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Optimum PR Control applied to LCL filters with
Low Resonance Frequency
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Abstract—A control strategy for LCL Grid-connected voltage
source inverters is proposed. Using the injected grid current mea-
surement exclusively, the proposal allows the use of the propor-
tional plus resonant regulator (PR) optimum design, regardless
of the filter resonance frequency. Simulation and experimental
results that demonstrate the validity and effectiveness of the
proposal for different LCL filter resonance frequency values are
presented. Also its superiority compared to a control method
recently proposed in the literature is shown.

Index Terms—Voltage Source Inverter, LCL filter, Low reso-
nance frequency, Active damping, PR control.

I. INTRODUCTION

VOLTAGE-SOURCE-INVERTERS (VSI), are widely
used in distributed generation systems for grid current

injection. In order to meet the power quality requirements
[1], [2], [3], the inverter must be linked to the grid via a
suitable filter. It is common to use a simple inductor (L filter).
Nevertheless, to meet the power quality requirements with
this kind of filter requires a high inductance value, or a high
switching frequency. For this reason it is preferable to use LCL
filters (see Fig. 1), which offer advantages in terms of cost and
size reduction. However, the natural resonance frequency ωL

res

of the LCL filters, difficults the current grid injection control.
The lower the filter resonance frequency, the greater the atten-
uation of the inverter switching frequency. Nonetheless, the
difficulty in controlling the filter will increase. Many methods
have been proposed and studied to damp this resonance. These
methods can be classified into passive damping [4], [5] and
active damping [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16]. Passive damping introduces power losses to the
system (reducing efficiency). For this reason, when the filter
resonance frequency is located within the control bandwidth,
it is generally preferred to use active damping.

Many different control techniques for LCL filters have
been proposed in the literature such as: multiloop control
strategies [17], Full-State feedback control [18], [19], adaptive
control [20] or neural networks control [21]. Some of these
techniques are very complex and some of them require the use
of additional sensors to those needed to control an L filter.
Given the need to reduce the complexity of the controller
and the number of sensors, reference [9] shows that it is
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Fig. 1. Three-phase voltage source inverter linked to the grid via an LCL
filter.

possible to control a high resonance frequency LCL filter
feeding back only grid current measurement ~i2abc (see Fig.
1). Following this line, in [10] the LCL filter control using a
proportional plus resonant regulator (PR) [22], [23], [24], [25]
was analyzed. It was proved in [10] that there exists a critical
resonance frequency ωcrit, such that: a) If ωL

res > ωcrit, it
is possible to control the system with a PR regulator, with
~i2abc feedback only; b) If ωL

res < ωcrit feedback of capacitor
current measurement ~iCabc is additionally required [11], [15].
c) If ωL

res = ωcrit, the system will be unstable even if ~iCabc
feedback is implemented.

It is interesting to be able to control an LCL filter with
ωL
res ≤ ωcrit, employing ~i2abc feedback only. In [14] this is

achieved using a PR controller plus an active damping loop
that feeds ~i2abc back through a first-order High-Pass Filter
(HPF) [12], [13], [14]. However, when this method is used
to control an LCL filter with very low resonance frequency, it
will be shown in this paper that a poor dynamic response of
the closed-loop system is obtained.

The present work proposes a current control strategy that
allows to control an LCL filter with ~i2abc feedback only,
regardless of the LCL filter resonance frequency value. The
controller is based on the following idea: Applying reference
model control techniques [26] to an LCL filter with a low
resonance frequency ωL

res < ωcrit, a system that emulates the
behaviour of an LCL filter with a high resonance frequency
ωL
res > ωcrit can be obtained. In concordance with [10]

the system obtained can be controlled using a PR regulator.
Furthermore, it will be shown that if the resonance frequency
of the emulated filter is properly selected, the control can be
implemented using an optimum design of the PR regulator
[23]. Both simulation and experimental results of the proposed
controller are presented, and its performance is evaluated
against the controller design presented in [14]. From this com-
parison it is concluded that the proposal presented here offers
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Fig. 2. Control of the system of Fig. 1: (a) Using only a PR regulator (for
ωL
res > ωcrit), (b) Using a PR plus a first-order High-Pass Filter (HPF).

better closed-loop dynamic response and better disturbance
rejection.

