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Summary. We investigate models to describe respiratory diseases with fast mutating virus pathogens such that after some years the
aquired resistance is lost and hosts can be infected with new variants of the pathogen. Such models were initially suggested for
respiartory diseases like influenza, showing complex dynamics in reasonable parameter regions when comparing to historic
empirical influenza like illness data, e.g., from Ille de France. The seasonal forcing typical for respiratory diseases gives rise to
the different rich dynamical scenarios with even small parameter changes. Especially the seasonality of the infection leads for
small values already to period doubling bifurcations into chaos, besides additional coexisting attractors. Such models could in
the future also play a role in understanding the presently experienced COVID-19 pandemic, under emerging new variants and
with only limited vaccine efficacies against newly upcoming variants. From first period doubling bifurcations, we can
eventually infer at which close by parameter regions complex dynamics including deterministic chaos can arise.

1. Introduction

Some of the first successful modelling approaches in epide-
miology which show complex dynamical behaviour were
used to describe the observed large fluctuations in childhood
diseases in historic prevaccination eras. Childhood diseases
are typically highly contagious, but human hosts have devel-
oped life long immnunity against these pathogens, such that
only children were typically infected but then protected for
the remaining life time.

But most endemic diseases are less infective, still show-
ing at times complex dynamical patterns of numbers of
infected in long-term time series recordings. Among those
are respiratory diseases like influenza and other influenza-
like illnesses (ILIs), where in winter typically larger or

smaller outbreaks are observed over the years [1]. By only
assuming a waning immunity of a few years and moderate
infectivity, much below the ones observed for childhood dis-
eases, we can describe already such large seasonal fluctua-
tions with simple SIR-type models including a sinusoidal
seasonal forcing [2].

Here, we investigate such models for seasonal respiratory
diseases with fast mutating pathogens in their capacity of gen-
erating rich bifurcation scenarios and deterministic chaos
already for small variations of seasonality. Implications for
the eventual future dynamical development of COVID-19
are outlined but will still depend on the escape capacity of
new variants from already existing immunity against the ini-
tial variants either by natural infection or by vaccines devel-
oped with the knowledge of the initial variants.
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For data analysis and initial phase dynamics of COVID-
19, especially in the Basque Country, seasonality was still dif-
ficult to quantify [3–5], but now after the first year and a
half, it becomes clearer that there is a certain seasonal effect
also in COVID-19, but now already overlayed by vaccina-
tion campaigns effects. Still, a lot of things changed in our
knowledge about COVID-19, e.g., the intially high case fatal-
ity ratios reported in 2020 [6] are by now widely accepted to
be lower than initially though, due to the wide discovery of
asymptomatically or mildly infected [7]. Hence, some com-
parison to other respiratory diseases, including comparative
data analysis, also might help here in the future evaluation of
some of the key parameters such as the seasonality and the
waning immunity/vaccine escape.

2. Seasonally Forced SIR Models

The seasonally forced SIR system can be given by the follow-
ing reaction scheme:

S + I⟶
β tð Þ

I + I,

I⟶
γ

R,
R⟶

α
S,

S⟶
ρ

I,

ð1Þ

and its corresponding dynamics of probabilities is discussed
below. The population of size N is divided into susceptible
individuals S, infected I, and recovered R, which can become
susceptible again after a waning immunity period, given by
the transition probability α. Further, β is the infection rate
and γ the recovery rate of the disease. Further, ρ is an addi-
tional import, which leads susceptibles from the study pop-
ulation to become infected due to outside contacts. The
seasonal forcing of the infection rate is given by

β tð Þ = β0 · 1 + θ · cos ω t + φð Þð Þð Þ, ð2Þ

modelling the increased infectivity probability in colder
weather in winter. Here, we first consider the deterministic
skeleton, given by the mean field approximation of the
underlying stochastic process [8]. The SIR model in its mean
field ODE system, first without seasonal forcing but already
including import ρ, is given by

dS
dt

= αR −
β

N
S · I + ρNð Þ,

dI
dt

= β

N
S · I + ρNð Þ − γI,

dR
dt

= γI − αR:

ð3Þ

Hence, we have a stationary state, without seasonality, given
by

R∗ = γ

α
I∗, ð4Þ

S∗ = γ

β
N

I∗

I∗ + ρN
, ð5Þ

both still depending on I∗ and finally,

I∗

N
= 1
2

α

γ + α
1 − γ

β

� �
− ρ

� �
+
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� �
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· ρ

s
:

