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Abstract

In this work we present a general framework for the modeling of
the transmission dynamics of macroparasites which do not reproduce
within the host like Ascaris lumbricoides, Trichuris trichiura, Necator
americanus y Ancylostoma duodenale.

The basic models are derived from general probabilistic models for
the parasite density-dependent mating probability. Here we consid-
ered the particular, and common case, of a negative binomial distri-
bution for the number of parasites in hosts. We find the basic repro-
ductive number and we show that the system exhibit a saddle-node
bifurcation at some value of the basic reproduction number. We also
found the equilibria and basic reproduction number of a model for the
more general case of heteregeneous host populations.

Keywords: Basic reproductive number; Macroparasite; Mathemat-
ical modeling; Negative binomial distribution; Saddle-node bifurcation
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1 Introduction

Mathematical models play an important role in understanding the transmis-
sion and impact of macroparasite diseases control measures [2, 3, 16].

The first works on the theory of helminth infection was published in the
1960s by Tallis and Leyton by developing stochastic models of nematode
parasite transmission in sheep and cattle [8, 13, 14].

Simultaneously Macdonald show that a consequence of sexual reproduc-
tion of distributed parasites within individual hosts was the inability to gen-
erate fertile infectious material when prevalence is low [11].

Anderson and May then introduced much more general descriptions of
helminth population dynamics. They developed descriptions for a model
based on host age, distribution of parasite numbers per host, density de-
pendence of egg production, and sexual mating functions that depend on
parasite distribution and reproductive habits [1, 2].

In this article we develop an analytical framework to describe the trans-
mission dynamics of most macroparasite infections. We first describe the
dynamics of infection transmission by macroparasites. We then present two
deterministic models for these transmission dynamics, the first for a homoge-
neous host community and the second for a heterogeneous host community.

In both models, reproductive characteristics of the parasite are consid-
ered, such as egg production and mating probability, both modeled by the
density-dependent fecundity of the parasite and the distribution of parasites
per host, which we assume to be negative binomial.
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For both models we present the calculations of the equilibrium values and
the basic reproduction number R0 defined for the case of macroparasites as
the average number of new parasite offspring caused by a typical parasite,
from one generation to the next. Finally for the homogeneous model we show
that it has a saddle-node bifurcation.

2 General framework

Microparasite diseases are usually modeled using compartmental models. Af-
ter infection, microparasite population may rapidly grow into the host. This
intra-host parasite dynamics determines the level of infectiousness of the
individual. In a simple compartmental model like the SIR-model all the
susceptible individuals are grouped in one class of size S, all the infected and
infectious indviduals in a class of size I and all the recovered individuals in
a class of size R. Many refinements are possible, but the evolution of the
parasite population within the host it is not considered or very simplified
(for models including intra-host population dynamics see for example [6])
The most common refinement consists in dividing infected individuals in two
classes, exposed (those infected but not infectious yet) and infectious which
leads to the well known SEIR type models.

For most macroparasites the situation is completely different as these
type of parasites do not reproduce within the host. Most infected individuals
have few macroparasites with a non-bell shaped distribution (see Figure 1)
where few individuals concentrate most of the parasites in the host population
[12, 10]. Negative binomial distributions usually provide a good description
of the data. On the other hand, there is no host-to-host transmission of
macroparasites as life cycle completes in the environment (from where host
get infected).

Therefore the number of infected hosts it is not a representative vari-
able of the parasite burden. Simple models for macroparasites consider the
evolution of the mean burden of parasite within the population as well as
the environmental parasite reservoir (which is composed by eggs or larvae).
From the mean burden, the total parasite population is easily estimated.

3 A basic model

3.1 Model structure

The model presented in this paper is based on a model developed by An-
derson and May [2, 4]. The conceptual framework of parasite transmission
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Figure 1: Distribution of Ascaris lumbricoides parasite numbers per host
in a study in rural populations in Korea [12]. Most hosts are uninfected
or infected with a low burden of parasites while few are infected by large
numbers of parasites.

dynamics is conceptualized as a population of mature parasites within human
hosts and a population of infective stages (eggs or larvae) found in the envi-
ronment (reservoir). Hosts can become infected by contact with the infective
stages (eggs or larvae) and can contaminate the environment (reservoir) with
infective stages (eggs or larvae).