II. SYSTEM DESCRIPTION AND MODELLING

Figure 1 shows the circuit diagram of a three-phase grid
connected VSI, powered by a constant DC voltage source Vbus.
The output voltage of the inverter is connected to the grid via
a three-phase LCL filter, composed of inductors L1, capacitors
C and inductors L2. Sensors are used to measure the three-
phase grid voltage ~vgabc , and the three-phase current injected
to the grid ~i2abc . Measurements are transformed into the αβ
reference frame. In this frame the current vector injected to the
grid will be called~i2, the grid voltage vector will be called ~vg ,
and the inverter side voltage vector applied to the filter will
be called ~vi.

The aim of the “Controller” block shown in Fig. 1 is to
regulate~i2, for controlling the power flow from the DC voltage
source Vbus to the grid. The current reference~i2ref is synchro-
nized with the positive-sequence fundamental component ~vg0
of ~vg . This reference is generated multiplying a vector gain
~gr, obtained from the reference magnitude generator (RMG)
block, by the component ~vg0 detected using a PLL block. In
addition, the PLL block identifies the fundamental angular grid
frequency ω0, which is used to tune the resonance frequency of
the PR regulator. The behaviour of current~i2, can be modelled
by the following continuous system:

~i2(s) = GL
dir(s)~vi(s) +~i2per (s), (1)

where ~i2per is the component of ~i2 produced by disturbance
~vg , and GL

dir(s) is the transfer function:

GL
dir(s) =

~i2(s)

~vi(s)

∣∣∣∣∣
~i2per (s)=0

=
ωL
res

2

sLT (s2 + ωL
res

2
)
, (2)

where LT =(L1+L2) and ωL
res =

√
LT /(L1L2C) is the LCL

filter resonance frequency. In order to model the discrete-time
system behaviour with sampling period Ts, a one sample delay
z−1 cascaded with the controller (block 1/z in Fig. 1) is con-
sidered, which takes into account the digital processing delay
[27], [23], [28]. Using the zero-order-hold (ZOH) method [29],
[10] to obtain the Z-transform of (2), the discrete time transfer
function of the plant GL(z) = z−1GL

dir(z) is found:

GL(z)=
~i2(z)

~vi
ref

(z)
=
Ts
LT

[
z2−2zcos(ωL

resTs)+1
]
−b(z−1)2

z(z−1)
[
z2−2zcos(ωL

resTs)+1
] , (3)
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Fig. 3. Root locus of the closed-loop system of Fig. 2(a) with Kp = Kpopt

and Tr = Tropt , as a function of ωL
res

where b=sin(ωL
resTs)/(ω

L
resTs). Considering a stiff grid con-

dition [30], a feedforward compensation ~vFF = ~vg can be used
to counteract the effect produced by disturbance ~vg on current
~i2 [23] (see Fig. 1). In such a case, the voltage reference
applied to the inverter result ~viref (z) = ~vc(z) + ~vFF (z). The
behaviour of~i2(z) can be modelled as a function of the control
action ~vc(z) as:

~i2(z) = GL(z)~vc(z) +~i′2per (z), (4)

with ~i′2per (z) = GL(z)~vFF (z) +~i2per (z). In order to simplify
the analysis of the control loop behaviour, in what follows it
is assumed that ~i′2per = 0 (no external disturbance).

III. CONTROL USING A PR REGULATOR

According to the internal model principle [31], to copy a
reference ~i2ref without steady state error at the fundamental
angular grid frequency ω0, it is common to use a PR regulator
with its resonance tuned at that frequency [22]. Fig. 2(a)
shows the block diagram of the system of Fig. 1, when
the “Controller” block is implemented using a PR regulator.
The PR discrete transfer function, obtained with the Tustin
transform method with prewarping [10], [29], is given by:

G
PR

(z)=
~v
PR

(z)

~e(z)
=Kp

(
1+

a

Tr

z2 − 1

z2−2z cos(2πω0/ωs)+1

)
, (5)

where a= sin(ω0Ts)/(2ω0) and ωs = 2π/Ts is the sampling
angular frequency; ~v

PR
(z) and ~e(z) are defined in Fig. 2.

In [23] an optimum design for a PR regulator used to
control an L filter (considering the digital processing delay)
was proposed. If LT is the inductance value of the L filter, to
obtain a system with a desired phase margin φm ≈ 45◦ at a
resulting crossover frequency ωc≈ωs/12, the PR parameters
must be [23], [10]:

Kpopt =
ωsLT

12
& Tropt =

120

ωs
(6)

In [10] two significant regions for the control of an LCL
filter using a PR were identified. These regions are delimited
by the critical resonance frequency ωcrit =ωs/6≈ 0.17ωs. If
ωL
res > ωcrit (high resonance frequency region), the system

of Fig. 2(a) is stable. On the other hand, if ωL
res < ωcrit
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res =0.36ωs,
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res =0.45ωs, and (d) L. Vertical Axes [A].