ð6Þ

This stationary state is a fixed point in the state space of
the variables S and I.Adding the seasonal forcing βðtÞ = β0
· ð1 + θ · cos ðωðt + φÞÞÞ gives for very small seasonality θ a
limit cycle around the fixed point and increases the state
space by one more variable to a three-dimensional space of
SðtÞ, IðtÞ, and βðtÞ. As parameter values, we consider
influenza-like dynamical behaviour, for which due to mutu-
ating influenza viruses the immunity gets lost after some
years, hence giving on average a waning immunity of 6
years. Relevant paremeters are α = 1/6 y , γ = 1/3d = ð365/3Þ
y−1, β0 = 1:5 · γ, and ln ðρÞ = −15 and varying θ. For an anal-
ysis based on the time available influenza data from France,
we took θ = 0:12 as analyzed in detail in an earlier publica-
tion [2]. Here, we consider from the nonforced system, i.e.,
θ = 0, and no import a gradual increase of the seasonality,
and observe already for very small seasonality bifurcations
and complex dynamics, much below θ = 0:12.

2.1. Seasonal Forcing Included in the SIR System Leads to
Bifurcations into Chaos. From an initial limit cycle around
the nonseasonal fixed point, we already observe for a season-
ality of, e.g., θ = 0:038, a deformed limit cycle of period
length of two years (not of one year, the focing period
length), see Figure 1(a). By increasing the seasonality fur-
ther, to, e.g., θ = 0:043, we observe a period doubling, from
the two-year limit cycle to a four-year limit cycle, see
Figure 1(b). In the time series of infected, this corresponds
to a roughly two-year cycle with a large outbreak in one year
and a small in the next season, but after that the large out-
break is not exactly repeated and also the low outbreak in
the fourth season is slightly altered from the second season,
and only after that the outbreak sizes are repeated.

Then, already in a very close by seasonality of θ = 0:0446,
we observe a further priod doubling to a period length of 8
years, see Figure 1(c). The four-year cycle is not any more
exactly matched but a second slightly altered turn occurs.
This period doubling continues and leads to the period dou-
bling rout to chaos, at which a deterministically chaotic
attractor appears, with sensitivity to initial conditions, as,
e.g., measured via positive Lyapunov exponents, see further
below on the terms of deterministic chaos and Lyapunov
exponents.

Since we have initially a shift from a one-year limit cycle
to a two-year limit cycle, the best to obtain good bifurcation
diagrams is to consider stroboscopic maps, i.e., the value at
each year at the same time of the year varied continuously
with seasonality θ, see Figure 2, where for low seasonality θ
= 0:038 two points appear, the value of low outbreak in
one year and the value of high outbreak in the next. Then,
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we observe the period doubling, with four values for a fixed
seasonality value, e.g., of θ = 0:043, the value which corre-
sponds to the state space plot in Figure 1(b).

Then, the sequential period doublings appear in the
bifurcation diagram, Figure 2, from which we can roughly
read off the parameter values at which the bifurcations from
one periodic limit cycle to the next double periodic limit
cycle appear. We have as a first attempt the following values
of θ2 = 0:0402, θ3 = 0:0441, and θ4 = 0:0449. From these first
values, we can calculate a “speed of bifurcation accumula-
tion” δ4 = Δθ3/Δθ4 = ðθ3 − θ2Þ/ðθ4 − θ3Þ = 4:875. In practice,
e.g., in the case of COVID-19, we could have a lower trans-
mission in summer, and in the first few winter seasons,
because of still occuring control measures due to mask wear-
ing in closed space etc., we would have a dampened low sea-
sonality. Then once such control measures will be relaxed,
we could observe an increase in seasonality of infections,
up to a point where we would observe a low ourbreak in
one season and a higher outbreak in the next, burning out
the remaining susceptibles, and a low season again, until
the waning immunity gives rise to newly susceptibles via
variant mutations of the pathogen. Ultimately, we could
observe larger fluctuations as are, e.g., observed in seasonal
influenza, for which we have a decade long outbreak data.
Though, in general influenza, viruses are considered to
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Figure 1: State space plots of period doubling. In state space projection of the variables SðtÞ and IðtÞ, with complete state space also
including βðtÞ, we plot the limit cycles observed after cutting transient dynamics, for the following parameter values of the seasonality θ:
(a) θ = 0:038, (b) θ = 0:043, and (c) θ = 0:0446.
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Figure 2: Bifurcation diagram around the period doubling. Now,
stroboscopic values of IðtnÞ are used, e.g., each first of January.
tn+1 = tn + T with a period length of the seasonal forcing of T = 1
y. For graphical visibility, we plot the logarithm of the infected.
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mutate easier than the circulating human coronaviruses pre-
COVID-19, the presently upcoming new variants leave some
doubts about much milder circumstances in the case of the
present COVID-19 epidemic to become also endemic with
smaller and larger outbreak in future seasons.

