapted to the accuracy needed.
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It is interesting to emphasize that the possibility of obtaining, in a post-process step,
the value of the solution at any location in the coarse mesh is another advantage of the
P-DNS method. In fact, it is enough to evaluate, when the offline RVE is processed, the
value of the unknown function at any predetermined interior point x̂i. For example, let
T̂ 0(x̂i) and T̂ 1(x̂i) be the values of T̂ evaluated in the RVE for the case of Ĝ = 0 and Ĝ = 1,
respectively. Then, the value of the function T (xi) at any interior point xi is equal to

T (xi) = T̂ 0(x̂i)TM + [
T̂ 1(x̂i) − T̂ 0(x̂i)

]
GHe. (16)

It is necessary tohighlight that thenumberof outputs of thedatabase is not adimensional
limitation as the number of inputs. Each new input implies adding a new dimension to the
parameter space increasing significatively the combination of different cases to be solved
in the RVE. This is not the case for the number of outputs. The number of inputs involved
is always equal to two for ADR problems.
As the main conclusion for the ADR case, it can be said that: once a database is built,

it has as input Pe and w and has as output the four values of τ̂ 0, τ̂ 1, τ̂x
0 and τ̂x

1, and
eventually the values of T̂ 0(x̂i) and T̂ 1(x̂i) at some interior points. Using this database,
any arbitrary 1D ADR problem, stationary and without an external source, can be solved
for any mesh, including the particular case of a single element in the whole domain. The
accuracy depends exclusively on the number of elements used when solving the RVE. As
the analytical solution of the ADR problem is known in the RVE, the exact solution can
be obtained in all cases, regardless of the mesh used to solve the coarse problem.

Generalization to transient problems and/or problems with a variable source
in space/time
The equation to solve for the 1D transient advection-diffusion-reaction problem with
source (TADRS) becomes

ρCp

(
∂T
∂t

+ u
∂T
∂x

)
− ∂

∂x

(
k ′ ∂T

∂x

)
+ r′T = f ′(x, t) (17)

where ρ is the density, Cp is the specific heat and f ′ is an arbitrary source term depending
on x and t. Here the thermal problem is chosen but the same is valid for any scalar
transport equation.
Dividing all the equation by ρCp, the equation is written as

∂T
∂t

+ u
∂T
∂x

− ∂

∂x

(
k
∂T
∂x

)
+ rT = f (x, t) (18)

where now the physics coefficients k and r as well as the source term are defined as:
k = k ′

ρCp
, r = r′

ρCp
and f = f ′

ρCp
. It is true that respecting the P-DNS philosophy, the

space-time domain could be split into a coarse space-time plus a fine space-time scale.
However, in this work, the temporal part of Eq. (18) is integrated by any first or second-
order approximation. The errors that this integration introduces, which depend on the
time step (�t) adopted, are not intended to be eliminated in this work. Therefore, the
result will be no longer exact as before because it will incorporate the errors that are
inherent to the temporal approximation.
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Let consider that at time t = tn+θ , the time derivative of the unknown is

∂T
∂t

∣∣∣∣
n+θ

= Tn+1 − Tn

�t
(19)

which is exact for some unknown value of θ and a given�t = tn+1 − tn. Furthermore, the
value of the unknown in any time inside the interval �t will be considered with a linear
variation in time.

Tn+θ ≈ θTn+1 + (1 − θ )Tn. (20)

With these approximations, the semidiscrete in time version of Eq. (18) remains the
following ordinary differential equation (ODE)

Tn+1 − Tn

�t
+ θu

dTn+1

dx
− d

dx

(
θk

dTn+1

dx

)
+ θrTn+1

= f n+θ (x) − (1 − θ )u
dTn

dx
+ d

dx

(
(1 − θ )k

dTn

dx

)
− (1 − θ )rTn, (21)

which assumes that Tn is known from the previous time step and that the only unknown
is Tn+1. Gathering the physical and numerical constants, the ODE can be rewritten as

u
∂T
∂x

− ∂

∂x

(
k
∂T
∂x

)
+ cT = F (22)

where for simplicity we define k ← θk ; u ← θu; c = θr + 1
�t , T ← Tn+1, and

F (x) = f n+θ (x) − (1 − θ )u
∂Tn

∂x
+ (1 − θ )

∂

∂x

(
k
∂Tn

∂x

)
−

[
(1 − θ )r − 1

�t

]
Tn. (23)

