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CLASSIFICATION OF FOUR QUBIT STATES AND THEIR STABILISERS UNDER SLOCC

OPERATIONS

HEIKO DIETRICH, WILLEM A. DE GRAAF, ALESSIO MARRANI, AND MARCOS ORIGLIA

Abstract. We classify four qubit states under SLOCC operations, that is, we classify the orbits of the group

SL(2,C)4 on the Hilbert spaceH4 = (C2)⊗4. We approach the classification by realising this representation

as a symmetric space of maximal rank. We first describe general methods for classifying the orbits of such

a space. We then apply these methods to obtain the orbits in our special case, resulting in a complete and

irredundant classification of SL(2,C)4-orbits on H4. It follows that an element of (C2)⊗4 is conjugate to

an element of precisely 87 classes of elements. Each of these classes either consists of one element or of a

parametrised family of elements, and the elements in the same class all have equal stabiliser in SL(2,C)4.
We also present a complete and irredundant classification of elements and stabilisers up to the action of

Sym
4
⋉ SL(2,C)4 where Sym

4
permutes the four tensor factors of (C2)⊗4.

1. Introduction

Entanglement is a fundamental notion in�antum Information�eory (QIT). �e beginning of the XXIst

century has witnessed many efforts and advances in understanding the nature of entanglement (see the
review papers [1,2]). Since entangled states lie at the core of quantum-enhanced applications it is crucially
important to knowwhich of these states are equivalent, in the sense that they are capable of performing the
same QIT tasks almost equally well. �erefore, the classification of the entanglement of pure multipartite
quantum states under the group of reversible Stochastic Local �antum Operations assisted by Classical
Communication (SLOCC) is nowadays one of the most prominent challenges in QIT (see [2]).

Since entanglement is deeply related to the non-local properties of a state, its intrinsic nature cannot
be affected by local quantum operations, implemented by the SLOCC group [3, 4], which provides the
most general local operations that can be implemented without deteriorating the quantum correlations
shared by spatially separated physical systems. As mentioned above, two states belonging to the same
entanglement class would be able to perform the same tasks, because one should be obtainedwith nonzero
probability from the other using local invertible operations. Group theoretically, SLOCC equivalence
classes on n-qubit states are SL(2,C)n-orbits in the spaceHn = C2 ⊗ · · · ⊗C2 (n factors C2).

SLOCC classifications for n = 2 and n = 3 are easily determined, yielding two and six SLOCC orbits
for 2- and 3-qubit states, respectively. In particular, for what concerns the case of an entangled pure state
of two qubits (n = 2), it is well-known that it can be converted to the singlet state by SLOCC opera-
tions [5]. For what concerns three entangled qubits (n = 3), it was proved in a series of works [4,6,7] that
any state can be converted by SLOCC operations either to the GHZ-state 1√

2
(|000〉+ |111〉), or to the

W-state 1√
3
(|001〉 + |010〉 + |001〉), thus yielding to two inequivalent ways of entangling three qubits.

In general, the GHZ (Greenberger-Horne-Zeilinger)-state is considered as the state with the genuine tri-
partite entanglement, whereas the W-state enjoys the peculiar property of having the maximal expected
amount of twopartite entanglement if one party is traced out [4].
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For n qubits with n > 4 uncountably many SLOCC classes arise [4]. �e case of four qubits (n = 4)
has been the subject of a number of studies; without claim to completeness we mention [7–16]. Here we
cannot review all these publications; we just mention the following.

• Verstraete et al. [7] considered the orbits of SL(2,C)4 on H4 and also allowed for permutations of
the qubits, that is, they considered the action of S = Sym4 ⋉ SL(2,C)4. �eir main result is a list of
nine classes such that each S-orbit has a point in exactly one of the classes; it may happen that different
elements of the same class are S-conjugate. In [8] this classification was again derived and corrected.

• Wallach [16] also considered the SL(2,C)4-orbits in H4. His methods are based on results of Kostant
& Rallis [17]. One of the main results is the statement that there are 90 “types” of orbits.