We will now apply some dynamical systems tools in
order to understand better the implications of such “speed
of bifurcation accumulation”, and especially the observation
of δ ≈ 4:8 from our rough first attempt of quantification
given above.

3. Seasonally Forced ODE Models to Maxima
Return Maps and Its Simplifications

When considering a seasonally forced SIR system in its cha-
otic regime, in any parameter combination as long as it is
chaotic, we can take a “maxima return map”, i.e., the maxi-
mum at each outbreak and plot this against the next maxi-
mum. Alternatively, Poincaré sections in the state space
could be considered, or the abovementioned stroboscopic
maps. A typical maxima return map is given in
Figure 3(a). After a very large outbreak, we observe rather
small outbreaks next, a large In followed by a small In+1.
For intermediate small In, we observe rather large In+1. But
for very small In, also, the In+1 is rather small, since the sus-
ceptibles are not yet build up sufficiently to generate a next
large outbreak. Finally, intermediate outbreaks are often
followed by another intermediate outbreak.

Though such discrete maps generated from 3-
dimensional ODE flows have to be two dimensional, as seen
in Figure 3(a), the described sequence of In+1 following In
can be roughly represented by a simple functional form of
x · e−x. Hence, we can give a well know map from ecology,
the Ricker map, in its implest form

xn+1 = f xnð Þ = axne
−xn , ð7Þ

as a crude description of the dynamical behaviour of the
maxima return map originated from a seasonally forced
SIR system. Though the maxima return map was obtained

in the chaotic region of the seasonal SIR model, also in the
sketchy Ricker map, we observe period doubling bifurca-
tions for certain parameter values a, see Figure 4(a), giving
the bifurcation diagram of the Ricker map for, e.g., a ∈ [4,
9].

The period doubling bifurcations cumulate into a fuzzy
clowd of points in the bifurcation diagram, Figure 4(a). This
clowd is the onset of deterministically chaotic attractors.
Such deterministic chaos can be quantified by measuring
the exponential convergence or divergence along any trajec-
tory in its time average after very long time, the so called
“Lyapunov exponent”

λ = lim
N⟶∞

1
N
〠
N

n=1
ln df

dx

����
����
xn

 !
, ð8Þ

which can be plotted with varying parameter a to give a Lya-
punov spectrum, see Figure 4(b). We use the same range of
the parameter a in Figure 4(b) as in Figure 4(a) to be able to
compare the bifurcation diagram and Lyapunov spectrum.

The limit cycles have typically exponential convergence,
hence negative Lyapunov exponents. Only at the bifurcation
points at each period doubling, one periodic cycle becomes
unstable, and the double periodic cycle becomes stable.
Hence, stability changes at the bifurcation points, and the
Lyapunov exponents are zero there, going negative again
for the next double limit cycle. Such characterization of
bifurcations via zero Lyapunov exponents could, e.g., be
used in graphical two-dimensional bifurcation diagrams [10].

After many observed, actually infinitely many, period
doubling bifurcations, we observe positive Lyapunov expo-
nents, from around a ≈ 14:2 on, indicating that the period
doubling cascade culminates in chaotic attractors. Again,
we can measure the speed of period doubling bifurcations
into a new dynamic regime, the chaotic attractors, and find
numerically a similar value as our rough first attempt in
the seasonal SIR system gave.
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Figure 3: (a) Maxima return map of a seasonally forced SIR model in its chaotic parameter region. (b) Simplified one-dimesional version of
the maxima retun map, the Ricker map, here in its simples functional form, not adjusted for numerical comparison with the maxima return
map.
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Namely, we determine subsequent bifurcation points
from zooming into the bifurcation diagram in smaller and
smaller regions of the parameter a, see, e.g., Figure 5 for
the final step, and observe ac1 = e2 = 7:389056099, which
can be calculated analytically, then ac2 = 12:509, giving a dif-
ference of Δa2 ≔ ac2 − ac1 = 5:12.

