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Abstract
This article presents a new Carleman inequality for a linear Schrödinger equation
which is suitable for both bounded and unbounded domains. We characterize the
conditions on the auxiliary function necessary to obtain the global inequality. The
novelty of this result is the construction of the auxiliary function on some unbounded
domains and for a corresponding valid control region ω. As a consequence, we prove
some results on the controllability of a linear Schrödinger equation on unbounded
domains.
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1 Introduction

Given T > 0, � ⊂ R
n a connected open set with boundary ∂� at least of class C0,1

uniformly. For ω a nonempty open subset we will consider the linear Schrödinger
equation
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⎩

iwt = −�w + hω in Q = � × (0, T )

w = 0 in � = ∂� × (0, T )

w(x, 0) = w0(x) in �

(P)

with initial datum w0(x) ∈ H−1(�) and a control function hω ∈ L2(0, T ; H−1(�))

to be determined. Here hω denotes a functional with support in ω× (0, T ) in the sense
of distributions.

In this paper we give sufficient conditions on ω and � such that problem (P) is
exactly controllable in H−1(�). We recall that (P) is exactly controllable in H−1(�)

at time T > 0 if for every pair w0, w1 ∈ H−1(�) there exists a control hω ∈
L2(0, T ; H−1(�)) such that the corresponding solution to (P) satisfies w(T ) = w1.
From the reversibility of Schrödinger equation, exact controllability is reduced to null
controllability. We prove the following controllability result

Theorem 1 (Theorem 5 of Sect. 4) Assume that ω and � are open sets such that the
existence of a function satisfying (2) is warrantied. Then, given w0 ∈ H−1(�), there
exists a control hω ∈ L2(0, T ; H−1(�)) with supp hω ⊂ ω × (0, T ) such that the
corresponding solution to problem (P) satisfies w(T ) = 0.

Remark 1 The examples given in Sect. 3 imply the existence of unbounded sets �

and ω that satisfy the assumptions on the auxiliar function, (2), and in particular,
Schrödinger equation is exactly controllable on these unbounded domains, with the
control acting on ω × (0, T ).

In order to obtain the controllability result, we follow the standard controllability–
observability duality, that reduces it to prove an observability inequality for the
solutions of the adjoint system, given by the homogeneous linear Schrödinger equation

{
iut = −�u in Q
u = 0 in �

(P∗)

with initial datum u(x, T ) = uT (x) in �.
Carleman inequalities are a very powerfull tool widely used in the last years to prove

null controllability using distributed or boundary controls. Following the ideas of [1],
concerning Schrödinger equations, these inequalities have been used with positive
results on a coupled kdV-Schrödinger system with internal control in [2] and on a
Schrödinger equation with a bounded potential and boundary observations in [3]. In
both of theses articles, the domain � is assumed to be bounded.

The null controllability of linear and semilinear parabolic problems when � is a
bounded domain has been analyzed in several recent papers, among others, let us
mention [4–6]. When the domain � is unbounded, the firsts results were negative (see
[7, 8]). For parabolic problems, there are not general positive results of the existence of
a Carleman weight in the case of an unbounded domain �. Nevertheless, for the heat
equation, it was possible to obtain positive results assuming technical considerations
on the control region ω. See for instance [9] where they assume � − ω bounded, [10]
where � = (0,+∞) and ω is an unbounded open set of the form ω = ∪n∈Nωn with
some technical assumptions on ωn and [11] where they give sufficient conditions on
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the auxiliar Carleman function, that include the sets in [10] for unbounded domains
� ⊂ R

N .
The main results of this article are a global Carleman inequality given in Sect. 2 and

the examples of domains ω, � (which can be unbounded) and the auxiliary function
ϕ(x), given in Sect. 3, that satisfies the assumptions needed to prove the Carleman
inequality

Theorem 2 (Theorem 3 of Sect. 2) Let � be an open connected set with boundary ∂�

at least of class C0,1 uniformly and ω a nonempty subset. Let �(x, t) = ϕ(x)φ(t)
where φ is given by (3) and ϕ satisfies conditions (2). Then there exist two constants
s0 = S(�,ω, T ) > 0 and C = C(�,ω) > 0 such that, for any s ≥ s0 the following
inequality holds:

∫

Q
e−2s�

(
|B̃1(u)|2 + |B̃2(u)|2

)
dxdt + s3

∫

Q
e−2s� |φ|3|u|2dxdt

+ s
∫

Q
e−2s� |φ||∇u|2dxdt ≤ C

(∫

Q
e−2s� |iut + �u|2dxdt

+s3
∫

Qω

e−2s� |φ|3|u|2dxdt + s
∫

Qω

e−2s� |φ||Re∇u|2dxdt
)

for all u ∈ C([0, T ], H1
0 (�)) such that Bu := iut + �u ∈ L2(0, T ; L2(�)), where

B̃1u := B1(e−s�u), B̃2u := B2(e−s�u) and B1, B2 are defined later in (7).