In a simple model for transmission dynamics of macroparasites in a pop-
ulation (where host demography is ignored) of size N of hosts the dynamic
variables are the mean parasite burden of the population, m, and the infective
stages in the environment formed by eggs or larvae, `.

In the following we will sketch the procedure to find parasite-related pa-
rameters from a statistical-probabilistic model for the parasite population.

The environmental parasite reservoir, composed by eggs or larvae, in-
creases due to the contribution of adult parasites within the hosts. As most
host harbor only few parasites, only hosts with at least one female and one
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male parasites will contribute with fertilized eggs to the reservoir. We will
consider that the random variable W , the number of parasites in a host fol-
low a negative binomial distribution. Therefore, the probability of observing
n parasites in a host is

P(W = n) =
Γ(k + n)

Γ(n+ 1)Γ(k)

(
k

m+ k

)k (
m

m+ k

)n
(1)

where m is the mean value (the mean population parasite burden) and k
the shape parameter. The variance increases with the reciprocal of k as
σ2 = m+m2/k.

Mean egg production depends of the number of parasites within the host,
it is a density-dependent process. A simple model for the average female
fecundity of a female parasite in competition with n− 1 parasites is given by

λ(n) = λ0z
n−1

where z = e−γ, and γ is a parameter quantifying the intensity of the compe-
tition [7].

Using the parasite host distribution 1 we may compute the mean egg
production per host as ([9]) λ0αmψ(m, k, z) where α is the fraction of female
parasites in a host and ψ is given by

ψ(m, k, z) =
[
1 + (1− z)

m

k

]−(k+1)

(2)

is known as the effective contribution of the female population to the parasite
reservoir (in the form of eggs or larvae) [5].

However only hosts with at least one female and one male parasites will ef-
fectively contribute to the parasite’s reservoir by laying fertilized eggs. There-
fore the mean fertilized egg production per host is

λ0αmψ(m, k, z)φ(m, k, z) (3)

where φ(m, k, z) is the mating probability for the negative binomial distri-
bution computed in ([9])

φ(m, k, z) = 1−

1 + (1− αz)
m

k

1 + (1− z)
m

k

−(k+1)

(4)

Therefore the mean fertilized egg contribution to the environmental reser-
voir per host and per unit of time is ρλ0αmψ(m, k, z)φ(m, k, z) where ρ is the
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host’s own contribution rate and the total contribution of eggs to the reser-
voir per unit of time of a host population N is ρλ0αmψ(m, k, z)φ(m, k, z)N .
The population of eggs or larvae in the environment (`) also decreases due
to egg/larval mortality (µ`) or due to host infection at the rate β` per host.

Therefore the dynamics of the reservoir is given by

d`

dt
= ρλ0αmψ(m, k, z)φ(m, k, z)N − µ``− βN` (5)

Finally, the dynamics for the mean burden m is obtained as follow. Para-
sites are taken from the environment at the rate βN` and therefore the mean
burden increases at the rate βN`/N = β`. Parasites within the host die at
the rate µp and hosts at the rate µh (killing all their parasites). Thus, the
dynamics of m is

dm

dt
= β`− (µh + µp)m (6)

The system (5)-(6) is the basic model of the transmission dynamics of
macroparasites in a population of hosts.

3.2 Equilibria and basic reproduction number

From the equation (5) we obtain that in equilibrium

`∗ =
ρNλ0α

(µ` + βN)
mψ(m)φ(m) (7)

and substituting (7) in the equation (6) we get the following equation for the
dynamics of m

dm

dt
= (µh + µp) [R0ψ(m)φ(m)− 1]m (8)

where the parameter R0 is the basic reproductive number which, by defini-
tion, is independent of the effects of density-dependence and mating proba-
bility

R0 =
Nλ0αρβ

(µ` + βN)(µh + µp)
(9)

where for a large N value R0 ≈ λ0αρ
(µh+µp)

.