(low resonance frequency region), the system is unstable. To
achieve system stability in the latter region, it is shown in [10]
that the additional feedback (and the consequent measurement)
of capacitor current ~iCabc (see Fig. 1) is required. Another
alternative to stabilize the control loop is the feedback of
current ~i2 toward the system input, through a first-order HPF
[12], [13], [14], as it is shown in Fig. 2(b).

The high resonance frequency region ωL
res > ωcrit is the

zone where the closed-loop system of Fig. 2(a) is stable.
However, it should be noted that for Kp = Kpopt , the range of
ωL
res where such system is stable is smaller. In order to know

the range of ωL
res > ωcrit where the system is stable by using

the PR optimum design (6), Fig. 3 has been drawn. This figure
shows the root locus of the closed-loop system as a function
of ωL

res, when a PR with Kp =Kpopt and Tr =Tropt is used. It
shows that the stability range is 0.228ωs≤ωL

res≤0.454ωs. To
verify the stability within this range, Fig. 4(a)-(c) shows the
unit step responses of the system of Fig. 2(a) with Kp =Kpopt

and Tr =Tropt for LCL filters with resonance frequency: (a)
ωL
res = 0.24ωs; (b) ωL

res = 0.36ωs; and (c) ωL
res = 0.45ωs.

These responses were obtained, applying to the system of
Fig. 2(a) a positive-sequence unit magnitude current reference
vector~i2ref , with angular frequency ω0, at the instant t > 0. In
each case it is indicated the percentage overshoot relative to the
final value (Mp) and the settling time with a threshold value
of 5% (ts5% ). For comparison, Fig. 4(d) shows the unit step
response obtained when an L filter is controlled with the PR
optimum design [23]. Note that for the intermediate angular
frequency ωL

res = 0.36ωs [Fig. 4(b)] the values of Mp and
ts5% are very similar to those obtained with the L filter [Fig.
4(d)]. Note also that for ωL

res 6= 0.36ωs [Fig. 4(a) and 4(c)]
the response is degraded.

IV. PROPOSED CONTROL STRATEGY

It is proposed to modify a plant conformed by an LCL
filter with resonance frequency ωL

res, in such a way that it
behaves similarly to an LCL filter with a desired resonance
ωH
res within the range 0.228ωs ≤ ωH

res ≤ 0.454ωs. Based on
the exposed in Sec. III, the system obtained will be able to be
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controlled using the PR regulator optimum design. In addition,
as has been seen, with an appropriate choice of ωH

res > ωcrit,
it is possible to obtain a closed-loop system response very
similar to that obtained when an L filter is controlled. Such
modification of the plant can be implemented using reference
model control techniques [26].

By factoring the numerator of (3), the following general
expression for the discrete plant with resonance frequency ωX

res

can be obtained:

GX(z)=
~i2(z)

~vc(z)
=
PX(z)

QX(z)
=
KX(z−zXst )(z−1/zXst )

z(z−1)(z2+qXz+1)
, (7)

where superscript X =L or X =H when making reference
to a filter with resonance frequency ωL

res or ωH
res, respectively.

PX(z) and QX(z) are the respective polynomials numerator
and denominator of GX(z). KX and qX =−2zcos(ωX

resTs) ∈
R. zXst = (−hX +

√
(hX)2 − 1) with hX =(bX−dX)/(1−bX),

dX =cos(ωX
resTs) and bX =sin(ωX

resTs)/(ω
X
resTs).

Note that (7) has two reciprocal zeros (zXst and 1/zXst ).
It is easy to demonstrate that, for a filter with a resonance
frequency less than the Nyquist frequency (ωX

res < ωs/2), it
is always 0 < bX < 1 and 1 < hX < 2. Therefore zXst
∈ R, −1 < zXst < (−2 +

√
3) ≈ −0.27. This means that, in

the resonance frequency range of interest, the zero zXst will
be always located within the unit circle, and therefore the
reciprocal zero 1/zXst will be located outside the circle.