We will use the following well posedness for linear Schrödinger equations that is
well known (see e.g. [12]).

Proposition 1 Let X be either H1
0 (�), L2(�) or H−1(�). Given v0 ∈ X and f ∈

L1(0, T ; X), there exists a unique solution v ∈ C([0, T ], X) of equation (1)

{
ivt = −�v + f in Q
v = 0 in �

(1)

such that v(x, 0) = v0(x) in �.

Moreover, from the reversibility of the linear Schrödinger equation, given vT ∈ X,
there exists a unique solution v ∈ C([0, T ], X)) of equation (1) such that v(x, T ) =
vT (x) in �.

This paper is organized as follows: In Sect. 2 we first establish a global Carleman
estimate for a linear Schrödinger equation under general assumptions on the domains
ω and � for which we assume the existence of an auxiliary weight function. In Sect. 3
we provide examples of unbounded domainswith its corresponding auxiliary function.
Finally, in Sect. 4 we use the Carleman estimate to prove the observability inequality
(4) and deduce the controllability result given in Theorem 5.
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2 A Global Carleman Inequality

This section is devoted to the proof of an appropriate Carleman estimate which will
be useful in Sect. 4 to prove the observability inequality and then the controllability
result for the linear Schrödinger equation. Let ω be a nonempty open subset of � and
define the set Qω = ω × [0, T ]. To begin with, we will assume there exists a real
function ϕ satisfying the following conditions (2a)–(2e):

There exist constants K = K (�,ω) > 0, α > 0 and β > 0 such that

ϕ ∈ C3(�). (2a)

0 < ϕ ≤ K , ||∇ϕ|| ≤ K , ||Hϕ|| ≤ K , ||∇�ϕ|| ≤ K , for all x ∈ �, (2b)

∂ϕ

∂η
(x) ≥ 0 for all x ∈ ∂�, (2c)

||∇ϕ(P)||2 ≥ α for all P ∈ � \ ω, (2d)

Xt [−Hϕ(P)]X ≥ β|X|2 for all P ∈ � \ ω, X ∈ C
n . (2e)

Here the expression Hϕ denotes the Hessian matrix of the function ϕ.
Let φ : (0, T ) → R be the function given by

φ(t) = 1

t(T − t)
(3)

which has the properties:

|φ(t)| ≤ C(T 2)|φ(t)|2 (4a)

|φ′(t)| ≤ C(T )|φ(t)|2 (4b)

|φ′′(t)| ≤ C(T 2)|φ(t)|3. (4c)

Then we define on � × (0, T ) the function �(x, t) = ϕ(x)φ(t).

Theorem 3 Let � be an open connected set with boundary ∂� at least of class C0,1

uniformly and ω a nonempty subset of �. Let �(x, t) = ϕ(x)φ(t) where φ is given by
(3) and ϕ satisfies conditions (2). Then there exist two constants s0 = S(�,ω, T ) > 0
and C = C(�,ω) > 0 such that, for any s ≥ s0 the following inequality holds:

∫

Q
e−2s�

(
|B̃1(u)|2 + |B̃2(u)|2

)
dxdt + s3

∫

Q
e−2s� |φ|3|u|2dxdt

+ s
∫

Q
e−2s� |φ||∇u|2dxdt ≤ C

(∫

Q
e−2s� |iut + �u|2dxdt

+ s3
∫

Qω

e−2s� |φ|3|u|2dxdt +s
∫

Qω

e−2s� |φ||Re∇u|2dxdt
)

(5)

for all u ∈ C([0, T ], H1
0 (�)) such that Bu := iut + �u ∈ L2(0, T ; L2(�)), where

B̃1u := B1(e−s�u), B̃2u := B2(e−s�u) and B1, B2 are defined later in (7).
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Proof In what follows, C(�,ω) will denote a generic constant depending only on �

and ω that may change from line to line. The classic first step in this kind of inequality
is to change the variable of the function u by its multiplication with an appropriate
weight function.