Continuing this analysis further, we obtain ac3 = 14:2443
, Δa3 ≔ ac3 − ac2 = 1:735, then ac4 = 14:6527, Δa4 = 0:4084,
and ac5 = 14:7421, Δa5 = 0:0894, and finally ac6 ≈ 14:76137,
Δa6 = 0:0193. Hence, for the speed of bifurcations, we obtain
δ3 ≔ Δa2/Δa3 = 5:12/1:735 = 2:951, δ4 ≔ Δa3/Δa4 = 1:735/
0:4084 = 4:248, δ5 ≔ Δa4/Δa5 = 0:4084/0:0894 = 4:5682, and
δ6 ≔ Δa5/Δa6 = 0:0:0894/0:0193 = 4:6321. Hence, we move
towards a δ∞ = 4:6692, which gives for subsequent bifurca-
tion points ac,j+1 ≈ ac,j + 1/δ · ðac,j − ac,j−1Þ, ones δj+1 ≈ δj,
measuring the convergence speed into chaos at ac,∞ ≈ 14:2.

Remember that we now found values of the speed of
bifurcations close to δ∞ = 4:6692 in the seasonal SIR model
as well as in the much simplified Ricker map, via the maxima
return map. This already indicates a certain “universality” of
δ∞ = 4:6692. If we would refine our analysis of the SIR-

system in the same way we did for the Ricker map, we would
expect similar values of δj towards δ∞ = 4:6692.

The numerical agreement, here, demonstrated only
roughly, can be improved and holds due to the so called
“Feigenbaum conjecture,” namely, that the speed in period
doubling bifurcation sequences into chaos ultimately, close
to chaos, the numerically same value is obtained equally in
ODE systems and in maps, one-dimensional or higher
dimensional. A proof of the Feigenbaum constant is typically
obtained for one-dimensional maps on the unity interval, as
sketched below, but holds empirically much wider, for ODE
systems and experimental physical systems [11], and here
also shown for epidemiological models.

4. Feigenbaum Renomalization Gives Analytic
Handle on Period Doubling
Convergence Speed

We have obtained approximations of δ∞ = 4:6692 from the
bifurcation diagrams of different systems. The fastest way
to obtain good approximations of δ∞ is via the so-called

 0

 1

 2

 3

 4

 5

 6

 6  8  10  12  14  16

x⁎

a

(a)

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

 0

 500

 6  8  10  12  14  16

Ly
ap

a

(b)

Figure 4: (a) Bifurcation diagram for the Ricker map. (b) Lyapunov spectrum for the Ricker map in the same parameter region for
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Feigenbaum renormalization [12], which resembles renor-
malizations in statistical systems close to criticality [8, 13]
and renormalization in quantum physics [13]. Originally,
Feigenbaum used a simple quadratic map on the unit inter-
val, namely,

xn+1 = f xnð Þ = axn 1 − xnð Þ, ð9Þ

and derived from this a functional equation of exact selfsimi-
larity at the renormalization fixed point [12], the so-called
Cvitanović equation, which however is most widely known
from a linear transformed version of the quadratic map,
now on the interval between -1 and +1. The solution of this
Cvitanović equation and its linearization around the fixed
point [14] give the numerically best values of δ∞ ≕ δF , the
universal Feigenbaum constant δF , in which the value was
however already known before the publications of Feigen-
baum [15].

To describe the self-similarity in the Feigenbaum map,
we first iterate the map for a moderate parameter value,
e.g., a = 2:9, and observe that the trajectory fxng converges
to a fixed point, but for a value of, e.g., a = 3:3 keeps oscillat-
ing in a period 2, see Figure 6(e).

Then, for, e.g., a = 3:5, we find a period 4 cycle in the Fei-
genbaum map, Figure 6(c). If we iterate the map, i.e., xn+2
= f ð f ðxnÞÞ≕ f ð2ÞðxnÞ, the period 4 becomes a period 2 limit
cycle again, see Figure 6(d). And for, e.g., a = 3:554, we find a
period 8 limit cycle in the original Feigenbaum map,
Figure 6(a), which becomes a period 2 limit cycle in the
fourth iterate xn+4 = f ð4ÞðxnÞ, Figure 6(b). Now, if we com-
pare the fourth iterate in Figure 6(b) with the first iterate
in Figure 6(f), we find the same graphical features from the
first iterate again in the fourth iterate by simply zooming
into the center of the unit interval, around xn = 0:5, compare
Figures 6(f) and 6(b).