From the point of view of P-DNS, the strategy to solve each time step is similar to the
solution of the previous ADR problem. The only difference is that now amodified reactive
term and a spatially variable source function must be considered. This source function
depends on the solution of the previous time step and on the external source itself, if any.
The introduction of an arbitrary spatially variable source function is not a problem for
the multiscale strategy of P-DNS, but it is a problem for the offline solution strategy using
a unique RVE to solve the fine scale. This drawback is overcome by approximating the
source F (x) with asmany piecewise linear functions of the same type as those used in FEM
as necessary to reproduce its spatial variation with acceptable precision. Also it may be
considered the usage of globally defined higher order polynomials.
Then be

F (x) ≈ FF (x) =
np−1∑
i=0

NF
i F (x

F
i ) (24)

where np is the number of points used to discretize F (x);NF
i are the shape functions used

and xFi the position of the points.
Applying the spatial splitting into coarse and fine solutions, replacing in Eq. (22), and

weighting with the coarse shape functions, the same left hand side of Eq. (10) is get. This
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Fig. 4 The functions to be evaluated offline in an RVE. It considers the case i = 1 for a discretization of np = 5 for
the source. For a given Pe and w, and additionally to the cases presented in Fig. 2, np RVE problems must be
computed. The integral τ̂ 0Fi and the first moment τ̂x0Fi of the fine solution T̂f are stored in the database

means the contribution of the fine scales to the coarse problem is restricted to compute
the integrals given by Eq. (11). Meanwhile, the right hand side remains

∫
He

NciF (x) dx ≈
∫
He

Nci

np−1∑
i=0

NF
i F (x

F
i ) dx. (25)

Considering Eq. (23), it is evident the need for storing previous values of the unknown,
i.e. Tn

c and Tn
f , to compute F (x).

At the RVE level, taking into account the linearity of the problem, the dimensionless
integrals τ̂ , and τ̂x should be redefined. The fine scale solution must consider a fictitious
distributed load equal to each of the shape functions used to discretize the source, see
Fig. 4. Calling with τ̂ 0Fi and τ̂x

0Fi each of these integrals, the total value of the integrals τ̂

and τ̂x is obtained by adding each product of the integral obtained at the RVE level by the
value of current source function at each point.

τ̂ = τ̂ 0 + (τ̂ 1 − τ̂ 0)Ĝ +
np−1∑
i=0

(τ̂ 0Fi − τ̂ 0)F̂ (xi) (26a)

τ̂x = τ̂x
0 + (τ̂x1 − τ̂x

0)Ĝ +
np−1∑
i=0

(τ̂x0Fi − τ̂x
0)F̂ (xi). (26b)

Using the Eq. (13) to go from the dimensionless variable to the real one, the following
value for the integrals τ and τx are obtained

τ = τ̂ 0TMHe + (τ̂ 1 − τ̂ 0)GH2
e + H3

e
k

⎡
⎣np−1∑

i=0
(τ̂ 0Fi − τ̂ 0)F (xi)

⎤
⎦ (27a)



Idelsohn et al. AdvancedModeling and Simulation in Engineering Sciences           (2022) 9:22 Page 11 of 22

τx = τ̂x
0TMH2

e + (τ̂x1 − τ̂x
0)GH3

e + H4
e
k

⎡
⎣np−1∑

i=0
(τ̂x0Fi − τ̂x

0)F (xi)

⎤
⎦ (27b)

In the same way, the evaluation a local value of the unknown function in an arbitrary
internal point xj must be modified. Now it is necessary to compute during the RVE
evaluation, in addition to those already defined T̂ 0(x̂j) and T̂ 1(x̂j), the value of T̂ 0Fi (x̂j).
Then, the value of the unknown in the internal point xj is

T (xj) = T̂ 0(x̂j)TM + (
T̂ 1(x̂j) − T̂ 0(x̂j)

)
GHe + H2

e
k

⎡
⎣np−1∑

i=0

(
T̂ 0Fi (x̂j) − T̂ 0(x̂j)

)
F (xi)

⎤
⎦

(28)