With that in mind we take u ∈ C2(Q) with u = 0 in �, set v = e−s�u and
compute:

B�v := e−s�B(es�v) = is�tv + ivt + �v + s2||∇�||2v + sv�� + 2s∇� · ∇v

A “classical” approach of this problem consist in representing this operator as the sum
of an adjoint and a skew-adjoint operators B1 and B2:

B�v = B1v + B2v (6)

where

B1v = 2s∇� · ∇v + sv�� + is�tv (7a)

B2v = ivt + �v + s2||∇�||2v. (7b)

�
To simplify the notation, we will denote by Bi

jv (1 ≤ j ≤ 2, 1 ≤ i ≤ 3) the

i th term in the expression of Bjv given in (7) and ♦i j the L2 real inner product in Q
between the i-th term of B1v and the conjugate j-th term of B2v. Using this notation
we get from (6)

∫

Q
|B1v|2dxdt +

∫

Q
|B2v|2dxdt + 2Re

∫

Q
B1vB2v dxdt =

∫

Q
|B�v|2dxdt . (8)

Remark 2 The term B3
1v = is�tv does not contribute with something significant in

the development of the inequality and can be put substracting in the left hand side to
obtain another decomposition somehow easier to compute:

B�v − is�tv = B1v + B2v.

Nevertheless we will keep it on the right hand side in order to follow the classical
approach.

The goal is to find lower bounds of the term:

Re
∫

Q
B1vB2v dxdt =

∑

i, j=1,2,3

♦i j . (9)

We multiply each term of B1v = is�tv by each term of B2v and develop the nine
terms appearing in B1vB2v. For this, we will integrate by parts with respect to the
time and space variables and make use of the properties of v.
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First, we have

♦11 = Re
∫

Q
2s(∇� · ∇v)ivt dxdt = 2s Im

∫

Q
(∇� · ∇v)vt dxdt

= −2s Im
∫

Q
(∇�t · ∇v)v dxdt − 2s Im

∫

Q
(∇� · ∇vt )v dxdt

:= A1 + A2.

We also have

♦21 = Re
∫

Q
s��vivt dxdt = s Im

∫

Q
��vvt dxdt

= −s Im
∫

Q
∇� · ∇(vvt ) dxdt

= −s Im
∫

Q
(∇� · ∇v)vt dxdt − s Im

∫

Q
(∇� · ∇vt )v dxdt .

Integrating by parts in time in the first term and using the identity −Im(z) = Im(z)
for z ∈ C, we get

♦21 = s Im
∫

Q
(∇�t · ∇v)v dxdt + 2s Im

∫

Q
(∇� · ∇vt )v dxdt

= − A1

2
− A2.

On the other hand, we have

♦32 = Re
∫

Q
is�tv�v dxdt = −s Im

∫

Q
�tv�v dxdt

= −s Im
∫

Q
∇(�tv)∇v dxdt

= −s Im
∫

Q
(∇�t · ∇v)v dxdt − s Im

∫

Q
�t |∇v|2 dxdt .

Since � is a real valued function we have s Im
∫

Q �t |∇v|2 dxdt = 0 and conse-
quently:

♦32 = A1

2
.

Adding up this first three terms, we get

♦11 + ♦21 + ♦32 = A1.
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Now, using the conditions (2b) and (4b) we obtain

|∇�t | ≤ C |φ|2 for all (x, t) ∈ � × (0, T )

and therefore using Young’s inequality we can estimate the term A1 in the following
way

A1 = −2s Im
∫

Q
(∇�t · ∇v)v dxdt

≤ 2s
∫

Q
|∇�t · ∇v||v| dxdt

≤ C
∫

Q

(
|φ|1/2|∇v|

) (
s|φ|3/2|v|

)
dxdt

≤ C
∫

Q
|φ||∇v|2 dxdt + Cs2

∫

Q
|φ|3|v|2 dxdt .