Now, the original map Figure 6(f) can be also compared
with the second iterate Figure 6(d), when we flip the inner
part around xn = 0:5 and zoom in or mathematically rescale
x-axis and y-axis. This rescaling can be given mathematically
in the following way:

1 − f ai+1 f ai+1 1 − xð Þ
� �

≈
1
α
· f ai α · xð Þ, ð10Þ

with a scaling factor αF (or here simply α since it cannot be
confused with the parameter α in the SIR models) and flip-
ping via ð1 − xÞ in the x-axis and 1 − f ð2Þ in the y-axis.
Though this approximate self-similarity would be sufficient
for the subsequent analysis, a map just being linearly trans-
formed into the interval -1 to +1, namely, xn+1 = 1 − μx2n ≕
f μðxnÞ is generally used with the approximate self-similarity

−αf μi+1 f μi+1 −
x
α

� �� �
≈ f μi xð Þ, ð11Þ

with scale factor again called α. This defines an operator T
which maps f μiðxÞ into f μi+1

T f xð Þ½ �≔ −αf f −
x
α

� �� �
, ð12Þ

with the generally assumed assumption in renormalization,
that after infinitely many iterations, we arrive at the critical
point of the onset of chaos to an exact self-similarity; hence,
T has a fixed point function gðxÞ for period doubling going
to infinity fulfilling

T g xð Þ½ � = g xð Þ, ð13Þ

which gives explicitly the so-called Cvitanović equation

g xð Þ = −αg g −
x
α

� �� �
ð14Þ

for the universal constant α = 2:5029 and universal function
gðxÞ. The constant α = 2:5029 is the first Feigenbaum con-
stant, while however we are here more interested in the sec-
ond Feigenbaum constant δF . The renormalization theory
now gives an attractive high-dimensional manifold, attract-
ing towards the fixed point T ½gðxÞ� = gðxÞ, and one unstable
direction in function space with dominating eigenvalue,
which turns out to be δF we are looking for [16].

Hence, we investigate the linearization of T around the
renormalization fixed point T g = g by

L h xð Þ½ �≔ δT f xð Þ½ �
δf xð Þ

����
g xð Þ

= T g xð Þ + h xð Þ½ � − T g xð Þ½ �, ð15Þ

for small perturbation hðxÞ, resulting explicitly in

L h xð Þ½ � = −α g′ g −
x
α

� �� �
· h −

x
α

� �
+ h g −

x
α

� �� �� �
, ð16Þ

and obtain the eigenvalue/eigenfunction problem in func-
tion space

L h xð Þ½ � = δF · h xð Þ, ð17Þ

with identified

δF ≔ lim
i⟶∞

ai − ai−1
ai+1 − ai

= 4:6692, ð18Þ

at the onset of chaos, after infinitely many period doubling
bifurcations, at parameter value a with value a∞ =
3:5699456.

The fixed point equation T ½gðxÞ� = gðxÞ then can be
solved via popynomial ansatz of gðxÞ giving also the value
for α and the linearization L½hðxÞ� = δF · hðxÞ giving in addi-
tion δF , each in respective accuracy depending on the length
of the considered polynomials. We will only give a brief
glance at the first steps below, which however already give
relatively good approximations for the two Feigenbaum con-
stants α and δF , with further refinements easily obtained to
high precision [17].

4.1. Practical Solution of the Functional Equations. We start
with the polynomial Ansatz for the universal function g

6 Computational and Mathematical Methods



quadratically via gðxÞ = g0 + g1x + g2x
2 +Oðx3Þ to be

inserted into T½gðxÞ� = gðxÞ = −αgðgð−x/αÞÞ. This gives via
coefficient comparison in orders of x the results g1 = 0, g0
= 1 and g2 = −α/2, and from this

α ≈ 1 +
ffiffiffi
3
p

= 2:73, ð19Þ

compared to the higher order polynomial results of

α = 2:5029, ð20Þ

eventually with much higher precision [17] than reported
here. It is however surprising that already the here discussed
approximation give the correct order of magnitude of α.

Now, hðxÞ is inserted into L½hðxÞ� = δF · hðxÞ which
already gives in zeroth order

δF ≈ α2 − α = 3 +
ffiffiffi
3
p

= 4:73, ð21Þ

compared to higher order result of

δF = 4:6692, ð22Þ
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Figure 6: Self-similarity of the Feigenbaum iteration. Period 8 limit cycle for a = 3:554 in (a) and in fourth iteration giving a period 2 limit
cycle in (b). Period 4 for a = 3:5 in (c) and second iterate in (d). Period 2 for a = 3:3 in (e) and self-similarity of this in (f) zooming into the
previous higher iterate in (b) and inverted and zooming in (d).
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again in good agreement in orders of magnitude. And of
course from here, we can continue in higher orders of poly-
nomials further.

Though in the renormalization flow the diverging func-
tion space direction is given by δF , in terms of bifurcation
accumulation δF measures how quickly complexity increases
in terms of bifurcations with higher and higher orders and
soon reaches deterministically chaotic attractors, due to the
relatively high value of δF . Further, α measures the ampli-
tude increase between bifurcations, here in the epidemiolog-
ical examples the maximal numbers of infected in each
year’s outbreaks.

