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Abstract
A crucial trend of nineteenth-century mathematics was the
search for pure foundations of specific mathematical
domains by avoiding the obscure concept of magnitude. In
this paper, we examine this trend by considering the “fun-
damental theorem” of the theory of plane area: “If a poly-
gon is decomposed into polygonal parts in any given way,
then the union of all but one of these parts is not equiva-
lent to the given polygon.” This proposition, known as De
Zolt’s postulate, was conceived as a strictly geometrical
expression of the general principle of magnitudes “the
whole is greater than the part.” On the one hand, we illus-
trate this striving for purity in the foundations of geometry
by analysing David Hilbert’s classical proof of De Zolt’s
postulate. On the other hand, we connect this geometrical
problem with the first axiomatizations of the concept of
magnitude by the end of the nineteenth century. In partic-
ular, we argue that a recent result in the logical analysis of
the concept of magnitude casts new light on Hilbert’s
proof. We also outline an alternative development of a the-
ory of magnitude that includes a proof of De Zolt’s postu-
late in an abstract setting.
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A mathematical theory is not to be considered complete until you have made it so
clear that you can explain it to the first man whom you meet on the street.

— David Hilbert (1990), ‘Mathematical Problems’
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1 | INTRODUCTION

The theory of geometrical equivalence investigates criteria for the equality of area of plane
polygons by means of their decomposition and composition into polygonal parts, which are
congruent in pairs. David Hilbert (1899) formulated the first modern axiomatic version of the
theory in his classical Foundations of Geometry. As is well known, a fundamental aim of this
epochal piece of modern axiomatics was to provide a new independent basis for geometry by
delivering a strictly geometrical axiomatization. Accordingly, a central task in the project of
developing geometry “out of itself” was to remove any essential (but often implicit) appeal to
numerical considerations. This first requirement deviated from the usual “metrical approach” in
the theory of plane area, which consisted in measuring the area of polygonal figures by means
of (positive) real numbers.

In the same vein, a second methodological requirement — equally important but less
explicit — was the exclusion of the general concept of magnitude from the axiomatic construc-
tion of geometry. This central aspect of nineteenth-century mathematics is often described as
the “the end of the science of magnitude [Größenlehre]” (see, e.g., Epple (2003) and
Ferreir�os (2007)). In this regard, Hilbert’s geometrical program in Foundations echoed a notable
trend of nineteenth-century mathematics that searched for pure foundations of specific mathe-
matical domains by also avoiding the obscure concept of magnitude. In fact, the concept of
magnitude was still extremely broad by mid-nineteenth century; one commonly encountered the
definition that magnitude was everything that can be increased or diminished, and can be said
to be equal, greater, or lesser. Thus, the term magnitude applied not only to geometrical magni-
tudes but also to different sorts of entities such as numbers, masses, temperatures, time inter-
vals, and the like.

Whereas the requirement of eliminating numbers from the foundations of geometry in
Hilbert’s early axiomatic work is widely known and often stressed, the problem of developing a
“geometry without magnitudes” has largely been ignored in the specialised literature. In the pre-
sent article, our goal is to begin filling this gap by examining a proposition that might be called
the “fundamental theorem” in the theory of plane area, but which is usually known as De Zolt’s
postulate. A standard formulation of this proposition reads as follows: “If a polygon is
decomposed into polygonal parts in any given way, then the union of all but one of these parts
is not equivalent to the given polygon” (De Zolt, 1881).

The fundamental role that De Zolt’s postulate plays in the development of the theory of
plane area can be readily explained. Because this proposition excludes the possibility that a
polygon can have less area than itself, it is essential to introduce a (strict) order relation for
polygonal areas. From a modern perspective, the role of De Zolt’s postulate is to guarantee the
existence of a relation of total or linear order for plane polygons on the basis of the relation of
geometrical equivalence. This connection between the central geometrical postulate and a rela-
tion of ordering for polygonal areas was noted by nineteenth-century geometers, who took De
Zolt’s postulate as the mathematically precise formulation, for the case of polygonal areas, of
Euclid’s famous Common Notion 5 (CN5) in the Elements: “The whole is greater than
the part.”

From early modern times, this Euclidean principle was conceived as a general principle of
magnitudes. Thus, the formulation of De Zolt’s postulate was obviously connected with the sec-
ond aforementioned requirement of purity. At the end of nineteenth century, the common
standpoint in elementary geometry was to include De Zolt’s proposition as a new geometric
axiom, but Hilbert provided a proof of it in Foundations satisfying both requirements, that is,
avoiding numerical concepts but also general magnitudes. We shall call this approach the
geometrical path in the theory of plane area.

The alleged “strictly geometrical” formulation of CN5 by means of De Zolt’s postulate
raised a second problem, which was connected to the modern axiomatic investigations of the
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concept of magnitude such as Stolz (1885) and Hölder (1901), among others. Roughly, these
early axiomatic works conceived magnitude as a combination of an ordered structure and an
additive structure. Then, an intriguing issue was whether these abstract characterizations of
the concept of magnitude could feature a precise formulation of the central geometrical pos-
tulate in strictly algebraic terms; moreover, one also could demand that the resulting “alge-
braic” version of De Zolt’s be derived as a theorem of an (axiomatic) theory of magnitudes.
This problem was addressed some years later, but only very schematically, by
Łomnicki (1922). In this paper, we also aim at exploring this less-travelled “algebraic path” in
the theory of area.

Although particularly simple and elegant, the theory of geometrical equivalence hides not
only technical challenges but also a rich history of intertwined conceptual problems in the phi-
losophy of (late) nineteenth-century mathematics, which have been explored in the recent litera-
ture on the “purity of method.” The article is written in the spirit of making accessible, if not to
the first person whom one meets on the street then at least to a non-specialist audience, some
crossing mathematical paths and philosophical problems in the development of the theory of
plane area. Accordingly, in section 2 we introduce the relevant geometrical notions of the theory
of equivalence with a minimum of formalism and a maximum of diagrams. Following the same
accessibility criterion, in section 3 we distinguish between two different interpretations of the
requirement of “purity of method” in connection to the theory of area, and especially to the
proof of De Zolt’s postulate. In section 4 we reconstruct and analyse Hilbert’s geometrical proof
of the latter geometrical postulate. Next, in section 5 we explore the connections between the
emergence of the modern theory of magnitudes and our geometrical problem, which leads us
down the “algebraic path.” Then in section 6 we walk down it by outlining an alternative devel-
opment of a theory of magnitude that includes a proof of De Zolt’s postulate in an abstract
setting.

As elementary as this exposition might seem, we believe that it contributes to the current dis-
cussion of Hilbert’s notion of “purity of method” and to the elucidation of some “algebraic”
aspect of his geometrical proof of De Zolt’s postulate in Foundations. Furthermore, we also
offer a more accessible presentation of an alternative “weaker” theory of magnitudes (that we
call compatible magnitudes), whose salient feature is the inclusion and precise distinction of both
CN5 and De Zolt’s postulate according to their abstract formulations. This analysis brings then
new elements to justify the designation of De Zolt’s postulate as the fundamental theorem of the
theory of plane area.

2 | AN OVERVIEW OF THE GEOMETRICAL THEORY OF
EQUIVALENCE

Although everyone knows what a plane polygon is, let us start with some definitions. A set of
line segments such as AB,BC,CD,…,EF is called a polygonal segment that connects the points
A and F . If the points A,B,…,F lie in the same plane and A coincides with F , then the polygo-
nal segment is called a polygon. The line segments AB,BC,…,EA are the sides of the polygon,
and the points A,B,…,E are its vertices.1 Figures 1 and 2 illustrate a polygonal segment and a
polygon, respectively.

