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Abstract
We obtain accurate eigenvalues of the one-dimensional Schrödinger equation
with a Hamiltonian of the form Hg = H + gδ(x), where δ(x) is the Dirac delta
function. We show that the well known Rayleigh–Ritz variational method is
a suitable approach provided that the basis set takes into account the effect of
the Dirac delta on the wavefunction. Present analysis may be suitable for an
introductory course on quantum mechanics to illustrate the application of the
Rayleigh–Ritz variational method to a problem where the boundary conditions
play a relevant role and have to be introduced carefully into the trial function.
Besides, the examples are suitable for motivating the students to resort to any
computer-algebra software in order to calculate the required integrals and solve
the secular equations.

Keywords: delta potential, variational method, perturbation theory, harmonic
oscillator

(Some figures may appear in colour only in the online journal)

1. Introduction

A quantum-mechanical Hamiltonian operator H perturbed by a delta-function potential gδ(x)
has received considerable attention [1–13]. In most cases H describes a free particle [1], a
particle in a box [1–4] or the harmonic oscillator [1, 5–13]. Since in these cases the Schrödinger
equation for H is exactly solvable one can obtain closed form expressions for the solutions to
the Schrödinger equation for Hg = H + gδ(x) in several different ways. For example, from
the eigenvalues and eigenfunctions of H [1, 8], by solving the eigenvalue equation left and
right of the origin and matching those solutions at x = 0 [2, 3, 5, 9, 10] or by means of the
Green function [11, 12]. In some cases the authors resorted to this kind of models to illustrate
the application of approximate methods like perturbation theory [4, 9], WKB method [9], or
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variational approaches [9, 13]. Several such proposals have proved of pedagogical interest
[1–4, 9, 10, 13] and a student may inquire about the possibility of solving examples in which
the Schrödinger equation for H is not exactly solvable. The purpose of this paper is to address
this point.

In most undergraduate courses on quantum mechanics and quantum chemistry the students
become familiar with approximate methods like perturbation theory or variational techniques.
For example, the Rayleigh–Ritz variational method is particularly useful in atomic and molec-
ular physics [14]. Here, we show how to choose a suitable basis set that takes into account
the effect of the Dirac-delta-function potential. The analysis carried out in this paper may
be suitable for an introductory course on quantum mechanics. In section 2 we outline the
model and some of the properties of the Schrödinger equation. In section 3 we describe the
main ideas about the Rayleigh–Ritz variational method which we apply to a family of poly-
nomial potentials in section 4. Finally, in section 5 we summarize the main results and draw
conclusions.

2. The model

In what follows we restrict ourselves to the dimensionless Schrödinger equation in one
dimension [15].

ψ′′(x) = 2 [V(x) + gδ(x) − E]ψ(x),−∞ < x < ∞, (1)

where δ(x) is the Dirac delta function. The delta-function potential determines the well known
behaviour of the wavefunction at origin

ψ
(
0−) = ψ

(
0+

)
= ψ(0), ψ′ (0+

)
− ψ′ (0−) = 2gψ(0). (2)

According to the Hellmann–Feynman theorem [16, 17] every energy eigenvalue increases with
the strength parameter of the delta potential as

∂E
∂g

= |ψ(0)|2, 〈ψ|ψ〉 =
∫ ∞

−∞
|ψ(x)|2 = 1. (3)

If the potential-energy function is parity invariant (V(−x) = V(x)) then the eigenfunctions
are either even (ψe(−x) = ψe(x)) or odd (ψo(−x) = −ψo(x)) and the Hellmann–Feynman
theorem tells us that the energies of the latter states do not change with g because ψo(0) = 0.
In other words, the odd states are solutions to equation (1) with g = 0 which is consistent with
the fact that ψ′

o(x) is continuous at origin according to equation (2). The behaviour of the even
states at origin becomes

ψ′(0+) = gψ(0), (4)

and throughout this paper we consider that the wavefunction also satisfies ψ(x →±∞) = 0.
When |g| is sufficiently small we can apply perturbation theory and obtain an expansion of

the form

En(g) =
∞∑
j=0

E( j)
n g j, (5)
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where the coefficients E( j)
n can be obtained in closed form provided that the eigenvalue equation

for H0 = H is exactly solvable. Examples are given by the particle in a box [4] and the harmonic
oscillator [9].