In this paper we present a classification of the orbits of SL(2,C)4 on H4. �e method that we use is
similar to the one employed by Wallach [16]. However, we also use concepts and methods introduced
by Vinberg [18], and employ a similar scheme as used by Vinberg & Elashvili [19]. �e main idea is to
realise the representation of SL(2,C)4 on H4 using a symmetric pair of maximal rank corresponding to
the simple Lie algebra of type D4. �is yields a Jordan decomposition of the elements of H4, and allows
partitioning its elements and SL(2,C)4-orbits into three classes: semisimple, nilpotent and mixed. �e
nilpotent orbits can be classified by general methods such as the ones described in [20,21]. �e semisimple
orbits are classified by exhibiting a Cartan subspace and studying the action of the (finite) Weyl group on
this space. �e mixed orbits are classified by listing the nilpotent orbits in the centraliser of a semisimple
element. More specifically we have the following:

• �ere are 31 nilpotent orbits with representatives given in Table 7. �is has been proved in [10] by the
Kostant-Sekiguchi correspondence; it can also be derived using Vinberg’s method of carrier algebras [20].
In the remainder of this paper we will therefore not discuss the nilpotent case further.

• �ere are 10 parametrised classes of nonzero semisimple elements, as given in Table 2. Every semisimple
element is SL(2,C)4-conjugate to an element in precisely one of these classes. For each class we explicitly
determine a finite group Γ with the property that two elements in the class are SL(2,C)4-conjugate if
and only if they are Γ-conjugate. Elements of different classes are not SL(2,C)4-conjugate. Furthermore,
the elements of a class all have the same stabiliser in SL(2,C)4.

• For each semisimple class we explicitly list representatives of the orbits of mixed typewhose semisimple
part comes from the given class, see �eorem 3.7. �is amounts to listing the possible nilpotent parts up
to the action of the centraliser of the semisimple part.

�is yields the following theorem.

�eorem 1.1. �ere are 87 classes of elements ofH4: 31 classes consist of a single nilpotent element, 10 classes

consist of semisimple elements, and 46 classes consist of mixed elements. Each element of H4 is SL(2,C)
4-

conjugate to an element of precisely one class; elements of a class all have the same stabiliser in SL(2,C)4.

In particular, our results yield the first complete and irredundant classification of the SL(2,C)4-orbits
onH4; this follows from�eorem 3.2 (semisimple),�eorem 3.7 (mixed), Table 7 (nilpotent), togetherwith
Remarks 3.1 and 3.3. We also compare our classifications with those of Verstraete et al. [7] and Chterental
& Djokovič [8], and we present the first complete and irredundant classification of (Sym4 ⋉ SL(2,C)4)-
orbits inH4, together with their stabilisers.

In [22] it is argued that in many contexts it is important to determine the stabiliser (also called group

of local symmetries) of a given element inHn. As a corollary to �eorem 1.1, it follows that the stabiliser
of any element of H4 is conjugate in SL(2,C)4 to one of 87 stabilisers. In [22] the orbits of ψ, φ ∈ H4

are defined to have the same type if the stabilisers of ψ and φ in SL(2,C)4 are conjugate in that group.
Hence we conclude that there are at most 87 types of orbits.

When we consider the action of Sym4⋉SL(2,C)4 then every element inH4 is conjugate to an element
of precisely one of 27 classes. As mentioned above we explicitly determine the stabilisers in SL(2,C)4 for
the elements in our classification of (Sym4⋉SL(2,C)4)-orbits, see Tables 3, 6, and 8. From Table 3, Row 1,
it is seen that the stabiliser of a generic element is a finite group of order 32. For n-qubits with n > 5 the
situation is completely different, as in those cases the stabiliser of a generic element is trivial [22].
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1.1. Structure of this paper. In Section 2 we describe our general approach to classifying the orbits in
symmetric spaces of maximal rank. �ese are certain representations of reductive algebraic groups that
arise from a Z/2Z-grading of a semisimple Lie algebra. In Section 3.1 we show how the representation
of SL(2,C)4 arises in this way. We then apply our methods to derive a classification of the semisimple
orbits, see �eorem 3.2. �e orbits of mixed elements are determined in Section 3.2, see �eorem 3.7. In
Section 4 we compare our classifications with those of Verstraete et al. [7] and Chterental & Djokovič [8],
and we present a complete classification of (Sym4 ⋉ SL(2,C)4)-orbits inH4. In Section 5 we investigate
the ring of invariants for our main example. All explicit calculations have been done in GAP [23] using
the GAP packages SLA and Singular; the la�er provides an interface to the algebra so�ware Singular [24].