In conclusion:

♦11 + ♦21 + ♦32 ≥ −C
∫

Q
|φ||∇v|2 dxdt − Cs2

∫

Q
|φ|3|v|2 dxdt . (10)

For the next inequality we notice that if v = 0 in ∂� × (0, T ) then:

∇v

∣
∣
∣
∣
∂�×(0,T )

= ∂v

∂η
η

with η denoting the outward unit vector. Therefore

♦12 = Re
∫

Q
2s(∇� · ∇v)�v dxdt

= 2sRe
∫ T

0

∫

∂�

∂�

∂η

∣
∣
∣
∣
∂v

∂η

∣
∣
∣
∣

2

dSdt − 2sRe
∫

Q
∇ (∇� · ∇v) · ∇v dxdt

= D1 + D2.

Note that from condition (2c), it follows that D1 ≥ 0. Now, we expand the term D2

D2 = −2sRe
∫

Q
∇ (∇� · ∇v) · ∇v dxdt

= −2s
∫

Q
∇vt · H� · ∇v dxdt − 2sRe

∫

Q
∇� t · Hv · ∇v dxdt .
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here H� denotes the Hessian matrix , with respect to the space variables, of �. We
use Green formula on the second term

− s
∫

Q
∇� t · 2Re (Hv · ∇v) dxdt

= −s
∫

Q
∇� · ∇|∇v|2

= −sRe
∫ T

0

∫

∂�

∂�

∂η

∣
∣
∣
∣
∂v

∂η

∣
∣
∣
∣

2

dSdt + s
∫

Q
��|∇v|2 dxdt

= −D1

2
+ s

∫

Q
��|∇v|2 dxdt .

Thus, we get

♦12 = D1

2
− 2s

∫

Q
∇vt · H� · ∇v dxdt + s

∫

Q
��|∇v|2 dxdt . (11)

Moreover,

♦22 = sRe
∫

Q
��v�v dxdt

= −sRe
∫

Q
(∇[��] · ∇v)v dxdt − s

∫

Q
��|∇v|2 dxdt .

The last equality shows why we need ϕ ∈ C3(�). Adding up the last two terms that
we developed we obtain

♦12 + ♦22 = D1

2
+ 2s

∫

Q
∇vt · [−H�] · ∇v dxdt − sRe

∫

Q
(∇[��] · ∇v)v dxdt .

(12)

Using conditions (2b) and (4a) and Young’s inequality we can estimate the last term
appearing in the right hand side of (12) as follows

∣
∣
∣
∣−sRe

[∫

Q
(∇[��] · ∇v)v

]

dxdt

∣
∣
∣
∣ ≤ C

∫

Q
|φ|1/2|(∇[�ϕ] · ∇v)||φ|3/2s|v| dxdt

≤ C
∫

Q
|φ||∇v|2 dxdt + Cs2

∫

Q
|φ|3|v|2 dxdt .
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We obtain

−sRe

[∫

Q
(∇[��] · ∇v)v

]

dxdt

≥ −C
∫

Q
|φ||∇v|2 dxdt − Cs2

∫

Q
|φ|3|v|2 dxdt . (13)

To finish the estimations of this terms we need to provide lower bounds for the term
2s

∫

Q ∇vt · [−H�] · ∇v dxdt . Using conditions (2b) and (2e) we have:

2s
∫

Q
∇vt · [−H�] · ∇v dxdt

≥ 2s
∫

Qω

∇vt · [−H�] · ∇v dxdt + C(β)s
∫

Q\Qω

|φ||∇v|2 dxdt

≥ −Cs
∫

Qω

|φ||∇v|2 dxdt + C(β)s
∫

Q\Qω

|φ||∇v|2 dxdt . (14)

Therefore, from (12), using that D1 ≥ 0, (13) and (14) we have

♦12 + ♦22

≥ −C
∫

Q
|φ||∇v|2 dxdt − Cs2

∫

Q
|φ|3|v|2 dxdt − Cs

∫

Qω

|φ||∇v|2 dxdt

+ C(β)s
∫

Q\Qω

|φ||∇v|2 dxdt . (15)

The term

C(β)s
∫

Q\Qω

|φ||∇v|2 dxdt

plays an important role in the development of the inequality since it is positive and
has order 1 in s. In order to obtain estimates on Q and absorb the terms with less order
on s, from (10) and (15) we get that

♦11 + ♦21 + ♦32 + ♦12 + ♦22 + C(β)s
∫

Qω

|φ||∇v|2 dxdt

≥ −C
∫

Q
|φ||∇v|2 dxdt − Cs2

∫

Q
|φ|3|v|2 dxdt + C(β)s

∫

Q
|φ||∇v|2 dxdt .