On the other hand, when |g| →∞ equation (4) yields ψ(0) = 0 and the solutions are the
odd-parity states of H. An exception is the ground state when g →−∞ [9, 10]. We will discuss
this point with more detail in the examples studied in section 4. Here, we just mention that there
is a critical value g0 such that E0(g) > 0 if g > g0 and E0(g) < 0 if g < g0 when V(x) � 0.

3. The Rayleigh–Ritz approach

In order to apply the Rayleigh–Ritz variational method to the Schrödinger equation Hψ = Eψ
we choose a suitable basis set {ϕ j, j = 0, 1, . . .} and construct the trial function

ϕ =

N∑
j=0

cjϕ j. (6)

Then we obtain the minimum of the variational integral

W =
〈ϕ|H |ϕ〉
〈ϕ|ϕ〉 , (7)

with respect to the expansion coefficients c j

∂W
∂cj

= 0, j = 0, 1, . . . , N. (8)

This approach is well described in many textbooks [14] so that we will only show the results
here. The expansion coefficients c j are solutions to the secular equation

N∑
j=0

(
Hi j − WSi j

)
cj = 0, i = 0, 1, . . . , N,

Hi j = 〈ϕi|H |ϕ j〉 , Si j = 〈ϕi|ϕ j〉 , (9)

and there are nontrivial solutions only for those values of W that are roots of the secular
determinant

|H − WS| = 0, (10)

where H and S are (N + 1) × (N + 1) matrices with elements Hi j and Si j, respectively. These
roots W [N]

j , j = 0, 1, . . . , N, are real and satisfy W [N]
j � W [N+1]

j � Ej, where E j is an eigenvalue
of H [14].

4. Results

A suitable basis set for the class of polynomial potentials V(x) discussed here is given by the
Gaussian functions

ϕ j = x j exp

(
−ax2

2

)
, j = 0, 1, . . . , a > 0. (11)
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However, if we require the trial function to satisfy (4) at origin then a more convenient basis
set is

u1(x) = (1 + gx) exp

(
−ax2

2

)
, u j = x j exp

(
−ax2

2

)
, j = 2, 3, . . . , x > 0, (12)

and the trial function now reads

ϕ(x) =
N∑

j=1

cju j(x), x > 0. (13)

For the application of the Rayleigh–Ritz variational method outlined above to present
models we resort to the scalar product

〈F|G〉 =
∫ ∞

0
F(x)∗G(x) dx, (14)

because it is only necessary to take into account half the coordinate space, for example,
0 � x < ∞, when V(x) is parity invariant. For simplicity, we restrict ourselves to monomial
potentials of the form

V(x) = A|x|b, A, b > 0, (15)

so that all the integrals appearing in H and S are of the form
∫ ∞

0
xs exp

(
−ax2

)
dx =

1
2

a−(s+1)/2Γ

(
s + 1

2

)
, (16)

where Γ(z) is the gamma function.
The Rayleigh–Ritz variational method is quite general and has already been applied

to far more challenging problems in atomic and molecular physics [14]. The application
shown here is rather uncommon and the basis set (12) has been particularly designed for the
one-dimensional delta-function potential.

In order to test the approach we first choose the harmonic oscillator

V(x) =
1
2

x2, (17)

because there are simple transcendental equations for its eigenvalues [1, 5, 6, 9–11]. Figure 1
shows the rate of convergence of the approach for the two lowest eigenvalues when g = 1. For
simplicity, we have chosen a = 1 because it yields the correct asymptotic behaviour of ϕ(x) at
infinity.

Figure 2 shows similar results for V(x) = x4 and g = 1. Since x4 � x2 for x � 1 we expect
the eigenfunctions of the anharmonic oscillator to vanish asymptotically more rapidly; conse-
quently, in this case we arbitrarily chose a = 2 to take into account this fact. It would be better
to obtain the optimal value of a variationally but it would make the calculation rather more
involved. Although in this case we do not have exact results for comparison, we are confi-
dent about the accuracy of the results because the roots of the secular equation converge to a
limit from above. The actual eigenvalues given by the Rayleigh–Ritz variational method are
available elsewhere [18].