2. Orbits in symmetric spaces of maximal rank

We let g be a semisimple Lie algebra over C and suppose that g is furnished with a Z/2Z-grading, that
is, g = g0 ⊕ g1 with [gi, gj ] 6 gi+j mod 2 for all i, j; in particular, g0 is a subalgebra that acts on g1. It is
also said that (g, g0) is a symmetric pair. Associated with this grading is an automorphism θ : g → g of
order 2 such that each gi is the (−1)i-eigenspace of θ.

Let G be the adjoint group of g, that is, the identity component of the automorphism group of g; the
Lie algebra of G is adgg ∼= g. Let G0 be the connected algebraic subgroup of G with Lie algebra adgg0;

note that G0 6 Gθ = {g ∈ G : θg = gθ}.�e group G0 acts naturally on g1 and we are interested in
listing the orbits of G0 in g1; the study of these orbits was initiated by Kostant & Rallis [17]. �e group
G0 with its action on g1 is a special case of a θ-group, a concept introduced by Vinberg [18, 20], who also
studied the orbits of G0 on g1. Part of Vinberg’s theory is covered by a recent book by Wallach [25]; in
the sequel we will mainly refer to this book, although all cited results can also be found in the papers by
Kostant & Rallis and Vinberg.

A Cartan subspace of the pair (g, g0) is a subspace of g1 maximal with respect to the property that
its elements are commuting semisimple elements. By [25, Corollary 3.55] any two Cartan subspaces are
G0-conjugate. In particular, they have the same dimension, which is called the rank of (g, g0). Here we
assume that a Cartan subspace of g1 is also a Cartan subalgebra of g, that is, we assume that the rank of
(g, g0) is equal to the rank of the root system of g. Up to conjugacy, there exists a unique symmetric pair
(g, g0) of maximal rank, which can be constructed as follows: �e split real form gR with complexification
g has a Cartan decomposition gR = kR ⊕ pR, and le�ing g0 and g1 be the complexifications of kR and pR,
respectively, we obtain the symmetric pair of maximal rank. In Table 1 we list the symmetric spaces of
maximal rank corresponding to the simple complex Lie algebras.

Recall that x ∈ g is semisimple (nilpotent) if the adjoint map adx : g → g is a semisimple (nilpotent)
endomorphism. �e study of the G0-orbits in g1 starts with the following well-known lemma on the
Jordan decomposition; we refer to [17, Proposition 3] for a proof.

Lemma 2.1. If x ∈ g1, then x = s+ n for unique semisimple s ∈ g1 and nilpotent n ∈ g1 with [n, s] = 0.

Accordingly, the G0-orbits in g1 split into three classes: the nilpotent orbits (that consist entirely of
nilpotent elements), the semisimple orbits (that consist of semisimple elements) and the mixed orbits
(consisting of elements that are neither semisimple nor nilpotent). Methods for listing the nilpotent orbits
have been developed by Vinberg [20] and de Graaf [27], so we will not comment on that here. Instead,
we will describe how to list the semisimple and mixed orbits. Our methods for that are based on (and

very similar to) methods for an analogous problem developed by Vinberg & Èlašvili [19]. We note that
in [30] and [31] the authors study the orbits in the symmetric spaces of maximal rank of typesE7 andE8,
respectively, using methods that are also based on the approach in [19].

We continue with a subsection that contains some results on Weyl groups. Subsequently, we discuss
semisimple orbits and mixed orbits. �roughout, we use standard notation for Lie algebras and their
related combinatorial data (Cartan subalgebras, root systems, Weyl groups, etc), and we refer to the books
of Erdmann & Wildon [28] or Humphreys [29] for more details and background information.
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type ggg g0g0g0 g1g1g1 degrees