Therefore from the equation (8) we can obtain the equilibrium condition
for the mean parasite burden

ψ(m∗, k, z)φ(m∗, k, z) = 1/R0 (10)
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By bifurcation analysis we obtain that the system of the equations (5)-(6)
present a saddle-node bifurcation. The bifurcation point is (m̃, R̃0) where

m̃ =
k
(
1−αz
1−z

) 1
k+2 − k

(z − 1)
(
1−αz
1−z

) 1
k+2 + (1− αz)

R̃0 = [ψ(m̃; k, z)φ(m̃; k, z)]−1

(11)

As shown in the next section, the system undergoes a saddle-node bifurcation
and therefore, for R0 > R̃0 there are three equilibria (see Figure 2). One of
the solutions is the stable endemic equilibrium which is an attractor for a
range of values of R0 > R̃0 . The other solution is an unstable equilibrium
and corresponds to a repulsor in the phase plane, that is, a barrier where
values ofm(t) above the unstable equilibrium are attracted towards the stable
equilibrium and values of m(t) below the unstable equilibrium are attracted
to the extinction equilibrium m∗ = 0, which is the trivial solution of the
equation (8) .

To develop better control measures for macroparasitic diseases, it is nec-
essary to know the relative importance of the different factors responsible for
transmission.

The transmission of macroparasitic diseases is related to the value of R0.
To predict which parameters have a higher impact on R0, we must perform
a sensitivity analysis on R0.

The elasticity index o normalized sensitivity index measures the relative
change of R0 with respect to a parameter x, denoted by ΓR0

x , and defined as

ΓR0
x =

∂R0

∂x

x

R0

(12)

The sign of ΓR0
x tells whether R0 correlates positively or negatively with the

parameter x; whereas its magnitude determines the relative importance of
the parameter.

For this model, the calculation of the elasticity indices are given by

ΓR0
λ0

= ΓR0
α = ΓR0

ρ = 1, ΓR0
µh

= − µh
µh + µp

, ΓR0
µp = − µp

µh + µp
(13)

if 1
µh
� 1

µp
, then ΓR0

µp ≈ −1 and ΓR0
µh
≈ 0.

Therefore the more sensitive parameters for R0 are λ0, α, ρ and µp. How-
ever, λ0 and α correspond to parameters related to the life-cycle of the par-
asite which are quite difficult to modify, so a control measure for macropar-
asitic diseases should target to the reduction of ρ and/or the increase of µp.
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Figure 2: Bifurcation diagram generated by eq. (10), parameter values α =
0.5, k = 0.7 and z = 0.93. The solid line and dotted line correspond to the
stable and unstable branch, respectively, of the saddle-node bifurcation.

Therefore, we can conclude from this analysis that the reduction of R0 is
possible by reducing the egg contribution from the hosts to the reservoir, for
example, by building latrines in the host community or by increasing para-
site mortality, for example, through the application of periodic and specific
antiparasitic treatments.

3.3 Saddle-node bifurcation

We will show that the basic model developed in the section 3.1 presents a
saddle-node bifurcation. Assuming the parasite reservoir at equilibrium (7)
the system reduces to the one-dimensional system

dm

dt
= (µh + µp) [R0ψ(m)φ(m)− 1]m
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which we compactly denote by
dm

dt
= f(m,R0). A necessary condition for

the existence of a saddle-node bifurcation at (m̃, R̃0) is

f(m̃, R̃0) = 0

∂f

∂m
(m̃, R̃0) = 0

(14)

where the first of these conditions is the equilibrium condition (10) of the
system

ψ(m̃; k, z)φ(m̃; k, z) = 1/R̃0,

and so we get the following equilibrium condition for m̃

∂

∂m
ψ(m̃; k, z)φ(m̃; k, z) = 0 (15)

The value of m corresponding to this last condition is

m̃ =
k
(
1−αz
1−z

) 1
k+2 − k

−(1− z)
(
1−αz
1−z

) 1
k+2 + (1− αz)

(16)

and its corresponding basic reproductive number is

R̃0 = [ψ(m̃; z, k)φ(m̃; z, k)]−1 (17)

A sufficient condition for the existence of a saddle-node bifurcation at
(m̃, R̃0) is

∂f

∂R0

(m̃, R̃0) 6= 0

∂2f

∂m2
(m̃, R̃0) 6= 0

(18)

By a Taylor series expansion of the function f in a neighborhood of
(m̃, R̃0), the equation (8) is left

dm
dt

=f(m̃,R̃0)+(m−m̃) ∂f
∂m

∣∣
(m̃,R̃0)

+(R0−R̃0)
∂f
∂R0

∣∣
(m̃,R̃0)

+ 1
2
(m−m̃)2 ∂2f

∂m2

∣∣
(m̃,R̃0)

+··· (19)