Figure 2 is a polygon in the most usual sense of the term. Note that by definition,
Figures 3–5 are also polygons.

1We adopt here Hilbert’s definition of polygon based on the idea of a closed polygonal segment or broken line (Cf. Hilbert, 1971, pp. 8–9).
Note that this definition does not make explicit that no two intermediate segments must be collinear, that is, that no three consecutive
intermediate vertices must lie on the same line. For a discussion of alternative definitions of polygons, see Grünbaum (2012).
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In what follows, we will deal exclusively with a particular class of polygons known as simple
polygons, those in which (i) the vertices are all distinct (which is why the polygon in Figure 3
fails to be simple), (ii) no vertex coincides with a side other than the two it is part of
(in Figure 4, point C is part of BC and FE), and (iii) no two sides have any interior points in
common, as illustrated by the polygon in Figure 5.

Every simple polygon divides the plane into an interior and an exterior region. Let us say
that a polygonal region is the union of a simple polygon and its interior. The notion of “area” is
concerned with this interior region; intuitively, the area or “content” of a simple polygon is the
“size” of the polygonal region determined by it. As we have mentioned, in the context of ele-
mentary geometry, there are essentially two main ways of studying polygonal areas: by measur-
ing them, that is, by assigning a (positive) real number to every simple polygon corresponding
to its area; or by comparing them, according to whether one area is larger or smaller than
another, or whether the two are equal. Pursuing this second option amounts to developing a
theory of geometrical equivalence.

Starting with Euclid’s treatment of polygonal areas in the Elements, we find a purely
geometrical technique to establish that two rectilinear plane figures have the same “size”
consisting in adding and subtracting other polygons, which are respectively congruent. Two
polygons are said to be equidecomposable if they can be decomposed into the same number
of polygonal components which are pairwise respectively congruent, that is, if they are com-
posed of the “same” parts (Figure 6). The relation of equidecomposition is also known as
“equivalence by dissection” or “equivalence by congruence.” Moreover, two polygons are
called equicomplementable if it is possible to “adjoin” to them other equidecomposable poly-
gons, such that the two resulting polygons are also equidecomposable (Figure 7). Thus, the
comparison of polygons with respect to their areas is ultimately grounded in the notion of
geometrical congruence.

Now, a central notion presupposed in the above definitions of equidecomposability and
equicomplementability is that of the decomposition of a polygon. Intuitively, we think that a
polygon is decomposed into other polygons if it can be expressed as the union of

F I GURE 6 Equidecomposable polygons

F I GURE 7 Equicomplementable polygons
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nonoverlapping polygons. For instance, a pentagon can be decomposed into a triangle and a
quadrilateral by drawing a diagonal between any two non-adjacent vertices (Figure 8). But let
us consider a more precise definition: a non-self-intersecting polygonal segment joining two
points of a polygon P and lying entirely in its interior decomposes P into two polygons P1 and
P2 with disjoint interiors, each of which is a subset of the interior of P; we also say that P1 and
P2 compose P. Figure 9 is not a decomposition of P.

In a strict sense, our notion of decomposition stipulates that a polygon can be decomposed
by a polygonal segment into two other polygons. Naturally, the process of decomposition can
be repeated in order to obtain a decomposition of a polygon into n polygonal components.
Thus, for example, Figure 10 illustrates a decomposition according to our definition.2
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F I GURE 1 0 Decomposition into four polygonal parts

2A more precise definition then demands a recursive definition of decomposition into several polygons.
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Figure 10 seems to illustrate that, in the case of polygonal figures, “the whole is greater than
the part” is valid. This general principle is usually known as the famous Common Notion
5 (CN5) in Euclid’s Elements. But these figures also suggest that all the parts taken together
“make up” the whole polygon. And this is explicitly stated in our definition of decomposition of
a polygon, where we say that polygons P1 and P2 compose the whole polygon P. Thus, because
the operation of addition consists, intuitively, in the non-overlapping union of polygons, our
definition also implies that “the whole is equal to the sum of all its parts,” or in symbols:

P¼P1þP2þ…þPn,

where the equality symbol “=” should be interpreted as the relation of congruence.
Turning to the notion of addition introduced by means of the idea of decomposition of a

polygon, we can designate this conception as “local” because the operation is circumscribed or
restricted to a particular given polygon. Consider the decomposition illustrated in Figure 8, the
geometrical operation corresponding to the addition of the polygonal parts would consist in the
“removal” of the common sides. A main issue is whether this operation can be generalised to
any pair of polygons in the sense that it will always be possible to add any two given polygons.
This comes down to the question of whether any pair of polygons can always be juxtaposed.
Naturally, the answer is negative: consider a regular starred pentagon and a regular decagon
with sides equal or greater to the distance of two consecutive vertices of the pentagon
(Figure 11). It is immediately clear that these two polygons cannot share two points along one
common side without also having common points in their interiors.

A solution to this problem was discovered during Euclid’s era and described in his Elements.
It is a classical theorem studied in high-school geometry: any polygon is equivalent to a parallel-
ogram or rectangle with a given side. Then, any two polygons can always be “transformed” into
two equivalent rectangles of equal altitude, which can be trivially juxtaposed and ordered by
comparing their bases. More precisely, the procedure to transform any rectilinear figure consists
in two simple steps once we know how to transform any triangle into an equivalent rectangle
(or parallelogram, in general) with a given side: first, one decomposes the given polygon into
triangles (by drawing diagonals from one vertex arbitrarily chosen, for instance); secondly, one
transforms these triangles, one by one, into an equivalent rectangle of the same given altitude,
placing them side by side (Figure 12).3 The fact that the figure thus obtained is indeed a rectan-
gle follows trivially.

P1

P2

F I GURE 1 1 Non-juxtaposable polygons

3This procedure was developed by Euclid in the propositions I.42–45 of the Elements and is usually known as the method of
“applications of areas” (cf. Heath 1956). For an excellent study of Euclid’s theory of area, see De Risi (2020).

FROM MAGNITUDES TO GEOMETRY AND BACK 7



Aside from the simplicity of this standard procedure to obtain equivalent polygonal figures,
we should stress that the whole method of transformation of areas hinges on a crucial geometri-
cal fact. It is clear that once an altitude h is given, rectangles with altitudes h serve to represent
the area of any polygon, modulo congruence. Consider now a given polygon P. Because there
is no fixed way to decompose a polygon into triangles, there are different ways to apply this
method to P. Suppose we have two different decompositions (e.g., triangulations) of polygon P
and a given segment h. By applying our method, we obtain two equivalent rectangles R1 and R2

with the same altitude h. Then, is it absolutely evident that the rectangle R1 resulting from one
decomposition of P must be congruent to the rectangle R2 obtained from a different decomposi-
tion? Late nineteenth-century geometers believed that this fundamental fact was not obvious at
all, particularly if one considered very large but of course finite decompositions and demanded
rigorous proof. The requested proof appealed to a very simple reasoning: if the two rectangles
were not congruent, then one of the rectangles would be equivalent to a proper part of the other
by transitivity of equivalence. Then, this possibility was explicitly ruled out by the formulation
of De Zolt’s postulate: “if a polygon is decomposed into polygonal parts in any given way, then
the union of all but one of these parts is not equivalent to the given polygon.” The postulate
excluded the possibility of polygons whose areas are ambiguous according to the method of
transformation of areas described above.