An−1 sl(n,C) so(n,C) S2
0n 2, 3, 4, . . . , n

Bn so(2n+ 1,C) so(n,C)⊕ so(n+ 1,C) n⊗ (n+ 1) 2, 4, 6, . . . , 2n

Cn sp(2n,C) sl(n,C) S2
n⊕ S2n 2, 4, 6, . . . , 2n

Dn so(2n,C) so(n,C)⊕ so(n,C) n⊗ n n, 2, 4, 6, . . . , 2n − 2

E6 E6(C) sp(8,C) ∧4
08 2, 5, 6, 8, 9, 12

E7 E7(C) sl(8,C) ∧4
8 2, 6, 8, 10, 12, 14, 18

E8 E8(C) so(16,C) 128
semispinor

2, 8, 12, 14, 18, 20, 24, 30

F4 F4(C) sp(6,C) ⊕ sl(2,C) (∧3
06)⊗ 2 2, 6, 8, 12

G2 G2(C) sl(2,C)⊕ sl(2,C) S3
2⊗ 2 2, 6

Table 1. Symmetric spaces of maximal rank in simple Lie algebras defined over C. �e
fourth column displays the structure of g1 as g0-module; here we denote an irreducible
module by its dimension, and a notation like∧4

08 indicates the quotient of∧4
8 by the triv-

ial 1-dimensional module. �e last column has the degrees of the homogeneous invariant
polynomials that generate the invariant ring, cf. [26, Table 1, p. 59]

.

2.1. Root subsystems. Let g be a semisimple complex Lie algebra with Cartan subalgebra h and corre-
sponding root systemΦ andWeyl groupW . We write g = h⊕

⊕
α∈Φ gα for the corresponding root space

decomposition. A subset Π ⊆ Φ is a root subsystem if for α, β ∈ Π we have −α ∈ Π and, if α + β ∈ Φ,
then α + β ∈ Π. For α ∈ Φ let sα ∈ W be the corresponding reflection. �e group W acts on h by
sα(h) = h − α(h)hα , where hα is the unique element of [gα, g−α] 6 h with α(hα) = 2 (see [21, Re-
mark 2.9.9]). If w ∈ W , h ∈ h, and α ∈ Φ, then we sometimes abbreviate wh = w(h) and wα = w(α).
We have the following property

(2.1) α(sβ(h)) = sβ(α)(h) for all α, β ∈ Φ and h ∈ h,

which implies that

(2.2) w(α)(h) = α(w−1(h)) for all α ∈ Φ, w ∈W and h ∈ h.

For p ∈ h we define Φp to be the annihilator of p in Φ, that is,

Φp = {α ∈ Φ : α(p) = 0}.

It is clear that Φp is a root subsystem of Φ, but not all root subsystems arise in this way. �e next lemma
gives a criterion to decide whether a root subsystem is of the form Φp for some p ∈ h; recall that a root
subsystem Ψ ⊆ Φ is complete if it is not properly contained in a root subsystem of Φ of the same rank.

Lemma 2.2. Let Ψ ⊆ Φ be a root subsystem. �ere exists p ∈ h with Ψ = Φp if and only if Ψ is complete.

Proof. We first show that a root subsystem Π ⊆ Φ is complete if and only if VΠ ∩ Φ = Π, where VΠ is
the Q-space spanned by Π: If Π is complete, then VΠ ∩ Φ = Π since VΠ ∩ Φ is a root subsystem of Φ
containing Π of the same rank as Π. For the converse suppose that VΠ ∩ Φ = Π. If Π′ ⊆ Φ is a root
subsystem containingΠ and of the same rank asΠ, then VΠ′ contains VΠ and both spaces are of the same
dimension, hence they are equal. �us, Π′ is contained in VΠ′ ∩ Φ = VΠ ∩ Φ = Π, so Π′ = Π.