(16)

Moving forward to the last part of the estimations, we have

♦13 = 2s3Re
∫

Q
∇� · ∇v ||∇�||2v dxdt = s3

∫

Q
||∇�||2[∇� · 2Re(v∇v)] dxdt
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= s3
∫

Q
(∇� t · [−H�] · ∇�)|v|2 dxdt − s3

∫

Q
||∇�||2��|v|2 dxdt .

Also

♦23 = s3
∫

Q
||∇�||2��|v|2 dxdt

and

♦31 = Re
∫

Q
is�tvivt dxdt =

∫

Q
s�t Re(vvt ) dxdt .

= −1

2
s
∫

Q
�t t |v|2 dxdt .

Finally, again since � is real valued we get

♦33 = −s3 Im
∫

Q
�t ||∇�|||v|2 dxdt = 0.

Adding up the last four terms that we have developed

♦13 + ♦23 + ♦31 + ♦33 = s3
∫

Q
(∇� t · [−H�] · ∇�)|v|2 dxdt

− 1

2
s
∫

Q
�t t |v|2 dxdt . (17)

Using (2b), (4a), (4c), the second term appearing in the right hand side of (17) can be
estimated as follows

∣
∣
∣
∣−s

∫

Q
�t t |v|2 dxdt

∣
∣
∣
∣ ≤ Cs

∫

Q
|φ|3|v|2 dxdt

to get

− 1

2
s
∫

Q
�t t |v|2 dxdt ≥ −Cs

∫

Q
|φ|3|v|2 dxdt . (18)

For the first term in the right hand side of (17) we use hypothesis (2d), (2e) and (2b)
to obtain

s3
∫

Q
(∇� t · [−H�] · ∇�)|v|2 dxdt

≥ −Cs3
∫

Qω

|φ|3|v|2 dxdt + C(α, β)s3
∫

Q\Qω

|φ|3|v|2 dxdt .
(19)
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Then, from (17), using (18) and (19)

♦13 + ♦23 + ♦31 + ♦33 ≥ − Cs
∫

Q
|φ|3|v|2 dxdt − Cs3

∫

Qω

|φ|3|v|2 dxdt

+ C(α, β)s3
∫

Q\Qω

|φ|3|v|2 dxdt . (20)

In this case, the positive term

C(α, β)s3
∫

Q\Qω

|φ|3|v|2 dxdt

plays an important role since it can be used to absorb the terms with less order in s. In
the same way as before, in order to obtain estimates on Q and absorb the terms with
less order on s. We get

♦13 + ♦23 + ♦31 + ♦33 + C(α, β)s3
∫

Qω

|φ|3|v|2 dxdt

≥ −Cs
∫

Q
|φ|3|v|2 dxdt + C(α, β)s3

∫

Q
|φ|3|v|2 dxdt . (21)

Altogether, the two positive terms

C(β)s
∫

Q
|φ||∇v|2 dxdt and C(α, β)s3

∫

Q
|φ|3|v|2 dxdt

are the dominant ones since the negative terms on the right hand sides of equations
(16) and (21) have lower order in s and thus can be absorbed. Therefore, from (8) and
(9), we conclude that there exist constants D = D(α, β, T ) > 0,C = C(α, β, T ) > 0
and s0 = s0(α, β, T ) such that for all s ≥ s0:

∫

Q
|B�v|2 dxdt + Ds3

∫

Qω

|φ|3|v|2dxdt + Ds
∫

Qω

|φ||∇v|2 dxdt ≥
∫

Q
|B1v|2dxdt

+
∫

Q
|B2v|2dxdt + Cs

∫

Q
|φ||∇v|2 dxdt + Cs3

∫

Q
|φ|3|v|2 dxdt . (22)

To obtain the desired inequality in u since v = e−s�u we have the identities

|v|2 = e−2s� |u|2

and

e−s� |φ|1/2s1/2∇u = s3/2∇ϕ|φ|3/2v + s1/2|φ|1/2∇v
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from where, together with the properties of �, we get the estimations

