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Abstract

In this work we analyze the effects of the conduction electrons on the hopping function between
two magnetic impurities located in the A sublattice in silicene placed in an external electric field. By
using the Schrieffer-Wolff transformation we analyze the dependence of the effective hopping on the
distance between the magnetic adatoms. By using particle number conservation, the spectrum for
different occupation numbers is studied for different values of the Hubbard parameter, the electric
field and the inter-impurity distance. We show that for half-filling an ionic to covalent ground state
transition and viceversa can be achieved for a specific electric field strength. Finally, we explore
the partition function and we study the average energy and average occupation as a function of
temperature, obtaining a pattern of Mott plateaus.

1 Introduction

Among 2D materials, silicene has many interesting properties as graphene and is a subject of experi-
mental and theoretical research due to its compatibility with the current Si-based electronic technology
([1], [2], [3], [4], [5], [6], and [7]). First-principles calculations have shown that the buckled-structure of
isolated silicene is more stable than the corresponding planar geometry of this material [8] and the two
interpenetrating sublattices displaced vertically due to the tetrahedral sp3 hybridization, opens an elec-
trically tunable band dispersion [9]. In turn, the large spin-orbit interaction allows the quantum spin
Hall effect to be experimentally accessible [10], which implies that silicene is very sensitive to external
electric and magnetic fields and shows remarkable subtleties in the De Haas-Van Alphen effect ([11],
[12] and [13]). Nowadays, quantum computing requires the realization of quantum bits, which can be
implemented via quantum impurity systems ([14], [15], [16]) such as magnetic adatoms and molecules
on surfaces or nano-structured gate-controlled devices that allow to combine usual electronics with
spintronics ([17], [18], [19] and [20]). On silicene, impurity atoms can be deposited at different sites,
where the most usual ones are the six-fold hollow site of the honeycomb lattice, on top of a silicon atom
and the two-fold bridge site of neighboring silicon atoms [21]. The presence of a magnetic adatom in
a metal has been successfully studied using the Anderson model ([22], [23]), which has recently also
been applied to studying magnetic moment formation in graphene and silicene ([24], [25]) and where it
has been shown that the coupling of an adatom to a 2D material results in a much easier formation of
magnetic moment due to the anomalous broadening of the electronic levels of the adatoms [26].

When two magnetic impurities are present little is known about the effect of the inter-impurity in-
teraction on the localized moments. Ab initio calculations show that the interaction between impurities
may lead to a subtle consequence in the formation of a local magnetic moment in 2D materials [27].
Considering a constant electron hopping between impurities, it has been found that the interaction be-
tween two impurities brings about a significant modification in the impurity self-energy, which pushes
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zation boundary into three peaks. Given a fixed energy of some impurity, the magnetic region exhibits
an asymmetric behavior between the cases of positive and negative energy of the other impurity. Addi-
tionally the inter-impurity interaction tends to suppress the local magnetic moment on impurities ([28],
[29]). By controlling the interaction between impurities via the adjustment of the chemical potential, a
weak repulsion has been observed when the two atoms reside on the same sublattice, while an attraction
of stronger intensity is noticed when they are on different sublattices [30]. It must be stressed that
considering a constant electron hopping between magnetic impurities is reasonable for specific fixed
positions but this assumption is only applicable for a fixed number of electrons. Motivated by the
lack of literature about the interplay of the effective tunneling between the magnetic impurities with
different occupation numbers, we present an analytical study of the distance-dependent hopping func-
tion between the two impurities in silicene with spin-orbit coupling and external electric field, which
allows us to map the emerging scattering terms onto an effective tunneling between the impurities. By
applying the Schrieffer-Wolff transformation (SW), and solving a coupled equations for the coefficients
of the S matrix, we obtain the tunnelling between impurities for different occupancy numbers. We also
discuss the spectrum of the two-site Hubbard model with effective hopping between magnetic sites near
the Dirac point and for arbitrary distances between the magnetic adatoms. Furthermore, we analyze
the average number occupation for different temperatures where Mott plateaus are shown for specific
ranges of impurity distances. This work will be organized as follows: In section II, the two impurity
Anderson model (TIAM) in silicene is described and the SW transformation is applied. In section III,
the results are shown for different occupation numbers and a discussion is given. The principal findings
of this paper are highlighted in the conclusion.

2 Theoretical model

Our starting point is the tight binding Hamiltonian of the total system

H = Hsil +HU +Hhyb (1)

where

Hsil = −t
∑

〈i,j〉,σ
a†

i,σbj,σ + h.c+
iλ

3
√

3

∑

〈〈i,j〉〉,s
s(νija

†
i,saj,s + νijb

†
i,sbj,s) (2)

+Vz

∑

i,s

(a†
i,sai,s − b†i,sbi,s)