Not only that, the Feigenbaum constants α and δ are
found empirically in many period doubling routes to chaos
in ODE systems and in physical systems (laser experiments,
etc.) [11], hence universal constants, we also observe them in
epidemiological systems, as indicated here. Hence, one could
observe the first indications of increasing seasonality giving
rise to increased complexity in time series, i.e., from periodic
oscillations to double periodic oscillations, one would be in
the position to expect more complex dynamics with smaller
and smaller increases of seasonality. We will now give a first
look into stochastic versions of the epidemiological models
already in the chaotic parameter region, still observing that
to some extend the notions of the underlying deterministic
skeleton help in understanding the system’s behavious,
though enhancing the fluctuations by noise.

5. Stochastic SIR Systems

After demonstrating that there is a route to chaos in such sim-
ple seasonal SIR systems describing respiratory diseases, we
now investigate the robustness against stochastic influences,
in a case study already well inside the parameter region of
expected deterministically chaotic dynamics. Sometimes, there
are still concerns expressed that complex dynamics rather
might be decreased by noise, but on the contrary, we observe
that taking noise appropriately into account including state
dependence, we observe even under large population sizes
complex behaviour as to be expected from the previous deter-
ministic process analysis of mean field dynamics.

5.1. Stochastic Versions of the Seasonally Forced SIR Model.
From reaction scheme 1, we can immediately give the master
equation for the SIR system as dynamics of the probabilities

d
dt

p S, I, tð Þ = β tð Þ
N

S + 1ð Þ I − 1 + ρNð Þp S + 1, I − 1, tð Þ
+ γ I + 1ð Þp S, I + 1, tð Þ + α N − S − 1ð Þ − Ið Þp S − 1, I, tð Þ
−

β tð Þ
N

S I + ρNð Þ + γI + α N − S − Ið Þ
� �

p S, I, tð Þ:

ð23Þ

The master equation can be written in a generic form
using densities x1 ≔ S/N and x2 ≔ I/N instead of the total
numbers of individuals in the population classes S and I,
hence state vector x ≔ ðx1, x2Þtr , as

d
dt

p x , tð Þ = 〠
n

j=1
Nwj x + Δx j

� 	
⋅ p x + Δx j, t
� 	

−Nwj xð Þ ⋅ p x , tð Þ� 	
,

ð24Þ

with n = 3 different transitions and small deviation from
state x as Δx j ≔ ð1/NÞ · r j.

For the master equation in densities x1 ≔ S/N and x2 ≔
I/N , we have now transitions wjðxÞ and its vectors r j given
by

w1 xð Þ = β tð Þx1 x2 + ρð Þ , r1 = 1,−1ð Þtr ,
w2 xð Þ = γx2 , r2 = 0, 1ð Þtr ,

w3 xð Þ = α 1 − x1 − x2ð Þ , r3 = −1, 0ð Þtr::
ð25Þ

We can perform simulations of the master equation
directly using the Gillespie algorithm [18, 19], observing that
for large population sizes N the simulations become very
slow. So, we will use the Kramers-Moyal expansion to obtain
a Fokker-Planck equation as approximation of the master
equation, for which the corresponding stochastic differential
equation system can be simulated much faster [9, 20, 21].

5.2. Fokker-Planck Approximation of the SIR Model. From
the master equation in densities, Equation (24) for the SIR
system, we use Taylor’s expansion

wj x + Δx j

� 	
· p x + Δx j, t
� 	

= 〠
∞

ν=0

1
ν!

Δx j · ∇x

� �ν
wj xð Þp x , tð Þ,

ð26Þ

giving to second order in 1/N a Fokker-Planck equation

∂
∂t

p x , tð Þ = −∇x 〠
n

j=1
−r j ⋅wj xð Þ
� 	

p x , tð Þ
 !

+ σ2

2 〠
n

j=1
r j ⋅ ∇x

� �2
wj xð Þp x , tð Þ,

ð27Þ

with

∇x =

∂
∂x1
∂
∂x2

0
BBBB@

1
CCCCA = ∂x , ð28Þ

or in a different notation

∂
∂t

p x , tð Þ = −∂x f xð Þp x , tð Þ
� �

+ σ2

2 ∂
!