Cs
∫

Qω

e−2s� |φ||∇u|2 + Cs3
∫

Qω

e−2s� |φ|3|u|2 ≥ s
∫

Qω

|φ||∇v|2 (23)

and

s3
∫

Q
e−2s� |φ|3|u|2 +

∫

Q
s|φ|2|∇v|2 ≥ sC

∫

Q
e−2s� |φ||∇u|2. (24)

Using both estimations (23), (24) and the fact that B�(v) = e−s�(iut + �u) we arrive to an
inequality similar to (5) with the difference that the last term in the right hand side depends on
|∇u|2 and not on |Re∇u|2. To get the sharper inequality we can follow the technique developed
in [2] and conclude the proof of (5). �

3 Examples

This section is devoted to give some examples of unbounded sets � and ω for which we can
exhibit an auxiliary weight function ϕ satisfying conditions (2). We begin with an example in
R and then we prove a general lemma that will let us built a family of examples in Rn .

Example 1 In this first example we follow the ideas of [11]. For � = [0, ∞) we take a family
of disjoint intervals in the following way

ω =
⋃

n∈N
ωn, ωn = [an, bn]

with some technical assumptions on the intervals ωn = [an, bn]. More precisely we need the
existence of constants m > 0 and L > 0 and the existence of n0 ∈ N such

For all n ≥ n0 we have bn − an ≥ m (25)

For all n ≥ n0 we have an+1 − bn ≤ L. (26)

Without lost of generality we can assume that conditions (25) and (26) are satisfied for all
n ∈ N since if this is not the case then the same function ϕ0 that we define bellow works in the
interval [0, an0 ]. We will show that there exists a function ϕ̂ defined on � satisfying conditions
(2). We define (see Figure 1)

ϕ̂(x) =
⎧
⎨

⎩

ϕ0(x) in [0, c1 − m/4]
Ln(x) in [cn − m/4, cn − m/8] n ≥ 1
ϕn(x) in [cn − m/8, cn+1 − m/4] n ≥ 1

.

Here the centers {cn}n∈N are defined as cn = bn −m/8 and the functions {ϕn}n≥0 as follows:

ϕ0(x) = 1 − e−k(x−c1)2 ; ϕn(x) = 1 − e−k(x−cn)2 , n ≥ 1 (27)
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Fig. 1 Graphic of the function ϕ̂

where k is a constant that satisfies

k >
32

m2 . (28)

The functions Ln(x) are lines that connects the points Pn and Qn given by Pn = (cn −
m/4, ϕn−1(cn − m/4)) and Qn = (cn − m/8, ϕn(cn − m/8)). With these definitions we find
that 0 ≤ ϕ̂ ≤ 1, ϕ̂ is continuous in [0, +∞) and C3 in [0,∞) − {cn − m/4; cn − m/8}n∈N.
Finally we take a cutoff function ρ(x) ∈ C3(R) that satisfies

ρ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 in (−∞, −m/8]
1 in [0, c1 − 3m/8]
0 in [cn − m/4, cn − m/8], n ≥ 1
1 in [bn, cn+1 − 3m/8], n ≥ 1

and such that |ρ′| ≤ C(m), |ρ′′| ≤ C(m), |ρ′′′| ≤ C(m) where C(m) is a constant that depends
only of m.

Then the weight function

�(x, t) = ϕ(x)φ(t) with ϕ(x) = ϕ̂(x)ρ(x) (29)

is C3(�) and satisfies properties 2b–2e. To see this we use the fact that for x > 0 there is a
constant N such that e−x x j ≤ N for j = 0, 1, 2, 3; and we obtain that for x ∈ Dom(ϕn) and
for all n ≥ 0

|ϕ′
n | ≤ C(L,m); |ϕ′′

n | ≤ C(L,m) |ϕ′′′
n | ≤ C(L,m).

Moreover, if we define the sets Kn = Dom(ϕn) ∩ (� − ω) = [bn, an+1] for n ≥ 1; K0 =
[0, a1], then for x ∈ Kn

|x − cn | ≥ m

8
= C(m); (30)

|x − cn | ≤ |an+1 − cn | ≤ L + m

8
= C(L,m) (31)

which together with (28) implies that for x ∈ Kn and for all n ≥ 0

|ϕ′
n | ≥ D(L,m); −ϕ′′

n ≥ D(L,m)
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where all the constants appearing here depends only on L and m.
Analogously, if we consider now

ω =
⋃

n∈N
[an, bn] ∪

⋃

n∈N
[a−n, b−n]

with a−n > b−n−1 and the same assumptions as (25)–(26), we can set up an example in R.
In order to produce new examples in RN , we will use the following lemma.