The first contribution to Hsil is the kinetic energy of electrons in silicene, the second term represents the
effective spin-orbit coupling with λ = 3.9 meV for silicene (see [31]) and νij = (di×dj)/ |di×dj | = ±1,
depending on the orientation of the two nearest neighbor bonds di and dj that connect the next nearest
neighbors dij (see [32] and [33]) and the third term represents the application of an external electric
field perpendicular to the silicene layer, where Vz = lEz is the electric potential and l = 0.44Å is
the distance of each sublattice with respect to the middle of the buckling in silicene. a†

i,σ(ai,σ) are the

creation (annihilation) operators acting in the sublattice A and b†i,σ(bj,σ) are the creation (annihilation)
operators with spin σ = ±1 in the site i of the A and B sublattices respectively and 〈i, j〉 indicates
sum over nearest neighbors and t = 1.6eV. The second contribution to H comes from the Anderson
model describing two identical magnetic impurities with a single orbital of energy ε0 and Coulomb

repulsion U , HU = ε0
∑
J,σ

nJσ + U
∑
J

nJ↑nJ↓ , where nJσ = f†
JσfJσ is the occupation number of the

magnetic impurity and f†
J,σ(fJ,σ ) are the creation (annihilation) operators acting on the impurity sites

J = 1, 2 located in sublattice A of silicene. The third contribution toH is the hybridization Hamiltonian

of the magnetic impurities with the host lattice Hhyb = V
∑

J=1,2;σ

(a†
J,σfJσ + f†

JσaJ,σ), where RJ are
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Figure 1: Geometry of silicene with two magnetic impurities (red dots) placed on the A sublattice.

the fixed positions of the two magnetic impurities. In figure 1, a top view schematic picture of the
silicene honeycomb lattice can be seen, where the two magnetic impurities are located in sublattice A.

Considering the Fourier transform of the creation and annihilation operators aj,s = 1√
N

∑
k

e−ikRjak,σ

and bj,s = 1√
N

∑
k

e−ikRj bk,σ where N is the number of primitive cells, the Hamiltonian H becomes

H =
∑

k,σ

φka
†
k,σbk,σ + h.c.+

∑

k,σ

iξk

3
√

3
∆σ(a†

k,σak,σ − b†k,σbk,σ) (3)

+HU +
∑

J,k,σ

(VJka
†
k,σfjσ + V ∗

Jkf
†
jσak,σ)

where φk = −t
3∑

i=1

eik·δi and ξk =
6∑

i=1

eik·ni , where δ1 = a
2
(1,

√
3, 0), δ2 = a

2
(1,−

√
3, 0) and δ3 = a(1, 0, 0)

are the next nearest neighbor vectors, whereas n1 = −n2 = a1, n3 = −n4 = a2 and n5 = −n6 = a1 − a2

are the six next-nearest neighbor hopping sites (see figure 1) that connect identical sublattice sites. In

the long wavelength approximation, φk = εke
iη and ξk = −i3

√
3, where εk = ~vF k, k = |k| =

√
k2

x + k2
y

and η = arctan(
ky

kx
). The coefficient VJk = V eik·RJ√

N
contains the dependence with the magnetic impurity

position. It is worth mentioning that, since the two inequivalent valleys in the monolayer silicene are
separated in the Brillouin zone by a large momentum gap, the intervalley scattering is neglected ([34],
[35] and [36]) and only one valley will be considered. The factor ∆σ = σλ− Vz contains the spin-orbit
coupling and the application of an external electric field Ez through the electric potential Vz. We can
diagonalize Hsil by introducing the valence/conduction operators

c
(s)
kσ = χ

(s)
kσ (ak,σ + se−iφkξ

(s)
kσ bk,σ) (4)

where χ
(s)
kσ =

√
εkσ+s∆σ

2εkσ
and ξ

(s)
kσ = 1

εk
(εkσ − s∆σ), and where s = +1(−1) for the conduction (valence)

band. The eigenvalues of Hsil are εkσs = sεkσ where εkσ =
√
ε2k + ∆2

σ. When we consider the two
valleys, ∆σ depends on the valley index as ∆η

σ = ησλ − Vz (see [31]). Is not difficult to show that

{c(s)kσ , c
(s′)†
k′σ′ } = δkk′δσσ′ δss′I, where I is the identity operator and the Hamiltonian H in the new basis

3
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H =
∑

k,σ,s

sεkσc
(s)†
k,σ c

(s)
k,σ +

∑

J,k,σ,s

(V
(s)
Jkσc

(s)†
kσ fJσ + V

(s)∗
Jkσc

(s)
kσf

†
Jσ) +HU (5)

where V
(s)
Jkσ = χ

(s)
kσVJk. In order to obtain the effective interaction between the magnetic impurities

sorrounded by random impurities, we can apply the Schrieffer–Wolff transformation ([37], [38], [39]).
By writing H = H0 + Hhyb and considering H0 = Hsil + HU as the free Hamiltonian and Hhyb the
interaction, a unitary anti-Hermitian operator S can be obtained such that the unitary transformation
eSHe−S of H reads

H ′ = eSHe−S = H0 +
1

2
[S,Hhyb] +O(S2) (6)

The S operator is obtained in Appendix and reads

S =
∑

J,k,σ,s

(A
(s)
Jkσ + B

(s)
JkσnJ−σ)c

(s)†
kσ fJσ − h.c. (7)

where the unknown coefficients A
(s)
Jk and B

(s)
Jk are obtained through the equation [H0, S] = Hhyb and

the solution is computed in Appendix and reads

A
(s)
Jkσ =

V
(s)
Jkσ

(ε0 − sεkσ)
B

(s)
Jkσ = − UV

(s)
Jkσ

(ε0 − sεkσ)(ε0 + U − sεkσ)
(8)