x G2 x , tð Þ� 	
∂
 

x , ð29Þ
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using simply a quadratic form ∂x
!ðG2ðxÞ pðx , tÞÞ∂x

 
here with

∂x
! G2p
� 	

∂x
 = ∂

∂x1
, ∂
∂x2

� �
·

g11 g12

g21 g22

0
@

1
A2

p x , tð Þ · ∂
∂x1

 
 ∂
∂x2

 
 !
,

ð30Þ

f xð Þ = 〠
n

j=1
f
j
xð Þ = 〠

n

j=1
−r j ·wj xð Þ
� 	

,

G2 xð Þ = 〠
n

j=1
G2

j xð Þ = 〠
n

j=1
r j · rtrj wj xð Þ:

ð31Þ

The Fokker-Planck equation gives a stochastic differen-
tial equation system with σ = 1/

ffiffiffiffi
N
p

, and in the SIR model,
the two-dimensional Gaussian normal noise vector εðtÞ =
ðεx1ðtÞ, εx2ðtÞÞ

tr as

d
dt

x = f xð Þ + σG xð Þ · ε tð Þ, ð32Þ

and using matrix square root from eigenvalue-eigenvector
decomposition G2ðxÞ = TΛT−1 as GðxÞ = T

ffiffiffiffi
Λ
p

Ttr to be
numerically implemented easily, and much faster than the
Gillespie algorithm for the master equation [18, 19]. To fur-
ther speed up the SDE simulations, we can relax the condi-
tion of G being a quadratic matrix and allow a matrix B
with BBtr =G2, such that the expressions in B can become
quite simple and fast to compute [22]. Explicitly, we have
for B the expression in the SIR model given as B = ð ffiffiffiffiffiffiw1

p
r1

, ffiffiffiffiffiffi
w2
p

r2,
ffiffiffiffiffiffi
w3
p

r3,Þ, giving again G2 = BBtr =∑n
j=1r j · rtrj wjðxÞ

as required.
In Figure 7, we show simulations for the seasonal SIR

model with the previously stated parameters and high sea-
sonality θ = 0:12, for the mean field ODE system, the master
equation simulated via the Gillespie algorithm, and the sto-
chastic differential equation systems using the quadratic G
matrix and the nonquadratic B matrix for the covariances.
We start in all four cases with the same initial conditions,
hence, can observe the only slowly increasing differences of
the stochastic processes from the mean field ODE system,
in Figure 7(a) for the numbers of infected and in (b) for
the susceptibles. In (c), we show in state space projection
the deterministically chaotic attractor of the mean field
ODE system, and in (d) also, the comparison with the sto-
chastic process realizations, which preserve the state space
structure, but eventually explore larger excursions into state
space regions with small contraction to the deterministic
attractor.

While we previously investigated the seasonal SIR sys-
tem in this parameter region further in respect to parameter
estimation [2] via the so-called η-ball method [23], we had
besides the Gillespie algorithm only the multinomial
approximation of the stochastic process at hand, both
becoming equally slow for large population sizes [2], but

now newly tested faster procedures based on the Fokker-
Planck approximation to stochastic differential equation sys-
tems are available which work well for large population sizes
outside the extinction boundary, as more recently explored
in other epidemiological systems [24], including model com-
parison on the basis of Bayes factors [25].

In the chemical literature, further aspects of speeding up
the simulations from the classical Gillespie algorithm of
exponential waiting times to the next reaction, also called
Gillespie’s direct method, have been explored. e.g., close to
the exponential waiting time algorithm, one can approxi-
mate in small time intervals Δt the number of reactions by
Poisson distributions, assuming little changes in the transi-
tions wðxÞ during the interval Δt, the so called τ-leap algo-
rithms, which tend for increased Δt from the Poisson
distributions again to the Gaussian distributions of the sto-
chastic differential equation systems, as given in Equation
(32) with the B-matrix approach, see, e.g., a detailed discus-
sion by Gillespie [26], where the SDEs are referred to as
chemical Langevin equations (CLE), parallel to the classical
Langevin equation known in physics [9, 20]. Between expo-
nential waiting times and τ-leap, another method, balancing
speed of simulation with accuracy in stochastic trajectories
still close to the exact direct method, is the so called kα
method to evaluate waiting times after the kth event of some
characteristic reactions, eventually strengthening the wðxÞ
≈ const: condition [26]. Here, the Γ-distribution as continu-
ous time limit of discrete time Erlang k-distributions comes
to play.

However, the Gaussian approximation to the SDE sys-
tems, or Langevin equations, is of main importance, as
among others, Gillespie emphasizes in 2001 as “The Lange-
vin method therefore plays the important conceptual role
of showing the stochastic simulation methods are related
to the deterministic reaction rate equations RRE of tradi-
tional chemical kinetics.” [26]. This links the stochastic pro-
cesses with our considerations of the ODE systems analyzed
above, Section 2 and further.