From a contemporary perspective, the admission of De Zolt’s postulate warrants the intro-
duction of a total order relation for polygonal areas based exclusively on the notion of geomet-
rical equivalence. Surely, if a polygonal part could be equivalent to the whole polygon, then
polygons will not be comparable with respect to their areas. Nevertheless, a crucial founda-
tional and methodological issue is whether the postulate should be accepted either as a new
axiom of geometry or proved as the “fundamental” theorem of the theory of equivalence. Inter-
estingly, this pressing question is intimately related to the requirement of the “purity of method”
in late nineteenth-century geometry; we analyse these connections in the next section.

3 | FROM MAGNITUDES TO GEOMETRY

We have mentioned in the Introduction that Hilbert demanded and provided a rigorous proof
of De Zolt’s postulate in his Foundations. He also asked that such proof satisfied the require-
ment of the “purity of method.” A classical formulation of purity, due to Hilbert, read as fol-
lows: “in the proof of a theorem one must use, as far as possible, only the means suggested by
the content of the theorem.”4 Thus, “purity” was connected with the search of arguments or
proofs for mathematical propositions or theorems, for which the means of proofs were
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F I GURE 1 2 Transformation of a polygon into an equivalent rectangle

4Hallett & Majer (2004, p. 217. Our emphasis).
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considered as appropriate (or inappropriate) in relation to the conditions explicitly stated in
such statements. A proof was “pure” if the resources or methods employed were intrinsic to, or
suggested by the content of, the theorem proved or the problem resolved.5

But what does “purity of method” specifically mean in the context of a proof of De Zolt’s
postulate? And more generally, what does it mean in relation to the development of the theory
of plane area? We can identify at least two interpretations of this methodological requirement,
in connection to Hilbert’s endeavours to provide a new independent basis for geometry, that is,
to develop geometry “out of itself.” The first prescribes the explicit avoidance of any fundamen-
tal appeal to numerical considerations, especially to the concept of real number, in the axiom-
atic construction of geometry. In fact, we can reformulate the problem of the possibility of
comparing plane polygons in numerical terms. To solve the problem, it is sufficient to show that
a numerical (real-valued) function of area measure exists. Because any two real numbers are
always either equal or one is greater (or less) than the other, one only needs to stipulate that:

P⋚Q if and only if ℱ Pð Þ⋚ℱ Qð Þ,

where “ℱ” refers to a “measure of area function” that takes (positive) real numbers as values.
Polygons are thus totally ordered by means of their numerical measures of area. A pure proof
of De Zolt’s should then avoid the use of the standard notion of measure of area, defined as a
real-valued numerical function.

Moreover, the standard numerical definition of area measures depends essentially on the
Archimedean axiom or “axiom of measure,” which warrants that real numbers can be used to
measure the length of every line segment. Informally, this axiom states that given two line seg-
ments AB and CD, there is a natural number n such that n copies of AB added together will be
greater than CD. Now, the goal of providing a new pure foundation for Euclidean geometry
did not preclude per se the use of continuity axioms. Nevertheless, one central motivation of
Hilbert’s geometrical program was to show that a major part of elementary geometry could
indeed be developed without assuming this group of axioms, particularly the Archimedean
axiom. The fact that (full) continuity was not a necessary condition to perform all Euclidean
constructions with ruler and compass had been anticipated by Dedekind in his monograph Was
sind und was sollen die Zahlen? of 1888.6

In connection to the theory of plane area, Hilbert proved that the whole theory of geometri-
cal equivalence could be rigorously developed independently of the Archimedean axiom on the
basis of the notion of equicomplementability. Specifically, he proved that the notions of equi-
decomposition and equicomplementability were equivalent only in the presence of the latter
axiom.7 Thus, an adequate proof of De Zolt’s postulate should also refrain from using the
Archimedean axiom. In other words, the search for a “pure” proof of this geometrical postulate
independently of the Archimedean condition was intimately connected to his ground rule in
Foundations, according to which “the principles of the possibility of a proof must always be

5The requirement of purity of method, especially in the context of modern axiomatic geometry, has recently been the focus of important
studies. See, for instance, Hallett (2008) and Arana and Mancosu (2012). For more general discussions of this methodological
requirement in mathematics, see Arana and Detlefsen (2011).
6Cf. Dedekind (1888, p. 793). Note that up to the seventh edition of Foundations of 1930, Hilbert employed a version of the
Archimedean axiom that explicitly avoided the reference to the concept of natural number. Furthermore, a similar concern can be
identified in his adoption of a full continuity axiom, namely his famous (geometrical) axiom of completeness. On several occasions,
Hilbert stressed that this axiom was strictly geometrical because it avoided analytic concepts such as the notions of a limit and
convergence. Another salient feature of Hilbert’s axiom of completeness is that it does not imply the Archimedean axiom as a logical
consequence. For an illuminating discussion of purity and the adoption of (full) continuity axioms in elementary geometry, see
Baldwin (2018b).
7Hilbert achieved this original result by constructing a model of a non-Archimedean geometry where central theorems about the
equidecomposition of triangles and parallelograms with equal bases and altitude did not obtain. Following Baldwin (2018b), we could
claim that this result plays a significant role in specifying the axiomatic context that is necessary for assessing the “content” of De Zolt’s
postulate.
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discussed” (Hilbert, 1971, p. 107). Recall that, for Hilbert, the requirement for the purity of
methods of proof was “subjective form” of the ground rule. From a historical point of view, to
reveal that the latter axiom was not a necessary condition to prove De Zolt’s postulate was a
significant contribution of Hilbert’s axiomatization of the theory of plane area.8

The second interpretation of “purity” is perhaps less explicit in Hilbert’s work but equally
important. It is related to a more subtle dimension of his foundational project, namely the
exclusion of the general concept of magnitude from his axiomatic reconstruction of Euclidean
geometry. One might argue that, in this regard, Hilbert’s axiomatization of Euclidean geometry
bears many resemblances to Dedekind’s program for the foundations of arithmetic in the sense
that both projects aimed at excluding the concept of “extensive” or “measurable” magnitude.
One of the clearest statements of Dedekind’s (1872) “logicist” project in the construction of
arithmetic (and analysis) was presented in the following well-known passage of Continuity and
Irrational Numbers:

For the way in which the irrational numbers are usually introduced is based
directly upon the conception of magnitudes — which itself is nowhere carefully
defined — and explains number as the result of measuring such a magnitude by
another of the same kind. Instead of this I demand that arithmetic shall be developed
out of itself. (Dedekind, 1888, pp. 771–770)

The similarity of Hilbert’s position with regard to the concept of extensive magnitude can
be appreciated in the following remark about the transitive property of the relation of segment
congruence:

Often one encounters the conception (possibly, Euclid held also this view) that the-
orems like the one just proved are pure magnitude relations and, therefore, do not
require any kind of particular proof, and should not be introduced as specific geo-
metrical axioms. But this is not correct: this depends entirely on which relations I
define as “equal,” “congruent,” and so on. (Hilbert, 1898/1899, p. 320)

In general terms, eliminating the general concept of magnitude from the foundations of
geometry involved two main steps: first, general principles of magnitudes should be converted
into geometrical propositions by interpreting the relations and operations of magnitudes as spe-
cific geometrical relations and operations for every (relevant) kind of geometrical object. The
connection with the requirement of “purity” is thus completely evident: assuming that geometri-
cal objects (straight line segments, rectilinear plane figures, solids, etc.) bear all the basic (alge-
braic) properties of magnitudes was tantamount to accepting without proof that they behave
just like “numbers.” In turn, the second step demanded that these geometrical propositions
should not be taken as axioms but proved as theorem from the axioms of geometry. These two
dimensions of the requirement of “purity” characterise what we have called the “geometrical
path” in the theory of plane area, that is, the strictly geometrical construction of the theory
which avoids not only numerical concepts but also any reference to general principles of magni-
tude. Naturally, both requirements should be met in a “pure” proof of De Zolt’s postulate.