The Rayleigh–Ritz variational method yields accurate results also for large |g|, the only
exception being the ground state when g →−∞. We can estimate this energy eigenvalue by

4
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Figure 1. log |E[N]
n − En| for n = 0 (red circles) and n = 1 (blue squares).

Figure 2. log |E[N]
n − E[Nm]

n | for n = 0 (red circles) and n = 1 (blue squares), where Nm

indicates the maximum value of N in the calculation.

means of perturbation theory if we choose V(x) to be the perturbation. In fact, by means of a
simple scaling argument [15] we can easily prove that

E0(g) = −|g|2
2

+ Γ(b + 1)A|g|−b +

∞∑
j=2

ejA
j|g|−(b+2) j+2, (18)

for the family of potentials in equation (15).
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Figure 3. E0(g) for the harmonic oscillator calculated by means of perturbation theory
(blue continuous line) and the Rayleigh–Ritz variational method (red points).

Figure 3 shows that present Rayleigh–Ritz variational results (with N = 17) agree with the
perturbation expression

E0(g) ≈ −g2

2
+

1
g2

, (19)

for the harmonic oscillator (17) for moderately large values of |g|. Larger values of |g| will
require larger values of N in order to obtain results of similar accuracy.

Finally, it is worth mentioning that the Rayleigh–Ritz variational method is suitable for
the calculation of the critical values g0 mentioned at the end of section 2. We simply set
W = 0 and solve the secular determinant (10) for g. We thus obtain gH

0 = −0.675 978 2401,
gQ

0 = −0.751 594 0253 and gC
0 = −0.765 128 1365 for the harmonic, quartic and cubic poten-

tials, respectively. The result for the harmonic oscillator agrees with the one predicted by the
exact analytical expression for the eigenvalues [1, 8].

5. Conclusions

The results of this paper clearly show that the Rayleigh–Ritz variational method is a suitable
tool for the treatment of the Schrödinger equation perturbed by a Dirac-delta-function potential
provided that the trial function exhibits the correct behaviour at origin (or, in general, at the
location of the delta function). This behaviour can be easily introduced into the basis set, at least
for even-parity potentials. We have illustrated the application of the approach by means of three
monomial potentials and a similar calculation for polynomial potentials is straightforward. In
the case of non-polynomial potentials it may be necessary to calculate the matrix elements Hi, j

and S1, j numerically. This fact would make the calculation somewhat more involved but the
method can still be applied as shown in the case of atoms and molecules [14].

The basis set chosen is suitable for moderate values of |g| as suggested by the remarkable
rate of convergence shown in figures 1 and 2 (see [18] for more explicit results). For large,
positive values of g the performance of the variational method is similar because ψ(0) → 0
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as g →∞. The only difficulty may be found for the ground state when g 
 −1 because the
wavefunction is expected to behave asymptotically as ψ(x) ∼ exp

(
−g|x|

)
. In this case it is

required a large basis set of Gaussian functions or a more convenient set of functions. However,
for most purposes the approach proposed here is sound.

The variational method proposed by Patil [9] and improved by Ghose and Sen [13] can also
be applied to the models discussed above in the preceding section. However, this approach,
based on just one trial function with adjustable parameters, only applies to the ground state.
On the other hand, the Rayleigh–Ritz method outlined in this paper yields estimates for all
the eigenvalues with the advantage that we can monitor the accuracy of the results because the
roots of the secular determinant converge to the actual eigenvalues from above [18].

The application of the Rayleigh–Ritz variational method to problems of physical inter-
est commonly requires resorting to suitable computer software for the calculation of the
approximate eigenvalues and eigenfunctions. In our opinion, this is a good opportunity for
introducing the students to any of the available computer-algebra software that enable one to
calculate the integrals in the matrix elements and provide algorithms for the solution of the
secular equations.
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