Figure 5 illustrates the block diagram of the proposed
controller in this paper for the system of Fig. 1. The transfer
function of plant GL(z) [(7) with X = L], consists of
a numerator PL(z) whose degree is 2 and a denominator
QL(z) whose degree is 4. Let C(z) = c2z

2 + c1z + c0,
D(z) = d3z

3 + d2z
2 + d1z+ d0, and Ka a gain. Also, let

Λ(z)=z3+λ2z
2+λ1z+λ0, a stable arbitrary monic polynomial.

The transfer function of the block “Modified Plant” in Fig. 5
results:

GH
mod(z)=

~i2(z)

~v
PR

(z)
=
Pm(z)

Qm(z)
=

KaΛ(z)PL(z)

[Λ(z)−C(z)]QL(z)−PL(z)D(z)
. (8)

This transfer function has a numerator polynomial Pm(z)
whose degree is 5, and a denominator polynomial Qm(z)
whose degree is 7. Since there are 7 coefficients [3 of C(z)
and 4 of D(z)], for a given Λ(z) there are enough degrees
of freedom to assign the 7 poles in (8) [26]. The expression
Qm(z) = [Λ(z)−C(z)]QL(z)−PL(z)D(z), is a Diophantine
equation [32] wherein QL(z) and PL(z) are coprime (no
common roots). The coefficients that [Λ(z)−C(z)] and D(z)
must have to obtain a desired polynomial Qm(z) whose degree
is 7, can be found solving the matrix equation (13) (see
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For GL1(z) with ωL1

res =0.14ωs and GL2(z) with ωL2
res =0.47ωs modified

to GH
mod1

(z) and GH
mod2

(z) respectively, with ωH
res =0.36ωs. Comparison

with GH(z) with ωH
res = 0.36ωs and an L filter.

Appendix).
It would be desirable that the transfer function (8) results

equal to the transfer function GH(z) [eqn. (7) with X =H].
This can not be achieved, since it is not possible to cancel
the zero 1/zLst of GL(z) (since it is outside the unit circle).
However, it is possible to obtain a system with a behaviour
very close to that of GH(z). If Qm(z) = Λ(z)QH(z) is
selected, the transfer function of the “Modified Plant” results:

GH
mod(z)=Ka

PL(z)

QH(z)
=
KaK

L(z − zLst)(z − 1/zLst)

z(z−1)(z2+qHz+1)
, (9)

with qH = −2zcos(ωH
resTs). It should be noted that the

“Modified Plant” is not a stable closed-loop system, on the
contrary, it is an inherently unstable system that must be
stabilized using the PR regulator. The transfer function (9),
retains the zeros of GL(z) and has the poles of GH(z). It can
be demonstrated that two reciprocal real zeros (zXst and 1/zXst )
always provide the same phase regardless of their location.
Therefore the phase behaviour of GH

mod(z) will be identical
to that of GH(z). It is desirable to preserve the bandwidth
obtained when GH(z) is controlled using the PR optimum
design. In order to achieve this, the constant Ka must be
calculated in such a way that GH

mod(z) has the same gain as
GH(z) at the crossover frequency ωc = ωs/12:

Ka =
PH(z)

PL(z)

∣∣∣∣∣
z=ejωcT

=
KH

KL

∥∥∥∥∥(z−zHst )(z−1/zHst )

(z−zLst)(z−1/zLst)

∥∥∥∥∥
z=ejωcT

. (10)

With this value of Ka, GH
mod(z) and GH(z) will differ

slightly in their high frequency magnitude behaviour. In order
to show this, consider two plants with resonance frequencies
ωL1
res = 0.14ωs and ωL2

res = 0.47ωs, respectively. For both
plants the corresponding “Modified Plants” (9), GH

mod1(z)
and GH

mod2(z) with resonance frequency ωH
res = 0.36ωs,

were obtained. Figure 6(a) shows the open-loop magnitude
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frequency response of the PR optimum design. Also, in
this figure “Plants” indicates the magnitude of the obtained
“Modified Plants” along with -for comparison purposes- the
magnitude of the plant GH(z) and the L filter. Figure 6(b)
shows the open-loop magnitude frequency responses of each
plant cascaded with the optimum PR (PRopt+Plant). Figure
6(c) shows the open-loop phase frequency responses of the
PR optimum design and those corresponding to the cascaded
systems.

Note that at the crossover frequency fc = ωc/2π, all
cascaded systems have a positive phase margin φm, practically
the same as the L filter system. Also, note that all cascaded
systems have a magnitude less than unity when the phase
crosses −180◦ (Ph line in Fig. 6) and −540◦ (at the Nyquist
frequency). This ensures that all cascaded systems in Fig. 6
are stable in closed loop configuration [33].