It is worth noting that, by the end of the nineteenth century and the beginning of the twenti-
eth century, the first modern axiomatizations of the theory of magnitude laid the groundwork
for what is now usually called the “standard theory of magnitudes.” This included the work of

8It is worth mentioning that many important geometers, such as F. Schur, O. Stolz, and W. Killing, provided detailed proofs of De
Zolt’s postulate during the 1890s. However, all these proofs assumed explicitly (or more often implicitly) the Archimedean condition. In
his lecture course on Euclidean geometry of 1898/1899, Hilbert emphasised on several occasions that these geometers failed to meet the
fundamental point, namely that the postulate is probable without Archimedean axiom (Cf. Hilbert, 1898/1899). For a historical
discussion of these developments and a detailed analysis of Hilbert’s proof, see Giovannini (2021).
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Stolz (1885), Hölder (1901), Huntington (1902), and Schatunowsky (1903), among others.9 In
modern terminology, this theory defines a system of magnitudes as an ordered commutative
(or Abelian) semigroup. Schematically, in this approach one starts by postulating a relation of
equivalence “�” for magnitudes which satisfies the usual properties of reflexivity, symmetry,
and transitivity. Then, one introduces a binary operation of addition “+” of magnitudes which
satisfies the associative and commutative properties. The first property provides the structure of
a semigroup; if the second property is also satisfied, the semigroup is called commutative or
Abelian.

A relation of strict ordering “<” can be introduced with the help of the operation of addition
by postulating that this operation also satisfies the comparability property: for any magnitudes
a and b, there exists a magnitude c such that either a¼ bþ c or b¼ aþ c or a¼ b. This condition
suggests the following definition of strict order: a< b if and only if there exists a c such that
b¼ aþ c. The relation of ordering thus defined is a strict total ordering.

The domain of magnitudes described by this axiomatic theory, which does not include yet
the Archimedean axiom, was often called during this period a system of absolute magnitudes. If
the latter axiom was also assumed, then one obtained a systems of absolute magnitudes in the
strict sense.10 This “standard theory” of magnitudes constitutes the background of the “alge-
braic path” in the theory of area, which will be discussed in section 5. But first let us walk down
the geometrical path.

4 | THE GEOMETRICAL PATH

Hilbert’s axiomatic construction of the theory of plane area in chapter IV of Foundations is a
landmark in the development of the modern theory of equivalence. This can be explained due
to the fact that many of the fundamental concepts discussed in section 2, such as equi-
decomposition, equicomplementability, decomposition, and addition of polygons, were intro-
duced in a more precise and rigorous way than ever before. These conceptual refinements are
clearly reflected in Hilbert’s original proof of De Zolt’s postulate.

The central idea of Hilbert’s proof was to develop an elementary theory of area measure
of polygons in a purely geometrical fashion. More precisely, these functions of area measure
did not take numerical values as customary; that is, they did not presuppose the possibility
of using (positive) real numbers to measure the area of polygonal figures by means of the
standard formulas. On the contrary, Hilbert defined the measure of area of plane polygons
as an associated or characteristic line segment. The possibility of “measuring” the area of
plane polygons using line segments was grounded on a key technical innovation accom-
plished in chapter III of Foundations, namely, the purely geometrical construction of a cal-
culus of line segments. Then, the kernel of the geometrical proof of De Zolt’s postulate
consisted in appealing to some algebraic properties of this segment calculus to obtain the
basic properties of area measure functions and show that equivalent polygons
(i.e., equicomplementable) have equal measure of area. Let us analyse Hilbert’s proof in a
bit more detail.

The construction of an arithmetic of line segments involved two main steps: first, the purely
geometrical definition of the operations of addition and multiplication of line segments; second,

9For a detailed historical study of the emergence of the modern theory of magnitudes, see Ehrlich (2006). For a more philosophical
discussion of the “standard” theory of magnitudes, see Stein (1990) and Hale (2000).
10Cf. Stolz (1885, p.70). Towards the end of the nineteenth century, there were also important attempts to provide precise (axiomatic)
characterizations of the concept of an abstract domain of magnitudes (or quantities), which could be used to construct the real numbers
as relations (ratios) between magnitudes. Naturally, this aim required to impose additional structure on the systems of absolute
magnitudes in the strict sense (i.e., totally ordered Archimedean Abelian groups). Briefly, these systems of absolute magnitudes were also
required to be densely ordered and complete. See, for example, Hölder (1901), and Frege (1903). For a detailed examination of Frege’s
constructions of the real numbers and his concept of a domain of magnitudes, see Hale (2000) and Panza and Sereni (2019).
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the proof that these operations satisfy all the relevant algebraic properties.11 More specifically,
Hilbert defined the multiplication of two line segments by resorting to the classical construction
of the fourth proportional, that is, to the construction exhibited in proposition VI.12 of Euclid’s
Elements. As is well known, this construction had been used for the first time by Descartes to
define the product of two line segments as another line segment and demanded fixing a unit seg-
ment as well as the validity of the parallel axiom (Figure 13). Hilbert also noted that two classi-
cal theorems in projective geometry, namely the theorems of Desargues and Pascal, were
crucial to obtain important algebraic properties of segment multiplication, such as associativity
and conmutativity.12 But this led to a notable realisation: the calculus of line segments satisfied
all the properties of the (richer) algebraic structure of an ordered field.

Let us recall that ordered fields are structures of the form ⟨F ,0,1, þ , � , ≤ ⟩ consisting of a set
F , an operation of addition þ, an operation of multiplication � , and an order relation ≤ , such
that addition and multiplication are associative and commutative, 0 is the identity of addition,
1 the identity of multiplication, multiplication is distributive over addition, every element has
an additive inverse, every element different from 0 has a multiplicative inverse, ≤ is a total
order, and the elements greater than or equal to 0 are closed under addition and multiplication.
Then, Hilbert’s derivation of the algebraic structure of an ordered field from his axioms for the
Euclidean plane was not only fundamental for the strictly geometrical introduction of number
into geometry but also for the development of the theory of area measure of polygons. Specifi-
cally, he defined the measure of area of a polygonal figure as an element of this ordered field
generated by the segment arithmetic.

It should be noted that Hilbert also used his segment arithmetic to provide an adequate defi-
nition of proportionality for line segments and reconstruct the classical theory of similar trian-
gles. More specifically, he defined the proportionality of line segments as the equality of the
product of two pairs of line segments, namely: if a,b,a0,b0 are any four segments, then the pro-
portion a : b¼ a0 : b0 means nothing else but the segment equation ab0 ¼ ba0 (Hilbert, 1971,
p. 55).13 This definition was central for the geometrical theory of area measure, as we shall see
in a moment. Moreover, one central aspect of Hilbert’s construction of a segment arithmetic —

O 1 b

a

ab

F I GURE 1 3 Multiplication of two line segments

11Hilbert’s construction of an arithmetic of line segment is often stressed as one of the most innovative technical contributions of
Foundations. For detailed studies, see Baldwin (2018a, 2018b) and Giovannini (2016).
12To be more precise, Hilbert proved that while the theorem of Desargues is essential to obtain the associative law of multiplication, the
theorem of Pascal guarantees the commutative property of the same operation.
13It might be worth recalling how Hilbert’s treatment of segment multiplication differs from Descartes’ original ideas. As is well known,
Descartes derived his definition of segment multiplication from the proposition VI.2 of the Elements on the proportionality of similar
triangles; consequently, he assumed not only the classical theory of proportion of Book V in its entirety but also the validity of the
Archimedean axiom. In contrast, Hilbert regained directly the notion of proportionality by starting from his definition of segment
multiplication. This was fundamental to circumvent the appeal to the latter axiom in the theory of proportion and similarity.
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and of the theory of proportion based on it — was that it does not depend on any continuity
assumption, and in particular does not depend on the Archimedean axiom. All these geometri-
cal developments were thus entirely independent of numerical assumptions — and therefore of
the concept of real number.