By computing 1
2 [S,Hhyb], the transformed Hamiltonian reads

H ′ = Hsil +HU +H ′′
sil +H ′′

U +Hdir +Hch +Hexch +Hhop (9)

where

H ′′
sil =

∑

J,k,σ,s

∑

k′,s′

A
(s)
JkσV

(s′)∗
Jk′σc

(s)†
kσ c

(s′)
k′,σ H ′′

U =
∑

J,k,σ,s

V
(s)∗
Jkσ

(
A

(s)
Jkσ −B

(s)
JkσnJ−σ

)
f†

JσfJσ (10)

are corrections to the non-interacting Hamiltonian H0,

Hdir =
∑

J,k,σ,s

∑

k′,s′

B
(s)
Jkσ√
2

V
(s′)∗
Jk′σ

2
c
(s)†
kσ c

(s′)
k′,σ(nJ−σ + nJσ) (11)

Hexch =
∑

J,k,σ,s

∑

k′,s′

B
(s)
Jkσ√
2

(
V

(s′)∗
Jk′σ

2
(nJσ − nJ−σ)c

(s)†
kσ c

(s′)
k′,σ + V

(s′)∗
Jk′−σc

(s′)
k′,−σc

(s)†
kσ f†

J−σfJσ

)

are the direct (spin-independent) and exchange interaction and

Hch = −
∑

J,k,σ,s

∑

k′,s′

B
(s)
JkσV

(s)
Jk′σc

(s′)†
k′,−σc

(s)†
kσ fJ−σfJσ + h.c. (12)

is a pair-tunneling term. Finally,

Hhop =
∑

J,J ′ 6=j,k,σ,s

V
∗(s)
J ′kσ(A

(s)
Jkσ − B

(s)
JkσnJ−σ)f†

J ′σfJσ + h.c. (13)

is an indirect hopping between the magnetic impurities. We can note that if λ = 0, then χ
(s)
kσ no

longer depends on σ and then Hsil, HU , Hdir and Hexch can be reduced to the well known results (see

4
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H ′′
sil =

∑

k,k′,s,s′

W
(s)
kk′ψ

(s)†
k ψ

(s′)
k′ H ′′

U =
∑

J,k,σ,s

(W
(s)
kk − J

(s)
kk nJ−σ)nJσ (14)

Hdir =
1

2

∑

J,k,k′,s,s′

J
(s)
kk′(ψ

†
JψJ )(ψ

(s)†
k ψ

(s′)
k′ ) Hexch = −1

2

∑

J,k,k′,s,s′

J
(s)
kk′(ψ

†
JσψJ ) · (ψ(s)†

k σψ
(s′)
k′ )

where the coefficients W
(s)
kk′ and J

(s)
kk′ read

W
(s)
kk′ =

∑

J=1,2

(V
(s)∗
Jk′ A

(s)
Jk + V

(s)
Jk′A

(s)∗
Jk ) J

(s)
kk′ =

∑

J=1,2

(V
(s)∗
Jk′ B

(s)
Jk + V

(s)
Jk′B

(s)∗
Jk ) (15)

where ψ
(s)
k =

(c(s)
k↑

c
(s)
k↓

)
and ψJ =

(
fJ↑
fJ↓

)
are the two-component spinor operators that remove electrons from

the conduction states and from the impurity. In the last equation, J
(s)
kk′ is the Kondo coupling which

allows for non-trivial effects in the static properties where a resonance in the local density of states at
the Fermi level appears [41]. In silicene, not much is known about the experimental spectral features of
the Kondo effect although density functional theory has been applied ([42], [43], [44] and [45]) showing
that silicene is able to form strong bonds with transition metals due to its buckled structure. The 4th
order expansion of the Schrieffer-Wolff transformation give rises to the RKKY interaction which can
be obtained as an effective exchange interaction induced by the hybridization of the two local magnetic
impurities with the conduction band. In this work, we will focus on the hopping term between impurities
that can be written in a more suitable form as

Hhop =
∑

σ

(Tσf
†
1σf2σ + T ∗

σf
†
2σf1σ) (16)

−
∑

σ

[
T σ(n2−σ + n1−σ)f†

1σf2σ + T
∗
σ(n1−σ + n2−σ)f†

2σf1σ

]

where

Tσ(R1 − R2) =
∑

k,s

(V
∗(s)

1kσA
(s)
2kσ + V

(s)

2kσA
∗(s)
1kσ ) (17)

=
2V 2

N
(ε0 + ∆σ)

∑

k

e−ik·(R1−R2)

ε20 − ε2kσ

and

T σ(R1 − R2) =
∑

k,s

V
(s)∗
1kσB

(s)
2kσ = −V

2U

N

∑

k

U (ε0 + ∆σ) + ε0(ε0 + 2∆σ) + ε2kσ

(ε20 − ε2kσ) (U2 + 2Uε0 + ε20 − ε2kσ)
e−ik·(R1−R2) (18)

are the amplitudes for the effective hopping of the magnetic impurities. A simple inspection of eq.(17)
and eq.(18) can be done by considering that in the vicinity of the Fermi level, k ∼ kF ∼ 0 then