Lemma 1 Assume that we have � = A1 × A2 × · · · × An,

ω =
⋃

j=1...n

A1 × · · · × ωA j × · · · × An

with ωA j ⊂ A j , Qω = ω × [0, T ] ; Xj ∈ A j ⊂ R
n j where A j for j = 1, . . . , n are C1. If for

all j there is a function f j ∈ C3(A j ) ∩ W 3,∞(A j ) satisfying the following conditions

1. For all j = 1 . . . n,

∂ f j
∂η

∣
∣
∣
∣
∂A j

≥ 0 .

2. There are constants C j > 0 and E > 0 such that

Zj
t [−H f (Pj )

]
Zj ≥ C j |Zj|2

for all Zj ∈ C
n j and Pj ∈ A j \ ωA j .

3. Additionally for some j0 there is a constant D j0 > 0 such that for all Pj0 ∈ A j0 \ ωA j0
we have

||∇ f j0 (Pj0 )||2 ≥ Dj0 .

Then the function

ϕ(X1, . . . ,Xn) =
n∑

j=1

f j (Xj)

is a weight function for the Carleman estimate 5 (satisfies conditions (2)).

Proof We begin by noting that

� − ω = A1 \ ωA1 × A2 \ ωA2 · · · × An \ ωAn .

From the definition, it is clear that ϕ ∈ C3(�) ∩ W 3,∞(�) and therefore conditions (2a)-(2b)
are satisfied. To finish the proof we check the rest of the properties. For (2c) since

∂� =
⋃

j

A1 × · · · × ∂A j · · · × An

123



Applied Mathematics & Optimization (2023) 87 :8 Page 15 of 18 8

we find that

∂ϕ

∂η

∣
∣
∣
∣
A1×···×∂A j×···×An

= ∂ f j
∂ηA j

≥ 0 .

For (2e) we compute the Hessian for P = (P1, . . . , Pn, Q):

−Hϕ(P) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−H f1(P1) 0 . . . . . . 0

0
. . . . . . . . .

...

...
... −H f j (Pj ) . . .

...

... . . . . . .
. . .

...

... . . . . . . . . . −H fn(Pn)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and therefore for Z = (Z1, . . . ,Zn) we obtain

Zt [−Hϕ]Z =
∑

j

(0, . . .Zj . . . 0)
t [−H f j (Pj )](0, . . .Zj . . . 0)

≥
∑

j

C j ||(0, ..Zj...0)||2 ≥
(

min
j

C j

)

||Z||2.

Finally, for (2d) if we take P = (P1, . . . , Pn) we see that

||∇ϕ(P)||2 =
∑

j

||∇ f j (Pj )||2 ≥ ||∇ f j0 (P)||2 ≥ Dj0 .

�
We now exhibit a family of examples in RN .

Example 2 Using the first example in R and the lemma below, we can show the existence of a
weight function ϕ satisfying conditions (2) for � = [0, ∞) j and � = R

j where

ω =
⋃

n∈N
[a1n , b1n] × · · · ×

⋃

n∈N
[a j
n , b j

n ]

and

ω =
⋃

n∈N
[a1n , b1n] ∪

⋃

n∈N
[a1−n, b

1−n] × · · · ×
⋃

n∈N
[a j
n , b j

n ] ∪
⋃

n∈N
[a j

−n, b
j
−n]

repectively, with ϕ = ∑ j
i=1 ϕi .

Example 3 We can combine the first example with any bounded set that have an auxiliary
Carleman function. For instance for any C1 bounded set with control region around the whole
boundary we can take an auxiliary function of the form ϕ(x) = ρ(x) f (x) with f an strict
concave functionwithout critical points in� andρ a suitable cut-off function of a neighbourhood
on the boundary. For example for � a disk we can obtain examples in infinite cylinders and so
forth.
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4 Observability and Controllability

We are now in conditions to prove the controllability inequality for domains ω, � for which
there exists an auxiliary function ϕ satisfying conditions (2), (for instance, the domains given
in Sect. 3).