Equations (27a) and (27b) are used to evaluate the terms needed in Eq. (10), to solve one
time step of the TADRS problem. Furthermore, Eq. (28) is used to evaluate the unknown
function in some internal points.
Now in TADRS problems, the evaluation of internal points of the unknown is not

optional. Now, this evaluation is needed to approximate the unknown in the previous
time steps, which are required to calculate part of the function F , as seen in Eq. (23).
Indeed, at each time step, it is necessary to evaluate and save for the next time step unless
the value of the unknown Tn+1(xj) at as many interior points as used to discretize F .
Building the TADRS database. In Fig. 5 the P-DNS methodology applied to TADRS

problems in depicted. In TADRS problems, the dimensionless inputs to the database are,
as before in the ADR case, two values, Pe andw. But now, the dimensionless outputs of the
database are: a) the same four coefficients as before (τ̂ 0, τ̂ 1, τ̂x0, τ̂x1), plus two coefficients
for each one of the np points needed to correctly represent the function F , i.e. τ̂ 0Fi and
τ̂x

0Fi ; b) in addition, for the evaluation of the values of the unknown function in interior
points j, the same two previously values are needed, T̂ 0(x̂j) and T̂ 1(x̂j), plus one more
coefficient for each interior point added, i.e. T̂ 0Fi (x̂j).
For each pair of inputs (Pei,wi) a set of 1D ADRS problems must be solved to compute

the output coefficients. These solutions are computed in the RVE using a very fine mesh
to reduce the approximation errors. In this work, a grid size hf = 0.0005 is selected after
a convergence analysis where for finer meshes the changes in the uploading variables is
below a given tolerance. To guarantee the second-order discretization using linear finite
elements, the local restrictions of Pehf ≤ 1 and whf ≤ 1 are accomplished for stability
reasons adding local refinement when necessary.
Figure 5 presents the variation of the dimensionless RVE outputs (τ̂ 0, τ̂ 1, τ̂x0, τ̂x1) versus

the dimensionless input numbers Pe and w. In particular, the database shown was con-
structed with 1271 RVE simulations ranging Pe from 10−2 to 102, and w from 10−5 to 105,
with a logarithmic distribution of the samples.
Additionally, Fig. 5 presents the variation of some of the dimensionless RVE outputs

that accounts for the influence of the source on the solution, i.e. τ̂ 0Fi and τ̂x
0Fi regarding

Pe and w. The outputs displayed are for the cases i = 0 and i = 1 when the number of
points used to discretize the source is np = 2.
In order to evaluate the sensitivity and convergenceof the coarse scale solution regarding

the number of points used to discretize the source, we have constructed asmany databases
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solution of arbitrary TADRS problems, for each time step do

...

fill database

RVE

OFFLINE

ONLINE

for each (Pe,w)

compute

use database

RVE

RVE RVE

and also np RVE problems to account for F(x) in the fine scale

fill database

Fig. 5 A graphical description of the actual P-DNS methodology for 1D TADRS problems. To fill the database,
NPe × Nw × (2 + np) RVE problems were solved. This offline work is done once and used online to solve any 1D
TADRS coarse scale problem. In this example, the number of points to discretize the source is np = 2

as the different np values we need in the following Sections. In the view of the results
obtained, we will conclude this work giving an advice about the proper selection of np.
Finally, the steps to employ the database in a given mesh element of the coarse scale

consists in:

(a) evaluate the dimensionless inputs, Eq. (12),
(b) predict the fine-scale response using the information provided by the database,
(c) re-scale the output coefficients, Eq. (13).

In step (b), interpolation should be carried out to determine the outputs for arbitrary Pe
and w values. The ability to represent the nonlinear variation of the outputs is crucial to
obtain accurate coarse mesh solutions [15].

The solution of the Idelsohn’s benchmark via the P-DNSmethod seen as ROM
A classical example of non-separable problems was established in a joint Spanish-French
workshop held at Jaca, Spain, in 2013. The definition of the benchmark is the following:
a transient problem is defined on a one-dimensional domain x = [0, L], over the time
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interval t = [0, tend]. It is assumed that a prescribed zero temperature is applied on x = 0
and x = L and that the domain is subjected to a time-dependent thermal loading that
consists of a thermal source f (x, t). This loading can be seen as a moving flame/laser beam
such that f (x, t) = δ(x− vt) a Dirac distribution, where v is the velocity of the flame/laser
beam (see Fig. 1). For the sake of simplicity, the initial conditions are set to zero. The
material is assumed to be homogeneous and fully known where k represents the heat
capacity and ρCp the density by the specific heat parameter of the material. The example
was nominated as the Idelsohn’s benchmark in [18,19]. The problem has been solved by
applying POD and PGD in their global, classical version. These results will serve as a
reference for the degree of reduction attainable by another ROM.
Despite its simplicity, this benchmark represents a series of phenomena that appear