Tσ =
2V 2

ε0 − ∆σ
T σ = − UV 2

(ε0 − ∆σ) (ε0 − ∆σ + U )
(19)

where the signatures of the quantum-spin Hall phase to quantum-valley Hall phase transition appear
in the poles of Tσ and T σ. The spin-polarized effective electron hopping between impurities obtained
generalizes the model considered in [28] and [46] used in graphene, where the hopping between impurities
is constant. In figure 2 the effective hoppings are shown as a function of Vz for typical values obtained

5
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Figure 2: Effective hopping as a function of the electric potential at the Dirac point.

from DFT+U (see [48] and [49]) V = 1eV, U = 1eV and ε0 = 2eV for electrons near the Dirac point
where it can be seen that effective hopping is positive when both impurities are empty and is negative
when the impurities are occupied. The difference between the spin polarized hopping is larger for T σ

due to an enhancement of the Hubbard parameter and this favours the formation of ferromagnetic or
antifferomagnetic order but this competes with the kinetic energy cost of single occupation of conduction
electron levels [47].

3 Results and discussions

In order to analyze the effective hopping between magnetic impurities as a function of the distance we
can consider eq.(17) and eq.(18) as a function of the distance between impurities

Tσ(r) = γ (ε0 + ∆σ)

∫ D

0

ε

ε20 − ∆2
σ − ε2

J0(ε
r

~vF
)dε (20)

T σ(r) = −γ U
2

∫ D

0

ω
(
ε0(ε0 + U ) + (2ε0 + U )∆σ + ε2 + ∆2

σ

)

(ε20 − ε2 − ∆2
σ) ((ε0 + U )2 − ε2 − ∆2

σ)
J0(ε

r

~vF
)dε

where D ∼ 7eV is the cutoff in energy, r = |∆R| is the inter-impuritiy distance, n = N/A is the areal
density of the host lattice and A is the silicene area, ε = ~vF k and J0(x) is the Bessel function of the
first kind. Both integrals can be solved numerically and the dependence of Tσ and T σ with r is shown

for particular values of ε0, U and Vz in figure 3, where the dimensionless constant γ = V 2

nπ(~vF )2 ∼ 0.24 is

used for V = 1eV and A =
√

3
2 a

2, where a = 3.86Å. From eq.(16) we can note that the impurity positions

appear in Tσ and T σ through terms that depend on V ∗
1kσV2kσ which gives a R1 − R2 dependence. In

turn, when the k integral is computed, the Fourier transform of 1
ε20−~2v2

F k2−∆2
σ

is obtained, which is

isotropic in k space and consequently an isotropic spatial dependence of Tσ and T σ is obtained. It
should be stressed that the expression of eq.(20) is valid in the long-wavelength limit for distances
larger than the lattice constant. In silicene a = 3.86Å= 0.386nm. Then the limit of validity of eq.(20)
is r > 0.386nm. The relative distance between impurities is identical if both are in the A sublattice
or B sublattice. When both impurities are located in different sublattices, we must replace R1 − R2

by R1 − R2 + δ1 in the results obtained, which implies that the plots of Tσ and T σ as a function of r

6
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ofare shifted by |δ1| when both impurities are located in different sublattices. There is a negligible spin

polarization in Tσ as a function of r when the impurities are not occupied but changes subtantially when
the Hubbard term becomes more relevant as it can be seen in figure (3 left). An interesting behavior can
be seen in the regions of r where T ↑ and T ↓ are zero because in these regions T ↑ = −T ↓, which indicates
that a particular spin effective hopping is energetically favored and this behavior is enhanced for higher
U . This result implies that the precursor of RKKY interaction allows a reversible switching between
ferromagnetic and anti-ferromagnetic exchange interactions, upon changing the impurity distances [50].
Moreover, the spin polarized distance dependence of the effective tunneling terms T σ(r) implies that
the impurity spin-spin correlation function decays remarkably slower than the textbook expression
of the RKKY interaction, even for a finite bandwidth of the conduction band. By restricting the

T­

T¯

1 2 3 4 5 6 7 8

0.000

0.005

0.010

0.015

rHnmL

H
o

p
p

in
g

T
Σ
HeV
L

Vz=2eV Λ=0.039eV Ε0=1eV

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
ææææææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æææææææææ
ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ
ææ
ææææææææææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æææææææææææ
ææ
ææ
ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ
ææ
ææ
æææææææææææææææ
æ
æ
æ
æ
æ
æ
æ
ææææææææææææææææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææææææææææææææææææææææææææææææææææææææææ

ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
ææææææææææææææææææææææææææææææææææææææææ

æææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
ææææææææææææææææææææææææææææææææææææææææææ

æææ
æææ
ææ
ææ
æææ
æææ
æææææ
ææææææææææææææææææææææææææææææææææææææ
æææ
æææ
æææ
æææ
æææ
æææææ
ææææææææææææææææææææææææææææææææææææææææ