Theorem 4 Let ω and � be such that there exists an auxiliary function satisfying conditions
(2). Given u0 ∈ H1

0 (�), let Qω = ω × (0, T ) and u ∈ C([0, T ], H1
0 (�)) be the solution of the

dual problem (P∗) given by Proposition 1, then

‖u(·, 0)‖2
H1
0 (�)

≤ C

(∫

Qω

|u(x, t)|2 + |∇u(x, t)|2 dxdt

)

. (32)

Proof We define

E(t) =
∫

�
|u(x, t)|2 + |∇u(x, t)|2 dx . (33)

Using the estimations:

m1 ≤ s|φ|e−2s� ; m2 ≤ s3|φ|3e−2s� for all (x, t) ∈ � × (T /4, 3T /4)

s|φ|e−2s� ≤ M1; s3|φ|3e−2s� ≤ M2 for all (x, t) ∈ � × (0, T )

and Carleman inequality (5), we find that there exists a constant C(m1,m2, M1, M2, s0) such
that:

E(t) ≤ C

(∫ 3T /4

T /4

∫

�
s3e−2s� |φ|3|u|2 + se−2s� |φ||∇u|2 dxdt

)

≤ C

(∫

ω×(0,T )
s3e−2s� |φ|3|u|2 + se−2s� |φ||Re(∇u)|2 dxdt

)

≤ C

(∫

ω×(0,T )
|u|2 + |∇u|2 dxdt

)

.

Moreover, since E ′(t) = 0 we obtain the observability inequality in H1
0 (�):

‖u(·, 0)‖2
H1
0 (�)

≤ C

(∫

Qω

|u(x, t)|2 + |∇u(x, t)|2 dxdt

)

. (34)

�
In order to prove null controllability, we begin by characterizing a control that drives the

system to zero at time T . We recall that h ∈ L2(0, T ; H−1(�)) has support in ω × (0, T )

if for almost every t ∈ (0, T ) and every θ ∈ H1
0 (�) such that θ |ω = 0 we have that

〈h(t), θ〉H−1(�)×H1
0 (�)

= 0. Note that every h ∈ L2(0, T ; (H1(ω))′) can be identified with

h ∈ L2(0, T ; H−1(�)) with support in ω × (0, T ). In fact, let θ ∈ H1
0 (�) such that θ |ω = 0,

then

〈h, θ〉L2(0,T ;H−1(�))×L2(0,T ;H1
0 (�)))

= 〈h, θ |ω〉L2(0,T ;(H1(ω))′)×L2(0,T ;H1(ω))) = 0.

(35)
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Lemma 2 A control hω ∈ L2(0, T ; H−1(�)) drives system (P) from w(0) = w0 to w(T ) = 0
if and only if

〈−iw0, u(0)〉H−1(�)×H1
0 (�)

= 〈hω, u〉L2(0,T ;H−1(�))×L2(0,T ;H1
0 (�)))

(36)

for all u solution of (P∗).

Proof The proof follows using integration by parts for regular solutions and using usual density
arguments. �
Theorem 5 Assume thatω and� are open sets such that the existence of a function satisfying (2)
is warrantied. Then, given w0 ∈ H−1(�), there exists a control hω ∈ L2(0, T ; H−1(�)) with
supp hω ⊂ ω× (0, T ) such that the corresponding solution to problem (P) satisfies w(T ) = 0.

Proof We define � : H1(ω) → (H1(ω))′ the usual isomorphism given by Riesz’s Theorem
and the application (HUM)

� : H1(�) → H−1(�), �(u0) = −iw(0) (37)

defined as follows: given u0, we consider u the solution of system (P∗) with initial data u(0) =
u0, then w is the solution backwards in time of equation (P) with w(T ) = 0 and hω(t) =
�(u(t)|ω) where hω ∈ L2(0, T ; H−1(�)) has support in ω × (0, T ) from (35). From lemma
2 we have that

〈�(u0), u0〉H−1(�)×H1
0 (�)

= 〈−iw(0), u0〉H−1(�)×H1
0 (�)

= 〈�(u|ω), u|ω〉L2(0,T ;(H1(ω))′)×L2(0,T ;H1(ω)))

= ‖u‖2L2(0,T ;,H1(ω))
≥ C‖u0‖H1(�)

where we have used the observability inequality (34). Thus, from Lax Milgram’s Theorem we
deduce that � is an isomorphism and therefore, we obtain the existence of the sought control
hω. �
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