It can also be observed in Fig. 6(b) that all magnitude plots
overlap below fc, and these exhibit only a slight difference in
high frequency (close to ωs/2). Furthermore, it is observed that
all phase plots are the same below fc. These two facts imply
that all plotted systems have the same bandwidth and will have
the same behaviour at low frequencies when in closed-loop.

V. CRITERION FOR ωH
res SELECTION

As has been seen in Sec. III, when a plant GH(z) with
resonance frequency ωH

res = 0.36ωs is controlled with the PR
optimum design, its closed-loop response is very similar to
that of an L filter controlled with the PR optimum design [see
Figs. 4(b) and 4(d)]. For this reason, it is desirable to assign
this resonance frequency to the “Modified Plant” GH

mod(z).
However, this is not always possible in practice. It is well
known that every inverter switch operates with a duty cycle
taking values between 0 and 1. The maximum value of each
duty cycle is proportional to the relationship between the peak
value of the control action ~vc and Vbus. Duty cycle saturation
of any switch can cause system instability. In order to prevent
this, the maximum value of ‖~vc‖ should be limited. In this
application, the larger the ratio between ωH

res and ωL
res, the

larger the control action ~vc. In order to show this, consider



0885-8993 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2017.2667409, IEEE
Transactions on Power Electronics

40

50

60

70

80

90

M
p
%

0.5

1

1.5

2

t s
[m

s]

t̄s5% ≈ 1.5ms

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

40

80

120

160

m
a
x
(‖
~v
c
‖)

[V
]

ωH
res/ωs

(a)

(b)

(c)

ωL
res=0.14ωs

ωL
res=0.17ωs

ωL
res=0.24ωs

ωL
res=0.14ωs

0.17ωs
0.24ωs

Fig. 8. Step response of the system of Fig. 5 as a function of ωH
res/ωs, for

ωL
res = 0.14ωs, 0.17ωs and 0.24ωs: (a) Mp, (b) ts5% y (c) max(‖~vc‖).

in Fig. 5, a plant GL(z) with LT = 3.78mH [see (3)] and
resonance frequency ωL

res = 0.14ωs. Figure 7 shows the
output current vector magnitude ‖~i2‖ and the control action
vector magnitude ‖~vc‖, when a unit step is performed to the
magnitude of ~i2ref . Figure 7(a) corresponds to the case in
which a resonance frequency ωH

res = 0.3ωs is selected for
GH

mod(z), and Fig. 7(b) corresponds to the case in which
ωH
res = 0.36ωs is selected. Note that for ωH

res = 0.36ωs

a response with less overshoot (Mp) is obtained, but the
maximum control action magnitude max(‖~vc‖) required in
that case is almost twice the required when ωH

res = 0.3ωs

is selected.
To further analyze the effect of the ratio between ωH

res and
ωL
res on the dynamic response of the system and required

control action, consider the three resonance frequencies of the
plant GL(z): ωL

res = 0.14ωs, ωL
res = 0.17ωs and ωL

res =
0.24ωs. For these frequencies the step response of the system
shown in Fig. 5 was obtained by simulation, for a set of ωH

res

values within the following range 0.26ωs < ωH
res < 0.4ωs.

In Fig. 8 it is plotted: (a) Mp, (b) ts5% and (c) max(‖~vc‖)
as a function of the normalized frequency ωH

res/ωs. Note in
Fig. 8(a) that for the three ωL

res considered, the minimum
overshoot is obtained for a frequency ωH

res ≈ 0.36ωs, and
has a value Mpmin ≈ 45%. Note also in Fig. 8(b), that the
settling time does not vary too much as a function of the ωH

res

variation, and stays close to t̄s5% ≈ 1.5ms for ωH
res & 0.3ωs.

On the other hand, Fig. 8(c) confirms that for each value
of ωH

res, the lower the value of ωL
res, the larger the control

action required. Therefore, given a plant GL(z) with resonance
frequency ωL

res, the choice of ωH
res will be a trade-off between

the step response overshoot, and the control action applied to
the plant. The criterion for ωH

res selection can be summarized
as: If it is possible, select ωH

res = 0.36ωs. If it is not possible
because of the control action limitation, then select the nearest
down frequency whose implementation requires an acceptable
control action.
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Fig. 9. Simulation results. (a) ~vgabc [V]. (b) ~i2abc [A] and ‖~i2abc‖ [A] for
case A. (c)~i2abc [A] and ‖~i2abc‖ [A] for case B. (d)~i2abc [A] and ‖~i2abc‖
[A] for case C. (e) ~i2abc [A] and ‖~i2abc‖ [A], filter with ωL

res = 0.14ωs

when it is used the design proposed in [14] for the controller of Fig. 2(b).