ææææ
æææ
æææ
æææ
æææææ
æææææææææææææææææææææææææææææææææææææææææ

ææææ
æææ
ææææ
ææææ
æææææææææææææææææææææææææææææææææææææææææææææ

ææææ
ææææ
ææææ
ææææææ
æææææææææææææ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
ææææææ
ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææææææææ
ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ
ææ
æææææææææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æææææææææææ
ææ
ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ
ææ
æææ
ææææææææææææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æææææææææææææææ
ææ
ææ
ææ
ææ
æ
æ
æ
ææ
ææ
ææ
ææ
æææ
æææææææææææææææææææææææææææææææææææææ
æææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææææ
æææææææææææææææææææææææææææææææææææææ
æææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
æææææ
ææææææææææææææææææææææææææææææææææææ
æææ
æææ
ææ
ææ
ææ
ææ
æææ
ææææ
æææææææææææææææææææææææææææææææææææææææ

æææ
æææ
æææ
æææ
æææ
ææææ
æææææææææææææææææææææææææææææææææææææææææ

æææ
æææ
æææ
æææ
ææææ
æææææææææææææææææææææææææææææææææææææææææææ

ææææ
æææ
æææ
ææææ
ææææææ
ææææææææææææææææææææææææææææææææææææææææ

ææææ
ææææ
ææææ
ææææææ
æææææææææææææ

2 3 4 5 6 7 8

-0.0010
-0.0005

0.0000
0.0005
0.0010
0.0015

æææææææææææææææææææææææææææææææææææææææææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææææææææææææææææææææææææææææææææææææ

ææææ
ææææ
æææ
æææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
æææ
ææææ
ææææææ
ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

ææææ
ææææ
æææ
æææ
æææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
æææ
æææ
ææææ
æææææ
ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

æææææ
ææææ
æææ
æææ
æææ
æææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
æææ
æææ
æææ
æææ
ææææ
æææææ
æææææææ
æææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

æææææ
ææææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
æææ
ææææ
ææææ
æææææ
æææææææææ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æææææææææææææææææææææææææææ

æææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
æææ
ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

ææææ
æææ
æææ
æææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
æææ
ææææ
ææææææ
æææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

æææææ
ææææ
æææ
æææ
æææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
æææ
æææ
æææ
ææææ
ææææææ
ææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææææ

æææææ
ææææ
æææ
æææ
æææ
æææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
ææ
æææ
æææ
æææ
æææ
æææ
ææææ
æææææ
æææææææ
æææææ

T­

T¯

1 2 3 4 5 6 7 8
-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

rHnmL

H
o
p
p
in

g
T
Σ
HeV
L

Vz=2eV Λ=0.039eV Ε0=1eV U=2eV

Figure 3: Effective hopping as a function of the distance r = |∆R| between magnetic impurities. Left:
Hopping channel when the magnetic adatoms are empty. Right: Hopping channel when at least a
magnetic adatom is singly occupied.

Hamiltonian H ′ to the impurity sector Himp = HU +H ′′
U +Hhop, we obtain a two-site Hubbard model

with electron hopping between magnetic impurities induced by the host lattice. Each lattice site may
be either empty, occupied by an electron of spin up or down, or doubly occupied. The Hilbert space
of the two-site Hubbard model has a dimension of 24 = 16. Because [Himp, N ] = 0, the full space H
decomposes as a direct sum of subspaces of fixed particle number, so that we can avoid 16×16 matrices
by working in sectors of fixed particle number. The most important sector is the 2-site model because
it describes half filling and the one-dimensional subspaces with N = 0 and N = 4 electrons have no
dynamics. For a detailed analysis, we can apply a projector Π1P onto the single–occupancy sector for
the two local magnetic states

Π1P =
∑

σ

n1σ(1−n2↑n2↓)+
∑

σ

n2σ(1−n1↑n1↓)−2
∑

J,σ

nJσnJ−σ −2
∑

σ

n1σn2σ +4n1↑n1↓n2↑n2↓ (21)

which obey Π1PHImpΠ1P = HImpΠ1P. The projector Π1P projects out states without one occupancy.
Similarly, we can define projectors onto sectors with double, tripe and quadruple occupation, as follows

Π2P = n1↑n1↓(1 − 3(n2↑ + n2↓)) + n2↑n2↓(1 − 3(n1↑ + n1↓)) + (n1↑ + n1↓)(n2↑ + n2↓) + 6n1↑n1↓n2↑n2↓
(22)

Π3P = n1↑n1↓(n2↑ + n2↓) + n2↑n2↓(n1↑ + n1↓) − 4n1↑n1↓n2↑n2↓
Π4P = n1↑n1↓n2↑n2↓

The set of projectors obey ΠJPΠJ ′P = ΠJPδJJ ′ . In the one-electron sector the HimpΠ1P reads

HimpΠ1P =
∑

j,σ

εσf
†
jσfjσ +

∑

σ

(Tσf
†
1σf2σ + T ∗

σf
†
2σf1σ) (23)
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Figure 4: Spectrum of the two-site Hubbard model for single occupancy as a function of the distance
|∆R| between magnetic adatoms.

where εσ = ε0+T
(0)
σ is the effective on-site energy of the impurity and T

(0)
σ = Tσ(0). The normalization

introduces a spin-dependent on-site energy. The eigenvalues of eq.(23) read

ε(1P)
sσ = εσ + s |Tσ | = ε0 +

2V 2

ε0 − ∆σ
+ s

∣∣∣∣
2V 2

ε0 − ∆σ

∣∣∣∣ (24)

with s, σ = ±1. The associated eigenvectors are |φsσ〉 = 1√
2
(s |σ, 0〉+ |0, σ〉). As it can be seen in figure