Suppose thatΨ = Φp. If β ∈ VΨ ∩Φ then β is a linear combination of elements of Φp, hence β(p) = 0
and β ∈ Φp = Ψ. It follows that Ψ is complete. For the converse, suppose that Ψ is complete. If Ψ and
Φ have equal rank, then Ψ = Φ and Ψ = Φ0. Now suppose that the rank s of Ψ is less then the rank of
Φ. Define u = {p ∈ h : α(p) = 0 for all α ∈ Ψ} and u◦ = {p ∈ u : β(p) 6= 0 for all β ∈ Φ \ Ψ}; note
that dim u = dim h − s > 0. If β ∈ Φ \ Ψ, then β is not contained in VΨ by our claim above. �us, the
space spanned by β andΨ has dimension s+ 1 and so {u ∈ u : β(u) = 0} has dimension dim h− s− 1.
�is shows that β is nonzero on u, hence the kernel of every β ∈ Φ \ Ψ on u has codimension 1. Since
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any finite union of codimension 1 subspaces of u does not cover u it follows that there is some p ∈ uwith
β(p) 6= 0 for all β ∈ Φ \Ψ, thus u◦ 6= ∅. Furthermore, for any p ∈ u◦ we have Ψ = Φp. �

For a root subsystem Ψ ⊆ Φ we define

h◦Ψ = {p ∈ h : Φp = Ψ};

note that this is the set of all p ∈ h such that α(p) = 0 for every α ∈ Ψ and β(p) 6= 0 for every β ∈ Φ\Ψ.

Lemma 2.3. Let Ψ,Π ⊆ Φ be root subsystems and u ∈W . �en Π = uΨ if and only if h◦Π = uh◦Ψ.

Proof. First assume thatΠ = uΨ, and note that u(Φ \Ψ) = Φ \Π. Let h ∈ h◦Ψ. If β ∈ Π, then β = uα for
some α ∈ Ψ, and (2.2) shows that β(uh) = (uα)(uh) = α(h) = 0. If β ∈ Φ \ Π, then β = uα for some
α ∈ Φ \Ψ, and (2.2) yields β(uh) = α(h) 6= 0. �is shows that uh ∈ h◦Π. Conversely, let h ∈ h◦Π. Since
Ψ = u−1Π, the previous argument shows that u−1h ∈ h◦Ψ, so h ∈ uh◦Ψ. �us, h◦Π = uh◦Ψ, as claimed.

Now suppose that h◦Π = uh◦Ψ. �e first part of the proof shows that uh◦Ψ = h◦uΨ, so our assumption is
that h◦Π = h◦uΨ. �e definition of h◦Π immediately implies that uΨ = Π, as claimed. �

By definition, each p ∈ h lies in h◦Φp
. �us, if Φ1, . . . ,Φr are, up toW -conjugacy, all the complete root

subsystems of Φ (including ∅ and Φ itself), then everyW -orbit in h has a point in a unique set h◦Φi
.

For a fixed complete root subsystem Ψ ⊆ Φ we now characterise theW -conjugacy of elements in h◦Ψ.
�e proof of the next lemma follows well-known ideas (see, for example, [26, §1.12]), however, we could
not find an exact reference in the literature.

Lemma 2.4. Let ∆ = {α1, . . . , αℓ} be a basis of simple roots of Φ.

a) Every p ∈ h isW -conjugate to an element in C = {h ∈ h : αi(h) > 0 for all i ∈ {1, . . . , ℓ}} where we

write z > 0 for a complex number z = x+ ıy with x, y ∈ R if either x > 0, or x = 0 and y > 0.

b) If p ∈ h, then the stabiliserWp = {w ∈W : w(p) = p} is generated by {sα : α ∈ Φp}.

Proof. �roughout the proof we abbreviate hi = hαi
.

a) �is is standard: We construct a sequence k1 = p, k2, k3 . . . of W -conjugate elements until we find
some km ∈ C . If kn is defined, but kn /∈ C , then αi(kn) < 0 for some i, and we set kn+1 = si(kn) =
kn + cihi with ci = −αi(kn) > 0. �us, by construction, all elements in the sequence k1, k2, . . . are
distinct; since theW -orbit of p is finite, we will eventually construct an element km ∈ C .

b) We first show that if p ∈ C , thenWp is generated by the sαi
such thatαi(p) = 0. By definition ofC , we

have α(p) > 0 for every positive root and α(p) 6 0 for every negative one. Now let w = si1 · · · sit ∈Wp

be a reduced expression; the claim follows if each sik ∈ Wp. Write pt+1 = p and pj = sij · · · sit(p) for
j ∈ {1, . . . , t}. It follows from (2.1) that

(∗) αij−1
(pj) = sit · · · sij(αij−1

)(p) for all j ∈ {2, . . . , t+ 1}.