in a large number of problems in the industry [20,21]. Take, for instance, the problems
of welding, where a highly concentrated heat source is moving in different directions,
the problems of cutting materials by laser and/or the very now fashionable methods of
additive manufacturing, to name just a few of the phenomena directly related to the
Idelsohn’s benchmark.
Moreover, this test case represents a series of phenomenamuch larger than those related

tomoving concentrated sources. This case represents all the problemswhere the variables
are inherently non-separable, as seen frequently in the industry. Indeed, some problems
have, by definition, a solution structure that is inherently inseparable. According to the
Fourier decomposition any function may be written as a sum of the product of separable
functions, although the number of terms required can be really large. In this case, the
variables are said to be intrinsically non-separable and these are the phenomena in which
ROM is not capable of reducing the number of degrees of freedom of the set.
In order to see this drawback of the standard ROM, Fig. 6a represents the solution in

space-time of the Idelsohn’s benchmark for some particular coefficients. The FEM result
with 150 linear elements, i.e. 149 degrees of freedom (DOF), is considered the reference
or DNS solution of this problem. On the other hand, Fig. 6b represents the solution of the
same problem using a standard POD. The solutions with 5, 10 and 20 DOF are insufficient
as non-physical high frequencies are noticeable. At least 70 modes are needed to avoid
these numerical artifacts and obtain a satisfactory solution. However, a reduction from
149 DOF to 70 DOF it is useless from a ROM’s point of view.
The poor separability of the solution makes ROM global approaches incapable to find a

suitable basis set in order to project the solution. To avoid these problems, the idea of local
basis arisesnaturally. Initialworksweredone in the frameworkofPOD-basedmethods and
after were extended to PGD approaches [19]. However, these methodologies, in addition
to the complication they introduce, are unfair since theymake Idelsohn’s benchmark loses
its reason for being. The spirit of Idelsohn’s benchmark is to find methods that, although
the variables are not separable, work well and can be reduced.
Some solutions of the Idelsohn’s benchmark using P-DNS are presented below. The

difficulty of the problem depends largely on the source velocity. For zero velocity, the test
becomes of separate variables and can be solved precisely with 4 or 5 PODmodes. On the
other hand, for high source velocity, the difficulty increases. Defining the dimensionless
number Pe = vHe/k , for Pe ≥ 1, visible space-time coupling issues begin to be noticed. In
this section we will deal with Pe ≥ 1.
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Fig. 6 The Idelsohn’s benchmark. Time–space solutions highlighting the drawbacks of global POD solutions

The configuration used defines a source f (x, t) with high velocity v such as:

f (x, t) =
{

0 t < ti or t > tf
A cos π

L (x − x0(t)) ti <= t and − L
2 < x − x0(t) < L

2
(29)

where x0(t) = xi + v(t − ti), A = 100, L = 0.15, ti = 0.2, tf = 0.7, xi = 2π
7 , xf = 5π

7 , and
v = xf −xi

tf −ti . The material is defined with k = 0.05 and ρCp = 1.
To analyze the results, the different approximation factors of the proposed P-DNS

methodmust be taken into account. On one hand, there are the standard variables for any
transitory problem, that are: (a) for the temporal approximation, the time-step and the θ

coefficient used; and (b) for the spatial approximation, the number of elements used in
the coarse mesh, which will give us the number of degrees of freedom of the problem. But,
for P-DNS, there are other variables specific to the method that influence its precision.
These are: (a) the number of points in each element used to approximate the source; and
(b) the number of elements used in the fine mesh, that is, in the RVE built offline.
For the full order model (DNS) 300 linear elements were used with a �t = 0.00125s

and θ = 1. This gives a space-time reference solution Tref of 300 × 800 sampling points.
The P-DNS results presented in Fig. 7 are computed preserving the parameters for the
temporal approximation and varying the number of elements used in the coarse mesh.
In this case study, we use the database with a number of points to discretize the source
np = 26. An analysis of the convergence will be made later as a function of np.
The relative error between an approximated solution T and the reference solution is

the ratio between the error measured in energy norm, or L2-norm, and the energy norm
of Tref :

e = ||T − Tref ||L2 (30)
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Fig. 7 The Idelsohn’s benchmark. Relative error varying the degrees of freedom. In the case of ROM solutions,
DOF is the number of modes. For P-DNS, DOF is the number of nodes of the coarse mesh

erel = e
||Tref ||L2

(31)