As usual in the development of a theory of area measure, Hilbert started by first considering
the case of triangles. The measure of area of a triangle was defined as a characteristic segment
obtained through the standard formula, that is, as the semi-product of the base by the
corresponding altitude. Adopting Hilbert’s symbolism, ABC½ � denotes the measure of area of a
triangle ABC. The main problem was then to prove that this notion was well defined in the
sense that the area measure of a triangle is independent of the side chosen as the base and the
corresponding heights. Hilbert was able to secure this fundamental property by resorting to his
theory of proportion and similar triangles. Two triangles are said to be similar if all their
corresponding angles are congruent. More precisely, let ABC be a triangle and consider the
sides BC¼ a, CA¼ b, and the corresponding heights DA¼ ha and BE¼ hb (Figure 14). From
the similarity of the triangles BCE and DCA, it follows that their corresponding sides are pro-
portional, namely: a : hb¼ b : ha. But given the above definition of proportionality, this means
that a:ha¼ b:hb, that is, the desired result. It is worth mentioning that this proof presupposed
essentially some algebraic properties of segment multiplication, especially the commutative law.

The next step was to assign a sign to this notion of area measure based on the definition of
an orientation for triangles and for polygonal figures in general. The orientation of a triangle
(or a polygon) is obtained by considering the order of the corresponding vertices in a clockwise
or a counterclockwise direction; the first ordering corresponds to the negative orientation of the
figure, the second to the positive.14 This amounts to establishing a fundamental property of
measure of area functions: the measure of area of any triangle T, positively oriented, is always
greater than 0. Additionally, from the fact that the measure of area of a triangle is well defined,
Hilbert derived a second fundamental property of functions of measure of area, namely, that
congruent triangles have equal measure of areas.15

The possibility of decomposing any polygon into triangles suggested the definition of its
measure of area: the measure of area of a polygon (positively oriented) is the sum of the

F I GURE 1 4 Area measure of a triangle

14Note that in Hilbert’s plane geometry the notions of clockwise and counterclockwise can only by defined in a relative sense; that is,
only ordered non-collinear points can be said to be the same or different with respect to their orientation. There is no way within his
geometrical theory to identify the orientation of a triple of points as clockwise or counterclockwise in an absolute sense. We would like
to thank an anonymous referee for this observation.
15It is worth mentioning that Hilbert’s introduction of oriented areas was also relevant for metageometrical reasons. In the appendix II
of Foundations of Geometry, Hilbert proved that if the usual triangle congruence axiom (III.5) is replaced by a weaker version, which
limits its application only to triangles with the same orientation, several basic propositions of the Euclidean theory of area fail. Most
notably, the proposition I.39 of the Elements as well as De Zolt’s postulate do not obtain if the weaker version of the triangle congruence
axiom is assumed. To prove this fact, Hilbert constructed a model of a “non-Pythagorean geometry,” that is, a geometry in which the
Pythagorean theorem does not hold either. For details, see Hilbert (1902/1903).
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measure of area of the triangles (positively oriented) in which it is decomposed under a given
triangulation. The crucial task in the development of the theory of measure of area of plane
polygons was again to prove that this function is well defined, that is, that the area measure is
uniquely determined by the polygon or, equivalently, that it is independent of the triangulation
used for its calculation. As a matter of fact, this was the part of the proof where the geometrical
argument became more complex and involved; Hilbert needed first to derive several auxiliary
theorems to achieve the desired result.

We will remain content with pointing out that Hilbert was able to prove, by means of a
piece of purely geometrical reasoning, that functions of area measure of triangles satisfied the
fundamental property of additivity: that is, if a triangle is decomposed into a finite number of
partial triangles, then the sum of the area measure of the partial triangles (positively oriented) is
equal to the area measure the original triangle (also positively oriented). From the additive
property of the area measures of triangles, one could prove that the same property was also
valid for the measure of area of polygons, and more generally, that every polygon determines
uniquely its measure of area independently of the triangulation which employed for its
calculation.

Given that congruent polygons have equal area measure, the very definition of a measure of
area of polygon allowed one to establish an important geometrical fact: equivalent polygons
(viz., equicomplementable) have equal measure of area. Moreover, the converse, most com-
monly known as the Wallace–Gerwien–Bolyai theorem, can also be easily obtained from the
properties of area measure, especially additivity. Hilbert stated this co-implication between the
relation of geometrical equivalence and measure of area in the following theorem:

Theorem 51 Two equicomplementable polygons have the same measure of areas
and two polygons with the same area are equicomplementable
(Hilbert, 1971, p. 69).

Theorem 51 ensures that if two equicomplementable rectangles have a common side, then
their other sides must also coincide. Moreover, this theorem is also often expressed by means of
its contrapositive, namely that if two polygons do not have equal measure of area, then they are
not equicomplementable. Thus, De Zolt’s postulate becomes just a corollary of the latter theo-
rem. Hilbert formulated the fundamental geometrical postulate according to the following
version:

Theorem 52 (De Zolt’s postulate). If a rectangle is decomposed by lines into several
triangles and one of these triangles is omitted then it is impossible to fill out the rect-
angle with the remaining triangles (Hilbert, 1971, p. 69).

Hilbert judged the inference of Theorem 52 to be totally evident, but let us make explicit this
final step of his proof of De Zolt’s postulate. We need to show that a polygon can never be
equicomplementable to a proper polygonal component. Let us consider then a given polygon P,
which is decomposed in two or more polygonal parts P1,P2,…,Pn. By the additive property of
area measure of polygons, it follows that:

P½ � ¼ P1½ �þ P2½ �þ…þ Pn½ �:

However, because the area measure of each one of the polygonal parts P1,P2,…,Pn is greater
than 0, the measure of area of the polygon P is greater than any of its polygonal parts, such as
for example P1. Hence, by Theorem 51 P cannot be equicomplementable to P1. De Zolt’s pos-
tulate is a particular case of this result.
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With this proof of De Zolt’s postulate, Hilbert provides a solid foundation for the theory of
equivalence. Specifically, the problem of the comparability of plane polygons with respect to the
relation of geometrical equivalence (viz., equicomplementability) — which was the central issue
concerning this postulate — is solved by the introduction of a notion of measure of area. This
solution is grounded on the fact that there is a perfect correspondence between the notions of
geometrical equivalence and area measure in the case of plane rectilinear figures, as exhibited in
Theorem 51 above.