4, the lowest eigenvalue is ε
(1P)
−− and the electron is shared between the impurities in a superposition

|φ−−〉 = 1√
2
(− |↓, 0〉 + |0, ↓〉). For large r, ε

(1P)
++ = ε

(1P)
−+ and ε

(1P)
−− = ε

(1P)
+− which indicates a transition

to a degenerated ground state. The HimpΠ2P in the 2-electron sector reads

HimpΠ2P = 2ε0
∑

σ

n1σn2σ + (2ε0 + L)
∑

σ

n1σn2−σ + (2ε0 + U + L − L)
∑

J

nJ↑nJ↓ (25)

+
∑

σ

(T (0)
σ − Tσ)(n1−σf

†
1σf2σ + n2−σf

†
1σf2σ) +

∑

σ

(T (0)
σ − T ∗

σ )(n2−σf
†
2σf1σ + n1−σf

†
2σf1σ)

that decouples the parallel spin eigenstates with sz = ±1 eigenvalues from the anti-parallel Sz = 0
sector given by {|↑, ↓〉 , |↓, ↑〉 , |↑↓, 0〉 , |0, ↑↓〉} with total spin sz = 0 eigenvalues. The eigenvalues of the

spin-parallel sector are ε
(2,sz=±1)
σ = 2(ε0 + T

(0)
σ ) and do not depend on the distance between impurities

because parallel spins in different adatoms cannot tunnel due to the exclusion principle. The eigenvalues
of the Sz = 0 spin sector read

ε(2,sz=0)
sσ =

1

2
(U − L+ 4ε0 + 2T (0)

σ ) +
s

2

√
(U − L)2 + 4(

∣∣∣T (0)
↑ − T ∗

↑

∣∣∣+ σ
∣∣∣T (0)

↓ − T ∗
↓

∣∣∣)2 (26)

where L =
∑
σ
T

(0)
σ , L = 2

∑
σ
T

(0)

σ . For k ∼0, T
(0)
σ − T ∗

σ = 0 and

lim
k→0

ε(2,sz=0)
sσ =

1

2
U + 2ε0 +

V 2(U + 2 (ε0 − ∆σ))

(ε0 − ∆σ)(U + ε0 − ∆σ)
(27)

+
sU

2

∣∣∣∣1 +
2V 2

(ε0 − ∆σ) (U + ε0 − ∆σ)

∣∣∣∣

8
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(2,sz=0)
−+ and ε

(2,sz=0)
−− ) with

energy close to zero that have mainly covalent character at the Dirac point. For arbitrary values of k

the ε
(2,sz=0)
sσ energy levels are shown in figure 5 as a function of the inter-impurity distance for different

values of Vz and for U = 2eV, where it can be seen that for Vz = 0.6eV the ground state is degenerated
for critical r values and the two eigenvalues with σ = −1 are no longer constant as a function of r. The

ε
(2,sz=0)
+− and ε

(2,sz=0)
−− eigenstates do not depend on the distance between impurities for Vz < 0.6eV due

to the negligible difference between
∣∣∣T (0)

↑ − T ∗
↑

∣∣∣ and
∣∣∣T (0)

↓ − T ∗
↓

∣∣∣. The lowest level corresponds to an

eigenstate ∣∣∣φ(2P )
−+

〉
=

1√
2(|a|2 + 1)

[a(|↑, ↓〉 + |↓, ↑〉) + |↑↓, 0〉 + |0, ↑↓〉] (28)

where

a(r) = −

√√√√ T
(0)
↑ + T↑

T
(0)
↑ + T ∗

↑


 U − L + ε0 − ε

(2P sz=0)
−+∣∣∣T (0)

↓ + T↓
∣∣∣+
∣∣∣T (0)

↑ + T↑
∣∣∣


 (29)

The state
∣∣∣φ(2P )

−+

〉
contains an admixture of the superpositions |↑, ↓〉, |↓, ↑〉, |↑↓, 0〉, |0, ↑↓〉 whose rel-

ative proportions are fixed by a(r) as it is shown in figure (6), where
∣∣∣(〈↑, ↓| + 〈↓, ↑|)

∣∣∣φ(2P )
−+

〉∣∣∣
2

and
∣∣∣(〈↑↓, 0| + 〈0, ↑↓|)

∣∣∣φ(2P )
−+

〉∣∣∣
2

is plotted agains r for different values of Vz with V = 1eV, ε0 = 1eV and

U = 2eV. For a vanishing applied electric field, the state
∣∣∣φ(2P )

−+

〉
is mostly an ionic state and only

Figure 5: Spectrum for double occupancy with total spin sz = 0 as a function of the distance for
different values of Vz and U = 2eV, V = 1eV and ε0 = 1eV.

identical contributions are obtained for |∆R| → 0, where the local orbitals start to overlap at short
distances and form dimers [51]. By increasing Vz to 0.3eV, a transition to a covalent ground state∣∣∣φ(2P )