In the case of P-DNS, only the values of the solution on the nodes of the coarse mesh are
considered to compute e.
The convergence curves are given in Fig. 7 for the relative error of P-DNS and selected

global ROM approaches. The ROM solutions using PGDGalerkin and the optimum POD
decomposition through the Singular Value Decomposition (SVD) are taken from [18].
To be able to compare the results, the concept of degrees of freedom is established as
the number of modes employed in the ROM solutions, and as the number of elements of
the coarse mesh used in the P-DNS calculations. Considering as target a relative error of
1%, P-DNS requires approximately 10 DOF to reach the required accuracy. Global ROM
approaches requires more DOF: SVD more than 15 and PGDmore than 30. Additionally
the convergence rate with the number of modes is poor for the global PGD solutions, as
reported previously.
Figure 8 presents snapshots of the solution of the Idelsohn’s benchmark at different

simulation times. The reference solution is compared with the P-DNS and the standard
FEM solutions using a coarse grid of nel = 8 and a time-step such as the dimensionless
source speed is v̂ = v�t

�x = 0.2. As shown, the P-DNS leads to accurate nodal results
(bigger circles), but the coarsemesh solution couldnot be useful enoughbecause the piece-
wise linear interpolation widely misses the variation of the solution inside the elements.
Therefore, we take advantage of the multiscale features of the P-DNS method, i.e. the
physical behavior at a smaller scale can be introduced from pre-computed RVE results
using Eq. (28). Then, we display the solution complemented with the values at the np− 2
interior points used to discretize the source (smaller circles).

Other solutions of transient advective–diffusive–reactive problems via the
P-DNSmethod with different reduction order
Regardless of Idelsohn’s benchmark, the P-DNS method has been tested in general in
stationary and transient advection-diffusion-reaction problems with or without source.
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Fig. 8 The Idelsohn’s benchmark. v̂ = 0.2 and nel = 8. Snapshots of the FEM and P-DNS solution for t = 0.3 s
(top-left), 0.5 s (top-right) and 0.7 s (bottom) while compared with the DNS reference. For the P-DNS solution
larger circles are the nodal values and smaller circles are the values on the np dicretization points of the source

An extension to two-dimensional ADR cases can be found in reference [15]. Like-
wise, for three-dimensional transient problems in vector equations such as the Navier–
Stokes equations, can be found in references [14,16]. We will show here just some one-
dimensional problems in which the P-DNSmethod can be considered as a ROMmethod.
Another aim of this Section is to evaluate the sensitivity and convergence of the coarse

scale solution regarding thenumberof pointsused todiscretize the source,np.Hereinafter,
when a number of np is said to be selected, it means using the database where the source
was discretized with np points.

Advection–diffusion–reaction with an exponential Source

The analysis domain is	 ∈ [0,6] where a stationary advective–diffusive–reactive problem
with an exponential Source (ADRS) is solved. The physical coefficients chosen are u = 1,
k = 0.1 and c = 2. Dirichlet boundary conditions are imposed on the boundaries, such
as T (x = 0) = 3 and T (x = 8) = 8. A source that varies exponentially with x as
f (x) = 0.1 exp(x) is established.
The exact solution of this problem is obtained using a symbolic library. This reference

result is used to evaluate the prediction error of the numerical approximations. Figure 9
compares the exact solution with the numerical ones obtained using P-DNS and the
standard FEM for homogeneous spatial discretizations of nel = 2, 4, and 8. The FEM
solutions present the expected instabilities towards the boundary layer on the right when
second order schemes for advective terms are employed and no stabilization is included.
The P-DNS solutions, which were obtained using np = 2 to discretize the source, show a
stable result.
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Fig. 9 Advection–diffusion–reaction with an exponential Source with nel = 2 (top-left), 4 (top-right), and 8
(bottom). Nodal results from FEM and P-DNS with np = 2 are compared with the exact solution