Other schemes combining the above with ideas of evalu-
ating the state-dependent stochastic part of the Langevin
equation in the mid of the interval Δt, which naturally lead
to Stratonovich versions of SDEs rather than Ito versions
as discussed here, but then corrected with the Ito drift,
namely, schemes of Milshtein type [9] are considered more
recently [27], allowing larger time intervals Δt during the
simulations. Basically, in the simplest case of a one-
dimensional Langevin equation of the typ dx/dt = f ðxÞ + σ
gðxÞεðtÞ, the state-dependent noise term gðxÞ is evaluated
in the interval ½xt , xt+Δt � as gðxt + c · ðxt+Δt − xtÞÞ with c ∈ ½0
, 1�, giving in its simplest version for c = 0 the Ito version
and for c = 1/2 the Startonovich version [28], and adding
to the drift f ðxÞ the correction to Ito type, namely f − ðσ2/
2Þg′g following obviously from the Fokker-Planck formula-
tion [9, 20], gives the Milshtein method, either kept implicit
to desired order in Δx≔ xt+Δt − xt or made explicit like in
the original Stratonovich version [28–30]. Such fully implicit
stochastic methods [27] seem promising for highly accurate
stochastic paths of chemical systems, speeding up from the
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original Gillespie direct method. Since we consider here
applications to chaotic attractors, hence, the dynamics in
state space being overall contracting, we are interested in
typical trajectories close to the deterministic counterparts,
and not yet consider crossing of boundaries between basins
of attraction of coexisting attractors, as, e.g., analyzed in
maps, derived from forced SIR-type models in other applica-
tions [31], so that higher precision trajectories’ simulations
only would be beneficial, ones the basic concepts and future
applications to respiratory disease dynamics will be settled.

The present study shows that noise does not inhibit the
complexity of the original determistic ODE systems, or in
chemical literature terms, the reaction rate equations, but
rather presevers or eventually might further enhance the
complexity of the systems under study. Since we donot know
yet in which parameter region a future COVID-19 pandemic
will evolve with new variants of concern and reduction of
vaccine efficacies, which leads to waning immunity, and on
top, the exact seasonality of COVID-19 is still under large
debate with rising numbers even in autumn and winter
2021 in already relatively well vaccinated populations, more
detailed analyses of such systems of the type of seasonal SIR

models have to rely on previous experiences in other respira-
tory diseases, which already show large fluctuations [32, 33].
Finally, empirical epidemiological data will decide to which
extension refined numerical schemes will be needed, and
on the other hand, bifurcation analyses and understanding
of qualitative state space behaviours are needed to under-
stand the systems under investigation [31].

6. Conclusions

We have investigated models able to describe respiratory
disease outbreak dynamics, in cases relevant for influenza-
like illnesses, and outlined implications for the future of
the presently observed COVID-19 pandemic. Already very
small seasonal forcing, typical for respiratory diseases, can
generate complex dynamics including period doubling bifur-
cations into chaotic dynamics, which also shows to be robust
under stochastic modelling versions. The Feigenbaum uni-
versality indicates very rapid increase of complexity with
only small changes of seasonality.

In initial studies, we also observed coexistences between
different attractors, as also observable in seasonal SIR
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Figure 7: Stochastic fluctuations around the chaotic attractor. Time series and state space plots of mean field ODE system, Gillespie
algorithmic realization of master equation, and Fokker-Planck bases SDE realizations. In yellow, the deterministic skeleton of the mean
field solution, see, e.g., in (c) its state space behaviour, and larger fluctuations in the stochastic realizations in (d). Note that we simulate
the equations with high time resolution, but then sample with lower resolution, according to the schemes one would record empirical
data, so that we see piecewise linear time evolutions graphically.
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models in completely different parameter regions, describing
childhood diseases [31], but the interplay between such co-
existing attractors in the case of the present parameter
regimes of respiratory diseases is work in progess and will
be reported elsewhere.

On the methodological side, results of renormalization
theories can be applied in actual epidemiological systems,
where previously critical fluctuations in COVID-19 dynam-
ics were described [34], with universal critical exponents,
which are analyzed in their universality by the renormaliza-
tion theory in statistical physics [8, 13], a predecessor of the
here described Feigenbaum renormalization [11]. Still such
fruitfull techniques are not yet widely considered in bio-
mathematics in their application aspects, but merely men-
tioned at times out of curiosity, e.g., the Feigenbaum map
was described as a loose biological model for insect popula-
tions [35], respectively, the Ricker map [36] without consid-
eration of its closeness to, e.g., maxima return maps of
epidemiological systems.
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