−+

〉
is obtained for the whole domain studied for r. When Vz > 0.6eV the ground state returns

to the ionic phase and for Vz = 0.6eV and for 2nm< r < 3.5nm we obtain a region where the ground
state is mostly ionic but it can be transformed to a covalent state by altering the local position of

9
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Figure 6: Relative weights of the ionic and covalent states on the ground state with double occupancy
for different values of Vz with U = 2eV, V = 1eV and ε0 = 1eV.

applied external electric field is conducive to entanglement generation between localized states in the
impurities with a vanishing net magnetization with the specific Hamiltonian parameters used. This
entanglement is obtained when a free electron moving through the lattice impinges on two magnetic
impurities [52]. The 3-particle subspace is composed of states with two spins paired on a site and one

Ε++
H3L Ε+-

H3L Ε-+
H3L Ε--

H3L

1 2 3 4 5 6
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Figure 7: Spectrum of the two-site Hubbard model in silicene with triple occupancy.

spin unpaired. The basis for this space can thus be labeled by the position and spin of the isolated
electron, making it isomorphic to the N = 1 subspace [53]. In the triple-occupance sector, HimpΠ3P

10
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HimpΠ3P =
∑

σ

(2ε0 + U +Rσ)n1↑n1↓n2σ +
∑

σ

(2ε0 + U + Rσ)n2↑n2↓n1σ (30)

+
∑

σ

(T ∗
σ − 2T

∗
σ)n1−σn2−σf

†
2σf1σ +

∑

σ

(Tσ − 2T σ)n1−σn2−σf
†
1σf2σ

where Rσ = T
(0)
σ + 1

2
T

(0)
−σ − L

2
and the eigenvalues read

ε(3P )
sσ = 2ε0 + U + Rσ + s

∣∣T−σ − 2T−σ

∣∣ (31)

By comparing with eq.(24), the renormalization of the on-site energy of the impurities acquires a U
and r dependence. The energy levels come closer to each other for large distances and the ground state

is given by ε
(3P )
−− as it can be seen in figure 7. This result is in concordance with the ground state of

the single-occupancy sector for the same parameters.The 4-particle subspace is one dimensional and

the energy is ε(4P ) = 4ε0 + 2U +
∑
σ

(1
2T

(0)
σ − T

(0)

σ ) and does not depend on the distance. In order to

analyze the average occupation number, we can decompose the full Hilbert space H as a direct sum of
subspaces of fixed particle number H = H0 ⊗H1 ⊗H2 ⊗H3 ⊗H4, the partition function can be written

as Z =
4∑

j=0

Zj where Zj =
∑
α
e−βε(j)α and the average number occupation can be computed as

Nave =
1

Z

4∑

α

Nαe
−βEα =

Z1 + 2Z2 + 3Z3 + 4Z4

Z0 + Z1 + Z2 + Z3 + Z4
(32)

1 2 3 4 5 6
0
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rHnmL

N
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Figure 8: Average number occupation for the two-site Hubbard model for different temperatures β =
1/kT .

Figure 8 shows N as function of r for various values of Fermi level µ and for β = 39eV−1 which
corresponds to T = 300K. For µ ≥ 2eV the Nave shows clearly visible Mott plateaus at different values
of r. These plateus form a pattern with dips for µ = 3eV and hills for µ = 4eV, at those points in
r at which T↑ and T↓ have opposite signs. Changing β washes out or sharpens the features discussed
above. These results are important for studying the Kondo regime of TIAM in silicene with spin-orbit
coupling. It has been shown that for a Hamiltonian with spin-flip symmetry, a competition between
antiferromagnetic (AF) and Kondo physics take place, but for large β and relatively small distances
between impurities, the AF splitting dominates and the local moment of the impurities is frozen and
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regime to take place [54]. This analysis no longer holds because the precursor of the RKKY interaction
obtained in eq.(9) allows a certain set of Hamiltonian parameters and impurity configurations for which
the effective hopping is positive for one spin value and negative for the other. This unusual behavior
causes a twisted exchange interaction between adsorbed magnetic moments where the tunability of the
RKKY terms using a perpendicular electric field and varying the Fermi energy is possible [55]. Finally,
it should be stressed that the effective hopping obtained in eq.(16) implies that the distance between
impurities is critical for studying the formation of local magnetic moments as it has been done in [28] and

[29]. When the mean field approximation [22] is considered, we must replace Un↑n↓ = U
∑
s
εsns, where

εs = ε0 +U 〈n−s〉 is the effective on-site energy of an impurity and where a constant term −U 〈n↑〉 〈n↓〉
can be dropped. Under this approximation, the impurity Hamiltonian HImp can be written as

H =
(
f

†
1↑ f

†
1↓ f

†
2↑ f

†
2↓

)
× (33)