As the exponential source is represented through linear approximations, the P-DNS
method does not yield the exact solution on nodal values. Therefore an analysis of the
convergence of the error of P-DNS regarding the choice of np, the number of points per
coarse element to discretize the source, is performed. Figure 10 presents the convergence
of the numerical error when nel, the number of elements of the coarse mesh, is increased.
After an initial phase of instability for coarse meshes, FEM attains the expected second-
order convergence with spatial discretization. In general, the solutions with P-DNS shows
lower absolute error. The error decreases quadratically with nel for any np. Then, the
absolute error level can be tuned by the choice of np. For example, to reach an absolute
error e < 10−3, FEM requires employing a mesh of more than 256 elements. The ability
of P-DNS of working as a ROM is also noticeable in this example because this multiscale
method can achieve the same error level using, for example, only a mesh of 10 elements
and np = 11.

A transient advective–diffusive–reactive problem

The analysis domain 	 ∈ [0, 8] is discretized into eight 2-node elements of equal length.
The advection, diffusion and reaction coefficients are chosen as u = 1, k = 0.1 and c = 2.
Using these data, the dimensionless numbers are Pe = 5, w = 170. Dirichlet boundary
conditions are imposed on the boundaries, such as T (x = 0) = 3 and T (x = 8) = 8.
The initial solution is a linear profile. The transient solution is obtained using an implicit
time integrationwith θ = 0.5. Figure 11 shows the solution obtained considering different
time steps where the results using the P-DNS method with nel = 8 and np = 26 with
�t = 0.125 s are compared with a DNS solution. The latter was obtained by solving the
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Fig. 10 Advection–diffusion–reaction with an exponential Source. Convergence of the error of P-DNS regarding
the choice of np

Fig. 11 A transient advective–diffusive–reactive problem. DNS solution is compared with the P-DNS solutions
on the nodes of the coarse mesh. Times plotted are 0.25 s, 0.5 s, and 1s. Time step is �t = 0.125 s and θ = 0.5

problem on a mesh of 1000 uniform-size linear elements using the standard Galerkin-
FEM, a time-step size of 0.005 s, and second-order operators.
Results show that an exponential layer gradually develops at the right boundary which

triggers a global instability in the FEMwhen a coarse mesh is used, see references [15,22].
This global instability is successfully controlled by the P-DNS method.
The convergence rate of the error applying the P-DNS method in transient problems is

studied from hereafter. The procedure consists on evaluating the convergence when nel
is increased while keeping constant np = 26 and a CFL = u�t/�x = 0.25. Two values
for θ parameter are tested: θ = 0.5, the second order Crank-Nicolson scheme, and θ = 1,
the first order Euler scheme. In addition, the errors obtained with FEM and θ = 0.5 are
also computed. Figure 12 shows that the P-DNS errors inherits the convergence rate of
the temporal discretization used: linear with θ = 1 and almost quadratic with θ = 0.5
(ROC=3.2). This slight detriment of the convergence is due to neglect the contribution of
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Fig. 12 A transient advective–diffusive–reactive problem. Convergence of the error of P-DNS and FEM solutions
when keeping fixed CFL=0.25

the first and second derivatives of Tn to compute F (x) with Eq. (23) when calculating the
fine scale contributions from Eqs. (27a) and (27b).
The solutions obtained with FEM with θ = 0.5 show quadratic convergence, but the

absolute error for a given nel is up to three order larger than the obtained with the P-DNS
solutions. In fact, the accuracy of FEM with 128 linear elements can be overcome by P-
DNS using only eight, which shows again the capability of the P-DNSmethod of reducing
the number of degrees of freedom.

Arbitrariness of the splitting between the coarse and fine scales

In this test the uniform advection of a temperature field with a constant source term is
solved from the initial to the steady state. The problem data is u = 1, k = 10−3, r = 0, and
f (x, t) = 1. The homogeneous boundary condition is imposed at x = 0 and x = L = 1.
The solution develops an exponential layer at the outflow boundary x = L. Figure 13
shows snapshots at different simulation times of the DNS solution with 1000 elements
and 1000 time steps. The thin boundary layer towards the right wall triggers instabilities
that makes impossible to find a solution using non-stabilized approaches with coarser
meshes due to the restriction of Pe < 1.
This test aims studying the arbitrariness of the splitting between the coarse and fine

scales. Therefore, while the numerical parameters θ = 1 and �t = 0.05 are established,
the parameters nel and np are varied but preserving the factor (nel)(np − 1) = 20. This
keeps constant hs = L/((nel)(np − 1)) = 1/20, the grid step for the discretization of the
source. Snapshots of the transient P-DNS solution with nel = 1 and np = 20 are shown
in Fig. 13.
To properly compare the P-DNS solutions with the different choices of nel and np, the

error enp is defined as the root mean square error of the numerical predictions on the
location of the source discretization points for each simulated time, i.e.