To conclude this section, it is worth stressing again how this geometrical notion of area mea-
sure differed from the standard (numerical) one. Hilbert constructed his theory of measure of
area independently of the Archimedean axiom, which means that he did not assume the possi-
bility of using (positive) real numbers to measure the length of line segments. In a strict sense,
his theory consisted in building a mapping from the set of plane polygons to the ordered field of
the segment arithmetic via the theory of proportion and similar triangles. Furthermore, this
appeal to a geometrical construction of a segment arithmetic turned out to be essential for the
project of removing the general concept of magnitude from the foundations of geometry,
namely: all the “general principles of magnitude” required for the proof of De Zolt’s postulate
(e.g., additive, commutative, distributive property of multiplication over addition) are regained
as basic properties of the geometrical calculus of segments. Both demands of “purity” in connec-
tion to the proof of De Zolt’s postulate were thus met in the geometrical path developed by
Hilbert.16

5 | FROM GEOMETRY TO MAGNITUDES

As we have seen, a central motivation for the formulation of De Zolt’s postulate was to find a
purely geometric version, for the case of polygonal areas, of the general principle of magnitudes:
“the whole is greater than the part.” The “algebraic path” in the theory of plane area, instead,
reverses the question: How can this geometrical postulate be formulated in strictly “algebraic”
terms as an axiom or a theorem of an (axiomatic) theory of magnitudes? In fact, this question
touches on a crucial conceptual issue for the modern synthetic reconstruction of Euclidean
geometry. Even if one of its chief aims was to eradicate the general concept of magnitude from
the foundations of geometry, this concept was still a central presupposition of the axiomatic sys-
tem. To put it concisely: to prove from the axioms of geometry that polygonal areas can be
treated as magnitudes, one needs to know first what “magnitudes” are. Paul Bernays (1959)
conveys this idea nicely:

The concept of magnitude is, of course, also subjected to axiomatization; however,
in this regard the axioms are explicitly separated from the remaining axioms
[of geometry] as antecedent. These axioms are of a similar kind as those which are
used today for Abelian groups. But what remained undone, because of the methodo-
logical standpoint at the time, was to determine axiomatically which objects were to
be regarded as magnitudes. (Bernays, 1959, pp. 1–2)

16Regarding Hilbert’s proof of De Zolt’s postulate, Hartshorne (2000) has observed that “this proof is analytic in that it makes uses of
the field of segment arithmetic, and similar triangles. We do not know any purely geometric proof, for example of (I.39), that triangles
on the same base with equal content [i.e., equicomplementable] have the same altitude” (p. 2010). A similar remark has been made by
Baldwin (2018b). As for the status of the segment arithmetic, it is clear that Hilbert conceived it as a purely geometrical result. He based
this claim on the fact that the elements of the associated fields were strictly geometrical entities and that the definitions of addition and
multiplication were “purely geometrical concept formations” [geometrische Begriffsbildung] (Hilbert, 1898/1899, p. 374), which did not
rely on any kind of number or proportion among numbers. Thus, he did not consider that the use of the segment arithmetic introduced
impure elements in his proof of De Zolt’s postulate. Nevertheless, the presumed impossibility of proving De Zolt’s with elementary
means raises interesting and complex issues for the general distinction between synthetic and analytic proofs in geometry, which needs to
be addressed in a different paper.
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In fact, in section 3 we have seen that a standard way to proceed in the development of the
concept of magnitude consists in conceiving magnitude as an ordered commutative semigroup.
This was indeed the common standpoint adopted by the first axiomatizations of the concept of
magnitude at the beginning of the twentieth century, which conceived magnitude as a combina-
tion of an ordered and an additive structure. Now, it is worth noting that these axiom systems
were not formulated with the intention of exploring the logical status of De Zolt’s postulate in the
modern theory of magnitudes, with the exception of one notable contribution: Łomnicki (1922).17

This work laid down a system of axioms conceived explicitly with the chief aim of including an
abstract formulation of De Zolt’s postulate as a general principle of magnitudes.

Łomnicki claimed that any set of elements could be understood as a magnitude if it is possi-
ble to specify three relations, denoted by “=,” “<,” and “>” for these elements such that the fol-
lowing six conditions are satisfied:

1. a¼ a
2. a¼ b, then b¼ a.
3. For every pair of elements, one and only one of the following relations holds:

a< b,a¼ b,a> b:

4. If a> b, then b< a
5. If a< b and b< c, then a< c.

Łomnicki’s system took then a relation of equivalence and a relation of strict order as primi-
tives terms. However, his investigation was focused on the formulation of axiom 3, that is, the
standard law of trichotomy. More specifically, Łomnicki proved — although only schematically
— that in the presence of the other five axioms, the trichotomy axiom can be obtained by means
of two logically independent propositions, which he called the completeness of trichotomy and
the principle of disjunction:

Completeness of trichotomy. If a≠ b, then either a> b or a< b.

Principle of disjunction. If a¼ b, then a≮b.18

Within this axiomatic framework for an abstract theory of magnitudes, Łomnicki
suggested that the latter proposition could be understood as an “abstract version” of De
Zolt’s postulate. Moreover, he also inquired into the implications of his treatment of the tri-
chotomy law for the development of the geometrical theory of equivalence. His main con-
clusion was that to guarantee that the set of plane polygons satisfy all the axioms for
magnitudes exclusively by relying on the geometrical theory of equivalence; that is, without
resorting to a notion of measure of area, De Zolt’s postulate must be necessarily assumed as
an axiom. Łomnicki did not give proof of the notable fact but limited himself to the follow-
ing informal remark:

Until that axiom [i.e., the principle of disjunction] is satisfied, the geometric relations of
equivalence, ‘lesser than,’ and ‘greater than’ of polygons, cannot be regarded as relations of
magnitude; and therefore a set of polygons cannot be regarded as a class of magnitudes. Thus,
we see what an important role the axiom of disjunction plays, illuminating the dimmest part of
the theory of equivalence of polygons (Łomnicki, 1922, p. 25)

17Łomnicki’s paper consists of a detailed summary of conference at the Polish Philosophical Society in Lviv on 21 January 1922. An
English translation of this talk by Andrew McFarland can be found in Giovannini et al. (2019).
18The reformulation of trichotomy in terms of a conditional was a suggestion made my J. Lukasiewicz. The name principle of disjunction
clearly refers to the definition of the conditional by means of the disjunction connective. See Łomnicki (1922, p. 24).
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Based on the schematic analysis offered by Łomnicki, in a recent paper we have advanced
an alternative treatment of the concept of magnitude.19 The primary motivation for this
approach was to provide a more precise formulation of an abstract version of De Zolt’s postu-
late and to derive it as a theorem of this alternative “theory of magnitudes.” In other words, the
main goal was to avoid the admission of De Zolt’s postulate as an axiom and to prove it as a
consequence of the axioms of a “well-behaved” theory of magnitudes. From this perspective, it
is immediately evident that Łomnicki’s system is inadequate because it does not include an
operation of addition among the primitives. In the next section, we schematically present our
alternative analysis of the concept of magnitude and the corresponding treatment of De Zolt’s
postulate in a more abstract setting. As in other sections of the paper, the emphasis will be put
on conceptual issues rather than on technical details.

6 | THE ALGEBRAIC PATH

We assume as primitives a relation of comparison and an operation of addition of magnitudes.
We wish to compare magnitudes such as segments (e.g., straight line segments) with respect to
length, and closed figures (e.g., polygons) with respect to area. As basic principles of compari-
son of magnitudes, we take some familiar properties of ≤ . The basic principles of comparison ≼
are as follows:

(C.1) Reflexive for every a: a≼ a.

(C.2) Transitive for all a,b,c: if a≼ b and b≼ c, then a≼ c.

(C.3) Total for all a,b: a≼ b or b≼ a.