ε↑ + U↑ 〈n1↓〉 0 T ∗
↑ − T

∗
↑ 〈n↓〉 0

0 ε↓ + U↓ 〈n1↑〉 0 T ∗
↓ − T

∗
↓ 〈n↑〉

T↑ − T ↑ 〈n↓〉 0 ε↑ + U↑ 〈n2↓〉 0

0 T↓ − T ↓ 〈n↑〉 0 ε↓ + U↓ 〈n2↑〉







f1↑
f1↓
f2↑
f2↓




where 〈nσ〉 = 〈n1σ〉 + 〈n2σ〉, εσ = ε0 − T (0)
σ

2 and Uσ = U
2 − T

(0)
σ . A simple inspection indicates that

the hybridization between the impurities contains contributions from the mean value of the occupation
numbers and these contributions are not taken into account in [28] and [29] (see eq.(8) and eq.(4)
respectively). In turn, for small values of r, T↑ 6= T↓ (see figure 3), which implies that, even without
considering the effects of the occupation numbers, the hopping channel between impurities is asymmetric
with respect to the spin. For example, with V = 1eV, ε0 = 2eV, λ = 39meV and Vz = 2eV and
r = 0.3nm, T↑ = 0.669eV and T↓ = 0.685eV and for r = 1nm, T↑ = 0.049eV and T↓ = 0.044eV. The
spin-asymmetric interaction between the impurities should modify the symmetry of the boundary of
the magnetic phase diagrams of figure 5 of [29].

4 Conclusions

In this work we have studied the effective hybridization between two magnetic impurities placed in the A
sublattice of silicene. By considering a perpendicular electric field and a spin-orbit coupling, we obtain
an effective hopping term between impurities by applying the Schrieffer-Wolff transformation. This
hopping depends on the distance between the magnetic adatoms and is different when these impurities
are empty or occupied. By restricting to the impurity Hilbert space, we study the eigenvalues and
eigenvectors of the impurity Hamiltonian for different occupation numbers and we show a non-trivial
dependence on distance. In particular, at half filling it is possible to find a set of Hamiltonian parameters
in which the spin polarized effective hopping has different signs for each spin indicating a privileged
spin channel scattering. In turn, a ground state transition from an ionic state to a covalent state
and viceversa is obtained by tuning the external electric field and for critical values it is possible to
obtain both ground states by altering the local position of the impurities. Finally, we study the average
occupation number as a function of the distance between impurities for different Fermi energies, showing
the formation of a pattern of Mott plateaus. These results are important for studying the formation of
local magnetic moments due to the significant change in the effective hybridization when the magnetic
adatoms are occupied or empty. The results obtained are useful to understand how to electrically control
the magnetic ground state in nanoelectronic devices based on silicene. 2D materials with buckling give
us a platform to design experiments to investigate by using scanning tunneling microscopy to locate
impurities on specific positions and then manipulating the hopping term between them by varying the
Fermi energy through a gate voltage.
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7 Appendix

7.1 S matrix computation

In order to obtain the matrix operator S we can consider the following ansatz for S

S =
∑

J,k,σ,s

(A
(s)
Jkσ + B

(s)
JkσnJ−σ)c

(s)†
kσ fJσ − h.c. (34)

where J = 1, 2 indicates the magnetic impurity, k is the wave vector, s = ±1 is the band index and
σ is the spin index. The unknown coefficients Ajk and Bjk must be determined through the equation

[H0, S] = Hhyb. By writing S = S1 − S†
1 then [S,H0] = [S1,H0] + [S1,H0]

†
which implies that we only

need to compute [S1,H0]. We can write H0 = Hsil +HU +Himp and by using [A,BC] = {A,B}C −
B{C,A} and

[
c
(s)†
kσ , c

(s′)†
k′σ′ c

(s′)
k′σ′

]
= −δkk′δσσ′δss′c

(s′)†
k′σ′ , the commutator [S1,Hsil] can be written as

[S1,Hsil] = −
∑

J,k,σ,s

sεkσ(A
(s)
Jkσ + B

(s)
JkσnJ−σ)c

(s)†
kσ fJσ (35)

In turn, by using [fJσ, nJ ′σ′ ] = δJJ ′δσσ′fJ ′σ′ and [fJσ , nJ ′↑nJ ′↓] = δJJ ′fJ ′σnJ ′−σ we obtain for the
commutator [S1,HU]

[S1,HU ] =
∑

J,k,σ,s

ε0(A
(s)
Jkσ + B

(s)
JkσnJ−σ)c

(s)†
kσ fJσ +

∑

J,k,σ,s

U (A
(s)
Jkσ +B

(s)
Jkσ)nJ−σc

(s)†
kσ fJσ (36)

Collecting all the terms in [H0, S] = Hhyb we obtain the following solutions for A
(s)
Jkσ and B

(s)
Jkσ

A
(s)
Jkσ =

V
(s)

Jkσ

(ε0 − sεkσ)
B

(s)
Jkσ = − UV

(s)

Jkσ

(ε0 − sεkσ)(ε0 + U − sεkσ)
(37)

This result is used in Section II.
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Highlights: 

  

 Two magnetic impurities located in the A sublattices are studied in silicene subject 

to an external electric field by applying the Schrieffer-Wolff transformation. 

 Hopping terms between impurities are analyzed as a function of the distance 

between them showing an oscillating dependence.  

 The spectrum for different occupation numbers is studied for different values of 

Hubbard parameter, the applied electric field and the inter-impurity distance.  

 For half-filling ionic to covalent ground state transition are obtained for specific 

electric field strength. 

 Corrections to the mean field approximation are given in order to compute correctly 

the formation of local magnetic moments in silicene. 
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