Therefore locally at the point (m̃, R̃0) the equation is of the form

dm

dt
= A(R0 − R̃0) +B(m− m̃)2 (20)

where the values A = (µh+µp)
m̃
R̃0

andB = (µh+µp)R0m̃
∂2F
∂m2 (m̃) with F (m) =

ψ(m, z, k)φ(m, z, k) which is the normal form of a saddle-node bifurcation.
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4 A heterogeneous model

In this section we will consider the more general and realistic case for a host
population H. Unlike the homogeneous model presented in the previous
section, here we present a model that accounts for host population hetero-
geneity, where subpopulations Hi (e.g., age groups, risk groups, [2, 3, 15])
have different infection risks. The dynamics of infection for the case of a
heterogeneous population is described as follows

dmi

dt
= βi`− (µh + µp)mi

d`

dt
= λ0α

∑
i

NiρimiF (mi)− (µ` +
∑
i

βiNi)`
(21)

where Ni is the number of host in Hi.

4.1 Equilibria and basic reproduction number

From the system (21) we obtain that in equilibrium

`∗ =
λ0α

(µ` +
∑

iNiβi)

∑
i

ρiNimiF (mi) (22)

and substituting this in the rest of the equations of the initial system we
obtain the following equation for the dynamics of the mean burden mi of the
subpopulation Hi of hosts

dmi

dt
= βi

λ0α

(µ` +
∑

j Njβj)

∑
j

NiρjmjF (mj)− (µh + µp)mi (23)

The mean burden m of the total host population H =
⋃
iHi is given by

m =
∑
i

πimi (24)

where πi is the portion of the population H corresponding to the subpopu-
lation Hi, and which is described by

dm

dt
=

(∑
i

Niβi

)
λ0α

(µ` +
∑

j Njβj)

∑
j

ρjπjmjF (mj)− (µh + µp)m (25)

From this equation, the equilibrium mean parasite burden, m∗, for the total
population is given by∑

i

πi
λ0αρi

(µ` +
∑

j Njβj)(µh + µp)

(∑
j

Njβj

)
F (m∗

i )m
∗
i −m∗ = 0 (26)
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This is not an explicit expression of the equilibria m∗
i . Therefore, the equi-

librium value can only be solved numerically. An equilibrium condition for
the mean burdens of each subpopulation Hi is given by

F (m∗
i ) = 1/Ri

0 (27)

where we define by Ri
0 = λ0αρi

(µ`+
∑

j Njβj)(µh+µp)

(∑
j Njβj

)
to the basic reproduc-

tive number of each subpopulation Hi which is the number of adult females
that are born of a adult female from a host in subpopulation Hi in the ab-
sence the effects of density-dependence and the mating probability. Note
what for a large N value Ri

0 ≈
λ0αρi

(µh+µp)
. Also for this equilibrium situation,

we obtain that the mean parasite burden of each subpopulation Hi is given
by m∗

i = βi∑
j πjβj

m∗.

The general basic reproductive number R0 for the total population is
given by

R0 =
λ0α

(µ` +
∑

j Njβj)(µh + µp)

∑
i

Niρiβi (28)

where we assume the absence the effects of density-dependence and the mat-
ing probability [2], that is, we assume in the system (21) the function F equal
to unity. A relationship between R0 and Ri

0 is given by

R0 =

∑
iNiβiR

i
0∑

j Njβj
(29)

therefore we get that minRi
0 ≤ R0 ≤ maxRi

0 , then we can interpret to R0

as an average value of the Ri
0.

5 Discussion and Conclusions

In this work, we developed deterministic mathematical models for the trans-
mission dynamics of macroparasite infections.

We show how fundamental parameters related to production of fertilized
parasites eggs are estimated from statistical models for the distribution of
parasites within hosts.

We considered both homogeneous and heterogeneous host communities.
The analyzed models show that the basic reproduction number R0 strongly
depends on the host egg contributions to the reservoir (which depend of the
parameters ρ, α, and the parasite fecundity at low densities λ0), and on the
parasite mortality (µp). Therefore, to achieve a reduction in R0 we must,
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for example, build latrines in the host community or implement regular and
specific antiparasitic treatments.

For the homogeneous model we present a bifurcation analysis and show
that this model exhibits a saddle-node bifurcation. The bifurcation parame-
ter depends on the functions ψ and φ which in turn depend on the assumed
distribution of parasites (see [9]).

More refined models may be developed from the simple models presented
here which may be useful in the design and evaluation of different control
strategies.
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