VI. SIMULATION RESULTS

In this section the implementation of the proposed control
strategy for the three study cases (A, B and C) of Table I is
simulated. In order to obtain results in a realistic scenario,
the whole system depicted in Fig. 1 was simulated. In Table
II are the parameters used in the simulation. The inverter was
simulated using IGBTs switching to a frequency fpwm with
turn-on dead time tD. The three LCL filters were built with
the same values of L1 and L2, and the corresponding value

TABLE I
RESONANCE FREQUENCIES UNDER STUDY

Case ωL
res Region ωH

res

A 0.14ωs Low frequency (< ωcrit) 0.3ωs

B 0.17ωs Critical frequency (≈ ωcrit) 0.345ωs

C 0.24ωs Optimal (0.228ωs.ωL
res.0.454ωs) 0.36ωs



0885-8993 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2017.2667409, IEEE
Transactions on Power Electronics

of resonance frequency was obtained changing the value of
C. Table II also lists the values of the sampling frequency
fs = ωs/2π, the crossover frequency fc = ωc/2π (with
ωc = ωs/12) and the PR optimum design parameters Kpopt

and Tropt obtained using (6).
Each one of the three filters of Table I was modified

following the procedure described in Section IV, to
behave as a system GH

mod(z) with a specific resonance
frequency ωH

res (column 4 of Table I). For each case, a
stable monic polynomial Λ(z) = z(z − z1)(z − z2) with
z1,2 = e(−0.6±

√
0.62−1)ωLresTs was used for the controller of

Fig. 5. The used polynomials C(z) and D(z) (calculated
according to Appendix), and the used values for the constant
Ka [eq. (10)] are listed in Table III.

For each case, the injection of three-phase sinusoidal
balanced current to a grid with a voltage ~vgabc , was
simulated. This grid voltage is shown in Fig. 9(a). In order to
test the performance of the controller under grid disturbance
conditions, the steady state grid waveform was contaminated
with a total harmonic distortion THD=3.65%. Also, a short
time abrupt amplitude reduction of 10% (sag fail) and the
manifestation of a high harmonic distortion (HHD) close
to the resonance frequency of the filter were applied [grey
regions in Fig. 9(a)].

Current ~i2ref was increased from 8 to 10A (peak), in
t = 0.11s. For that instant, Fig. 9(b) shows the response of
current ~i2abc and its magnitude ‖~i2abc‖=

√
i2a + i2b + i2c , for

the filter with ωL
res = 0.14ωs (case A), and Fig. 9(c) shows

~i2abc and ‖~i2abc‖ for the filter with ωL
res = 0.17ωs (case B).

For these two cases, in order to limit the control action [see
Fig. 8(c)], the resonance frequencies of the “Modified Plant”
were set to ωH

res = 0.3ωs and ωH
res = 0.345ωs, respectively.

Figures 9(b) and (c) show that the proposed control strategy
allows to control LCL filters with ωL

res ≤ ωcrit.
The proposed strategy is also useful for controlling LCL

filters that do not possess a low resonance frequency (with
ωL
res > ωcrit), since it allows to obtain a better dynamic

response compared to that obtained when the same filter is
controlled using only a PR regulator. Indeed, in Fig. 4(a)
it was shown that a system with ωL

res = 0.24ωs > ωcrit

(frequency analyzed in Case C) is stable when it is controlled
with the PR optimum design. However a poor dynamic
response of the closed-loop system is obtained. For this

TABLE II
PARAMETERS OF THE EXPERIMENTAL AND SIMULATION SYSTEM

Symbol Value Symbol Value
Vbus 400V tD 0.7µs

Vgφ (100/
√

2)Vrms ωL
res/ωs 0.14/0.17/0.24

ω0 2π(50Hz) L1;L2 2.28mH; 1.5mH
fs 9kHz C 18µ/12µ/6µF
fpwm 9kHz fc ωc/2π = 750Hz
Kpopt 17.813Ω Tropt 2.122ms