enp =

√√√√∑ndt
n=1

∑(nel)(np−1)
p=1

[
T (xp, tn) − Tref (xp, tn)

]2
(nel)(np − 1)(ndt)

, (32)
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Fig. 13 An advective–diffusive problem with constant source. DNS solutions at times 0.25 s, 0.5 s, 0.75 s, and 1.5
s are compared with P-DNS solution on the np points

Table 1 An advective–diffusive problem with constant source

nel 1 2 4 5 10 20

np 21 11 6 5 3 2

enp 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181

E 361 163 91 109 739 6859

The absolute error is evaluated using the temperature field on the discretization points of the source. E is an estimation of
the computational effort measured as the number of operations per time-step required to solve the equation system and
update the source discretization points

where ndt is the number of time steps and xp is the location of a given source discretization
point. Table 1 presents enp for the tests performed. The fact that the P-DNS solution does
not change confirms the arbitrariness of the selection of nel and np once established hs.
A particular choice is considering the coarse mesh composed only by a single 2-nodes

element. This split avoids solving an equation system for the coarse mesh. Indeed, obtain-
ing the solution of the current time step relies on the update of the np points through
Eq. (28). The solution at each discretization point T (xp, tn+1) is decoupled from the cur-
rent value of any other point. This strategy turns P-DNS to work as an explicit solver, but
without the standard stability limits of Fo = k�t/(2�x2) < 1 and CFL = u�t/�x < 1.
However, according to Eq. (28), the update of a given point depends on the previous
states of the other discretization points to which it shares the element in the coarse mesh.
Therefore, the computational effort is now devoted to compute thematrix-vector product
of sizes np × np by np × 1.
The computational effort for the different choices of nel and np can be estimated. The

most expensive tasks are (a) the solution of an equation system of nel − 1 unknowns to
obtain the updated state on mesh nodes, and (b) computing of nel matrix-vector prod-
ucts of size np − 2 to update the value on the discretization points inside the elements.
Using standard procedures to perform these tasks, it leads to a computational effort E
of approximately E = O((nel − 1)3) + nel × O((np − 2)2) operations. Table 1 presents
the estimated value of E for the tests performed in this section, where the minimum is
found at nel = 4 and np = 6. It is well known that the requirements presented for both
procedures represent amaximal bound. The number of operations can be decreased using
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established algorithms as iterative solutions for sparse matrix systems, while the compu-
tation times can be reduced with parallel computing, among many other improvements.
However, these studies are left for future work.

Conclusions
To solve a given problem, the P-DNS method arbitrarily divides the unknown into coarse
and fine scales. The final result is obtained as an overlay of both scales.
The main strength of the P-DNS method is that the fine-scale can be solved offline in

a non-dimensional way, just once, and lastly applied for any advection reaction diffusion
problem. Themethod relies on isolating and precomputing themost expensive part of the
solution, the evaluation of the fine-scale through dimensionless RVEs. Once tabulated the
fine-scale outputs, themethod allows solving problemswith relatively coarsemeshes using
these non-dimensional results. From this point of view, the method belongs to Reduction
Order Models (ROM), in which problems with a few degrees of freedom are solved using
previously tabulated coefficients.
Compared to standard ROM like PODor PGD, P-DNS has the advantage of considering

the whole structure of the solution. Hence its accuracy and possibility of reduction in
problems where there is no separation of variables.
The approximation error of the methodology for one-dimensional transient advective–

diffusive–reactive with source problems is numerically shown to quadratically decrease
with the grid step for thediscretizationof the source,hs. In thepractise,we expect aP-DNS’
user receives an unique database with a predefined number np of discretization points for
the source. Therefore, the user can adjust the accuracy of the solution by refinement of
the coarse mesh.
In conclusion, the possibilities of the method seen as a way of reducing the degrees of

freedom of a given problem have been shown. The formulation of this method in 1D is
sufficient to confirm the strength of this novel approach. This idea could be taken as a
basis for future use of reduction methods for more real engineering applications where
the separation of variables is often non-existent.
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