We introduce equivalence � by definition, namely: a� b iff a≼ b & b≼ a. Similarly, strict
comparison is defined as expected: a≺ b iff a≼ b and a≁b. From totality and the definition of
equivalence, we obtain the standard trichotomy law:

Proposition 6.1 (trichotomy). For magnitudes a and b: a≺ b, a� b or a≻ b.20

The introduction of the operation of addition deserves particular attention. To formulate
and prove De Zolt’s postulate in this abstract setting, it is convenient to restrict the operation of
addition to compatible magnitudes. On the one hand, this restriction aims to circumvent the
problem that any two magnitudes (e.g., plane polygons) cannot always be added. On the other
hand, this restriction also attempts to characterise in an abstract way the fact that addition is
conceived as a local operation. Roughly, the local aspect of addition means that the operation
is not performed on any two magnitudes but on magnitudes that are already part of a given
magnitude. Compatible magnitudes result from considering in an adequate way a certain
decomposition of a previously given magnitude. In a geometrical setting, the idea of compatibil-
ity can be illustrated by considering two parts of a given magnitude that have a common

19The next section aims to present a more informal or intuitive exposition of the abstract treatment of magnitudes developed in
Giovannini et al. (2019). For historical details of Łomnicki’s work, and particularly for the context of this conference, see McFarland
et al. (2014, pp. 51–55). Łomnicki’s talk was attended by Ajdukiewicz, Bad, Twardowski, and Banach; the latter will start an essential
collaboration with Tarski the following year. In particular, in a famous collaborative paper of 1924, Banach and Tarski pursued the
notion of geometrical equivalence in much greater detail, particularly in three dimensions. This paper contained a remarkable and
“paradoxical” result: two balls with any radii whatever are equivalent — for example, the earth and a marble. This line of inquiry leads
to a notable result in three dimensions, namely: there is not a perfect correspondence between the (metrical) concept of volume and the
notion of geometrical equivalence (viz., equidecomposition) because there are polyhedra (viz., tetrahedra) with equal volume but which
are not equivalent.
20The proofs of all the propositions that follow are given in Giovannini et al. (2019).
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element already contained in the latter. For example, two polygonal parts of a polygon are
compatible if they have a common side (Figure 15):

We use the symbol “;” to denote the operation of addition. Henceforth we use compatible
cmp to abbreviate the domain of ; , namely: a cmp b iff, for some magnitude c, we have a;b¼ c.
We assume the following basic principles of addition ; .

(A.1) Associativity for all a,b,c, with acmp b and bcmp c:

(a; b) cmp c, a cmp (b;c), a;bð Þ;c¼ a; b;cð Þ.

(A.2) Domination for all a,b, with acmp b: a≼ a;b� b.

(A.3) Monotonicities left and right monotonicities.
( ) Left monotonicity for a,b,c, with acmp b and acmp c:

if b≼ c, then a;b≼ a;c.
(!) Right monotonicity for a,b,c, with acmp c and bcmp c:

if a≼ b, then a;c≼ b;c.

(A.4) Cancellations left and right cancellations.
( ) Left cancellation for a,b,c, with acmp b and acmp c:

if a;b≼ a;c, then b≼ c.
(!) Right cancellation for a,b,c, with acmp c and b cmp c:

if a;c≼ b;c, then a≼ b.
A remark about associative sums will be relevant for the subsequent discussion.

Remark 6.1 (associative sum). Given a,b,c, with acmp b and bcmp c, we have
a;bð Þ;c¼ a; b;cð Þ (by associativity A.1). So,, we write simply a;b;c.

Note also that among the basic principles of addition we have not included the commutative
property. This is due to the fact that commutativity does not hold in general for our definition
of local addition of (compatible) magnitudes. Consider, for instance, the local addition of two
triangles P1, P3 and a rectangle P2, such that P1 shares a side with P2 and P2 shares a side with
P3, but P1 does not share a side with P3 (Figure 15). In this case, the addition P1;P2ð Þ;P3 is
allowed but P2;P1ð Þ;P3 is not. Thus, it does not result that P1;P2ð Þ¼ P2;P1ð Þ; that is, the com-
mutative property does not hold in general.

We next consider special kinds of magnitudes, that is, trivial and proper magnitudes, and
use this distinction to characterise strict parts.

Consider a magnitude m.

1. Call m left trivial iff m;b≼ b, for some magnitude b with mcmp b.
2. Call m right trivial iff a;m≼ a, for some magnitude a with bcmpm.

A B

P P1 P2 P3 Q

D C

F I GURE 1 5 Rectangle ABCD is compatible with triangles PAD and BCQ
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Then, a magnitude m is proper iff m is neither right nor left trivial. The distinction between “triv-
ial” and “proper” magnitudes is then established by means of the properties of comparison and
addition. The following proposition states that proper addition always causes a strict increase:

Proposition 6.2 (proper concatenation). Consider magnitudes m and p such that p is
proper.

( ) If p is compatible to m, then m≺ p;m.
(!) If m is compatible to p, then m≺m;p.

Proposition 6.2 is an immediate consequence of the trichotomy property. We introduce now
strict parts of magnitudes, in terms of addition and proper magnitudes. This will be instrumen-
tal for a precise formulation of (our abstract version) of Euclid’s Common Notion 5. Let us first
motivate the notion of strict parts with an example.

Example 6.1 (strict parts of segments). Figure 16 shows strict parts of segments: a
strict suffix s, a strict prefix p and a strict infix i.

Consider magnitudes m and n.

• Call m a strict suffix of n iff n¼ c;m, for some proper c, with ccmpm.
• Call m a strict prefix of n iff n¼m;d, for some proper d, with mcmp d.
• Call m a strict infix of n iff n¼ c;m;d, for some proper c and d, with ccmpm and mcmp d.

We call m a strict part of n iff m is a strict suffix, prefix, or infix of n. Figure 15 shows a rectan-
gle ABCD as a strict part (i.e, a strict infix) of polygon PABQCD. Thus, we have an abstract
version of “the whole is greater than the part,” which can be derived as an immediate conse-
quence of proper concatenation (proposition 6.2).

Proposition 6.3 (the whole is greater than the part). If m is a strict part of n,
then m≺ n.

The next step is to recast the idea of a “decomposition” of a geometrical magnitude in our
abstract setting. Recall that in the case of plane polygons, one often establishes the following
conditions: a non-self-intersecting polygonal segment joining two points of a polygon P and
lying entirely in its interior decomposes P in two polygons P1 and P2, each of which is a subset
of the interior of P. The generalisation of this notion to the decomposition of a polygon into n
polygonal components presents several challenges because it involves, for example, a recursive
definition.We analyse the “geometrical” idea of decomposition by means of several notions. We
start by considering magnitude lists and truncations. A magnitude list is a n-tuple of magnitudes,
which we denote as a¼ ⟨a1,…,an⟩. A truncation of a list is a sublist consisting of all its elements
but one: a head is obtained by removing the last element; a tail is obtained by removing the first

Suffix s Prefix p Infix i

C c A s B A
p

B
d

D C c A i B
d

D

F I GURE 1 6 Strict parts of segments
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element; and a shell is obtained by removing another element. We call b a truncation of a iff b is
a head, a tail, or a shell of a. Let us illustrate these notions with an example.

Example 6.2 (triangle lists). Consider the 4-triangle list (cf. Figure 15) as follows:

By removing BCQ we obtain its head

and by removing PDA we get its tail.

Moreover, it has the following shells:

This example suggests that one shall further distinguish a particular kind of magnitude lists
that we call partitions. More precisely, consider a magnitude list a¼ ⟨a1,…,an⟩.

• List a¼ ⟨a1,…,an⟩ is proper iff a1,…,an are all proper.
• List a¼ ⟨a1,…,an⟩ is compatible iff a1cmp a2cmp…cmp an�1cmp an.