TABLE III
C(z), D(z) AND Ka USED IN EACH STUDY CASE

Case C(z) D(z) Ka

A −1.9067(z2+0.4099z+0.07373) 16.629z(z−1)(z+2.364) 3.6614
B −2.0908(z2+0.3696z+ 0.0576) 38.402z(z−1)(z+0.5959) 3.0023
C −1.4003(z+0.249)(z−0.1784) 32.897z(z−1)(z−0.1902) 1.7367
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resonance frequency Fig. 9(d) shows the response of ~i2abc
and ‖~i2abc‖ when the filter is controlled using the proposed
strategy (Case C). In this case, for the “Modified Plant”
GH

mod(z) the resonance frequency was set to ωH
res = 0.36ωs,

which minimizes the overshoot [see Fig. 8(a)]. Comparing the
values of Mp and ts5% in Fig. 9(d), with those in Fig. 4(a),
it is verified that the proposed control strategy significantly
improves the dynamic system response in a system with these
characteristics.

In [14] the controller shown in Fig. 2(b) was designed for
controlling an LCL filter with ωL

res = 0.14ωs. The values
Kp = 0.48Kpopt and Tr = 0.87Tropt were used for the PR
regulator constant parameters in (5); and kad = 0.8Kpopt and
ωad = 0.15ωs were used for the parameters of the HPF filter
(of continuous transfer function G

HPF
(s) = −kads/(s + ωad)

[14]). Figure 9(e) shows i2abc and ‖i2abc‖, when the controller
designed in [14] is used. Comparing Figs 9(b) and 9(e),
it can be seen that the controller proposed in this paper
allows to obtain a dynamic response with less overshoot and
settling time than that obtained with the controller proposed
in [14]. In addition, the controller presented here shows a
better rejection of the low frequency harmonics (commonly
presented in the grid). Note that all systems can support both,
a voltage sag and a HHD grid perturbation.

A. Robustness analysis

For study cases A, B and C (Table I) simulated previously,
the coefficients of the proposed controller were obtained
considering the nominal values of parameters L1 = L

nom

1 ,
L2 = L

nom

2 and C = C
nom

listed in Table II. When the real
values of the parameters differ with respect to the nominal
values of design, the simulated systems may became unstable.
In order to perform an analysis of the system robustness,
these parameters are considered within the following bounded
sets: L1min ≤ L1 ≤ L1max , L2min ≤ L2 ≤ L2max and
Cmin ≤ C ≤ Cmax. For each combination of parameters
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Fig. 11. Experimental results. (a) ~vgabc [V] (phase “a” ). (b) ~i2abc [A] and
‖~i2abc‖ [A] for Case A. (c)~i2abc [A] and ‖~i2abc‖ [A] for Case B. (d)~i2abc
[A] and ‖~i2abc‖ [A] for Case C. (e) ~i2abc [A] and ‖~i2abc‖ [A], filter with
ωL
res = 0.14ωs when the design proposed in [14] for the controller of Fig.

2(b) is used. Oscilloscope screenshots voltage scale: 50 V/div, current scale:
5 A/div, time scale: 5 ms/div.

{L1, L2, C}, the closed-loop system of Fig. 5 will be stable
if all its poles are located inside the unit circle. Note that
the LCL filter transfer function (3) can be characterized (for a
given value of Ts) using parameters ωL

res and LT . The bounded
sets of variation of parameters {L1, L2, C} can be mapped
into a corresponding bounded set of variation of parameters
{ωL

res, LT }. This set is given by:

L1min+L2min ≤ LT ≤ L1max+L2max ,√
L1max+L2max

L1maxL2maxCmax
≤ ωL

res ≤
√

L1min+L2mmin

L1minL2minCmin
.

Let ωLnom

res and L
nom

T be the nominal values of ωL
res and LT

respectively; the shaded regions shown in Figs. 10 (a1)-(c1) cor-
respond to the normalized regions {ωL

res/ω
Lnom

res , LT /L
nom

T }
where the closed-loop system of Fig. 5 is stable for each one of
the three study cases. It can be observed that all cases support
different ranges of variation in both ωL

res and LT . Usually
the grid connection increases the effective inductance L2 of
the LCL filter [34], [11]. In order to analyze the robustness in
presence of a grid inductance variation, the dotted lines in Figs.
10(a1)-(c1) correspond to the points {ωL

res/ω
Lnom

res , LT /L
nom

T }
such that L2 is increased while the other parameters are kept at
their nominal values. Note that in Case A the system remains
in the stable region for a deviation up to ∆L2 = 0.9L

nom

T , while
the other systems support even greater deviations. In order to
test the robustness Figs. 10(a2)-(c2) show for each study case,
the step responses of the closed-loop systems for ∆L2 = 0
and ∆L2 = 0.5L

nom

T . Clearly the Case A is the most sensitive
to parametric variations, however this system remains stable
despite a large grid inductance deviation.

VII. EXPERIMENTAL RESULTS

This section presents the experimental results obtained
from the practical implementation of the three study cases
(A, B and C) simulated in Section VI. These results were
obtained using a three-phase inverter prototype built using
IGBT devices IRG4PH50UD. The controller was implemented
in a fixed-point digital signal processor (DSP) TMS320F2812.
The parameters of the experimental system are listed in Table
II and are the same that were used previously to obtain
the simulation results. In the three study cases a three-phase
sinusoidal balanced current was injected to a grid with voltage
~vgabc . Figure 11(a) shows phase “a” of ~vgabc .

For comparison purposes the tests simulated in Section VI
were experimentally repeated. Figure 11(b) shows the response
of current ~i2abc and its magnitude ‖~i2abc‖ (obtained using
the stored screenshot data values) for Case A; Fig. 11(c)
shows ~i2abc and ‖~i2abc‖ for Case B; and Fig. 11(d) shows
~i2abc and ‖~i2abc‖ for Case C. Figure 11(e) shows i2abc and
‖~i2abc‖, when the controller designed in [14] is used. Note
that the experimental results shown in Fig. 11 are similar to
those shown in Fig. 9 obtained by simulation. Therefore, the
conclusions drawn for the simulation results are also valid for
the experimental results. Particularly, the comparison between
Fig. 9(d) and Fig. 9(e) corroborates experimentally that the
controller presented in this paper achieves better response than
the one used in [14].
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VIII. CONCLUSIONS

This paper presents a control strategy that allows to regulate
the current injected into the grid by a three-phase inverter
with a low resonance frequency LCL filter, without passive
damping. The strategy uses a PR regulator optimum design
and only requires the measurement of the current injected
to the grid. Both simulation and experimental results were
presented. The performance of the controller was evaluated,
comparing it with a control method recently proposed in
the literature for controlling the same system. The proposal
presented here offers better closed-loop dynamic response and
better disturbance rejection.

APPENDIX

Let A(z) = anz
n + an−1z

n−1 + · · · + a0 and Q(z) =
qmz

m+qm−1z
m−1+ · · ·+q0 be two polynomials in z, whose

degrees are n and m respectively, with m ≥ n ≥ 1. Let
B(z) = bkz

k + bk−1z
k−1 + · · · + b0 be a polynomial whose

degree is k ≤ (m− n+ 1).

Proposition:

If A(z) and B(z) are coprime, then there exist unique
polynomials L(z) = lm−nz

m−n + · · · + l0 and P (z) =
pn−1z

n−1 + · · ·+ p0 whose degrees are (m− n) and (n− 1)
respectively, that verify the Diophantine equation:

A(z)L(z) +B(z)P (z) = Q(z) (11)

Proof: Equating coefficients on both sides of (11), it results:
M︷ ︸︸ ︷

an 0 · · · 0 0 0 0 0

an−1 an · · · 0
...

...
. . .

...
... an−1 · · · 0 bk 0 · · · 0

a0
... · · ·

... bk−1 bk · · · 0

0 a0 · · · 0
... bk−1 · · · 0

0 0 · · · an b0
... · · · bk

...
...

. . . an−1 0 b0 · · · bk−1

0 0 · · ·
...

...
...

. . .
...︸ ︷︷ ︸

(m− n+ 1) col.

0 0 · · · a0 ︸ ︷︷ ︸
n col.

0 0 · · · b0



Θ︷ ︸︸ ︷

lm−n

lm−n−1

lm−n−2

...
l0

pn−1

pn−2

...
p0



=

Θ∗︷ ︸︸ ︷

q∗m
q∗m−1
q∗m−2

...

...

...

...
q1
q0



,

(12)

where M ∈ <(m+1)×(m+1), Θ ∈ <(m+1)×1, and Θ∗ ∈
<(m+1)×1. If A(z) and B(z) are coprime, it must be
det(M) 6= 0. This can be demonstrated by a similar procedure
to that carried out in [32]. Therefore, matrix M is invertible,
and from (12), given a Q(z) whose degree is m, the unique
coefficients of L(z) and P (z) that satisfy the Diophantine
equation (11) can be determined solving the following matrix
equation :

Θ = M−1Θ∗. (13)
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