Then, by a partition we mean a proper compatible magnitude list. The next remark is similar to
the remark 6.1 about associative sums.
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Remark 6.2 (Iterated sums). For a compatible list ⟨a1,a2,…,an�1,an⟩, we have
… a1;a2ð Þ;…;an�1ð Þ;an¼…¼ a1; a2;…; an�1;anð Þ…ð Þ. So, we write sim-
ply a1;a2;…;an�1;an.

In our example 6.2, notice that the head and tail are compatible, so they are partitions. In
turn, the shells are not compatible, so they do not constitute partitions. Furthermore, given a
compatible list a¼ ⟨a1,…,an⟩, its sum is the sum of all its elements, namely, the magnitudeP

a½ �≔ a1;…;an. For n¼ 1, we take
P

⟨a1⟩
� �

≔ a1.
We introduce now our “abstract” notion of decomposition in terms of partitions. This will be

instrumental in formulating and deriving abstract versions of De Zolt’s postulate. In particular,
we distinguish between local and global decompositions. Given a magnitude m, consider a par-
tition a¼ ⟨a1,…,an⟩ with sum

P
a½ �. We call partition a:

(�) a global decomposition of m iff
P

a½ � �m,(=) a local decomposition of m iff
P

a½ � ¼m.
In a geometrical setting, one can illustrate this distinction by considering the case of plane
polygons and interpreting the symbols “¼” and “�” as congruence and equivalence
(e.g., equidecomposition), respectively. Thus, given a partition d of a polygon P, if the sum of
all its elements yields a polygon Q congruent to P, then d is a local decomposition. In contrast, if
the sum of all the elements of d yields a polygon R equivalent to P, then d is a global
decomposition.

We next consider truncations of decompositions, which lead us to the following key result:

Proposition 6.4 (partition truncation). Given a partition p, consider a truncation q of
p. Then, either q is not compatible or

P
q
h i

≺
P

p
h i

.

In fact, given a partition p¼ ⟨p1,…,pn⟩, consider for instance its head q¼ ⟨p1,…,pn�1⟩. It is

clear that
P

q
h i

is a proper strict prefix of
P

p
h i

, that is, the magnitude
P

q
h i

consisting of the

sum of all but one of the elements of the partition p is a strict part of the magnitude
P

p
h i

. But

because “the whole is greater than the part” (proposition 6.3), we have that
P

q
h i

≺
P

p
h i

. The

same reasoning can be applied to other possible kinds of truncations (viz., tails and shells), pro-
vided they constitute partitions of the magnitude p; that is, all their elements are proper and
compatible (see Example 6.2).

We thus obtain our abstract versions De Zolt’s postulate as two main theorems about global
and local decompositions:

De Zolt’s postulate (global decompositions) Consider a global decomposition p of m. Then,
for each truncation q of p: q is not a global decomposition of m.

De Zolt’s postulate (local decompositions) Consider a local decomposition p of m. Then, for
each truncation q of p: q is not a local decomposition of m.

The “global version” of De Zolt’s follows immediately from the above property about parti-

tion truncation (proposition 6.4) and our definition of strict order ≺ : If
P

p
h i
�m, then

(as
P

q
h i

≺
P

p
h i

), we have
P

q
h i
�m. In turn, the “local version” rests on the fact that given

a magnitude m, every local decomposition of m is a global decomposition of m.

The similarities between this “abstract proof” of De Zolt’s postulate and Hilbert’s geomet-
rical proof are then manifest. Recall that the latter proof relied on the fact that two polygons
with equal area measures are always equivalent (viz., equicomplementable) and on two funda-
mental properties of area measures, such as they are always positive and satisfy additivity.
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This particular treatment of De Zolt’s postulate, only sketched here, contributes to clarifying
certain key steps in Hilbert’s proof of the central proposition in the theory of equivalence of
polygons.

Finally, we should point out that our formal version of Common Notion 5 can be derived
from the above theorems about global and local decompositions, thereby establishing tight con-
nections between the abstract versions of De Zolt’s postulate and “the whole is greater than the
part.” Furthermore, both De Zolt’s postulate and Common Notion 5 are obtained without
assuming the commutative property of addition, which constitutes a difference with respect to
the usual analysis of the concept of magnitude. It is worth mentioning that neither have we
assumed the Archimedean axiom; this was a leading motivation in Hilbert’s proof of the former
proposition.

7 | CONCLUSION

As Hilbert (1899) pointed out in the final section of Foundations, the demand for the purity of
method was a central methodological requirement in nineteenth-century mathematics. On the
one hand, purity primarily constituted an ideal of proof. During this period, it was common to
grant a privileged place to proofs that employed only resources which were intrinsic or inherent
to the theorem proved or the problem solved, that is, proofs that relied on methods suggested
by the “content” of the proposition under consideration. On the other hand, purity was also
tightly bound with the search for independent or autonomous foundations for different mathe-
matical theories or even whole mathematical fields. In this regard, the central concern was to
avoid and eliminate any (often implicit) reference to “foreign” or “exogenous” concepts when
laying down the foundations of a mathematical domain.

Our discussion of De Zolt’s postulate or the “fundamental theorem” of the theory of
plane area, as we have called it here, has contributed to display some overlooked aspects of
these intertwined dimensions of the requirement of purity of method. Along with the exclu-
sion of arithmetical or numerical concepts, Hilbert’s “pure” (axiomatic) construction of
Euclidean geometry essentially demanded the elimination of the general concept of magni-
tude. By the end of the nineteenth century, the precise formulation of the basic principles
that characterised this concept has not been entirely achieved. Nevertheless, the general
principle of magnitudes “the whole is greater than the part” was in some form included in
every axiomatization of the concept of magnitude. The formulation and subsequent proof
of De Zolt’s postulate as the strictly geometric version of Euclid’s CN5 responded to this
demand of eliminating the general concept of magnitude from the foundations of geometry.
The quest for a purely geometric proof of this postulate was not only a matter of the
Dedekindean dictum that “in science nothing capable of proof ought to be believed without
proof” (Dedekind, 1888, p. 790); it was also a critical part of a foundational program in
geometry similar to the project of eliminating the concept of extensive magnitude from the
foundations of arithmetic and analysis.

We have also identified and briefly analysed a different and less explored trend in the mod-
ern axiomatic investigations of the concept of magnitude. This trend called for a formulation of
De Zolt’s postulate in strictly algebraic terms and for the construction of a theory of magnitude
that included this abstract version of the postulate as a theorem. This “algebraic path” inspired
several clarifications and conceptual refinements. In our schematic exposition, we distinguished
between “local” and “global” addition of magnitudes and restricted the operation of addition to
“compatible” magnitudes. We explained the idea of the decomposition of a geometrical magni-
tude in abstract algebraic terms; this helped to cast light upon the conceptual relations between
abstract versions of CN5 and De Zolt’s postulate.
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Finally, our reconstruction of the abstract proof of De Zolt’s postulate clarifies certain
“algebraic” aspects of Hilbert’s proof, which are relevant for discussing the problem of the
purity of proofs in mathematical practice. The latter proof relies essentially on the geometrical
introduction of area measure functions, although this notion is not explicitly invoked in the
“statement of the theorem.” From Hilbert’s methodological standpoint, the recourse to this
metrical concept of area was not problematic because it was independent of the Archimedean
axiom and, a fortiori, of the concept of real number. Nevertheless, our distinction between
proper and trivial magnitudes contributes to elucidating the detour through a notion of area
measure in his proof of the “fundamental theorem” of the theory of geometrical equivalence.
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