By [29, Corollary 10.2], each sit . . . sij−1
(αij−1

) is a negative root, so sit . . . sij−1
(αij−1

)(p) 6 0 for p ∈ C ;
since sij−1

(αij−1
) = −αij−1

, we deduce from (∗) that cj−1 = αij−1
(pj) satisfies cj−1 > 0. �is shows

that pj−1 = sij−1
(pj) = pj−cj−1hij−1

with cj−1 > 0. Since this holds for every j, the equalityw(p) = p
implies that all cj−1 = 0, showing that each pj = p, hence αij−1

(p) = 0, and so each sij−1
∈Wp.

Now let p ∈ h and choose w ∈ W with w(p) ∈ C . �e above shows that Wp = w−1Ww(p)w is

generated by {sw−1(α) : α ∈ Φw(p)}; here we use w
−1sαw = sw−1(α), see [29, Lemma 9.2]. On the other

hand, Φw(p) = w(Φp) by (2.2), soWp is generated by {sw−1(α) : α ∈ w(Φp)} = {sα : α ∈ Φp}. �

For a root subsystem Ψ ⊆ Φ we define

WΨ = 〈sα : α ∈ Ψ〉 and ΓΨ = NW (WΨ)/WΨ.

Let Ψ ⊆ Φ be a complete subsystem. �e previous lemma shows that the stabiliserWp of p ∈ h◦Ψ in
W is generated by all sα with α ∈ Φp. By definition, Φp = Ψ, and soWp = WΨ. In particular, for every
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w ∈ NW (WΨ) we have wWpw
−1 = Wp, and if q = wp, thenWq = Wp, orWΦq = WΦp , which implies

that Φq = Φp = Ψ, and so q ∈ h◦Ψ. We conclude that ΓΨ acts naturally on h◦Ψ and we have the following:

Proposition 2.5. Let Ψ ⊆ Φ be a complete subsystem. Two elements p, q ∈ h◦Ψ are W -conjugate if and

only if they are ΓΨ-conjugate.

Proof. If q = wp with w ∈W , thenWq = wWpw
−1; sinceWq =Wp =WΨ, we have w ∈ NW (WΨ), so

p and q are ΓΨ-conjugate. �e converse is obvious. �

2.2. Semisimple orbits. We revert back to the set up from the start of the section, that is we consider a
symmetric pair (g, g0) of maximal rank. We are interested in listing the semisimpleG0-orbits in g1. Recall
that a Cartan subspace of g is a maximal subspace of g1 consisting of commuting semisimple elements,
and any twoCartan subspaces areG0-conjugate, see [25, Corollary 3.55]. �us, every semisimpleG0-orbit
in g1 intersects any given Cartan subspace nontrivially. For a Cartan subspace h 6 g1 let

Wh = NG0
(h)/ZG0

(h)

be the li�le Weyl group, also called the Weyl group of the graded Lie algebra g. �is group was studied in
detail by Vinberg [18], who proved (among other things) that two elements of h are G0-conjugate if and
only if they areWh-conjugate, see [18, �eorem 2] or [25, Proposition 3.61].

Fromnow onwe fix aCartan subspace h in g1. By the remarks above, the classification of the semisimple
G0-orbits in g1 is reduced to the classification of theWh-orbits in h. Let Φ be the root system of g with
respect to h. LetW be the Weyl group of Φ. By definition,Wh is naturally a subgroup of NG(h)/ZG(h);
the next result shows that we actually have equality. �is will allow us to identifyW andWh.

Lemma 2.6. We haveWh = NG(h)/ZG(h) ∼=W .

Proof. It is well-known thatW ∼= NG(h)/ZG(h), see [21, Lemma 5.2.22]. To proveWh = NG(h)/ZG(h)
we fix α ∈ Φ and show thatWh contains an element that acts as sα on h. Let x ∈ gα and h ∈ h; applying
θ (the automorphism of g defining the grading) to the equality [h, x] = α(h)x, we see that θ(x) ∈ g−α.
Let u(α) be the subalgebra of g generated by gα and g−α, so u(α) ∼= sl(2,C) is stable under θ. Let U(α)
denote the connected subgroup of G with Lie algebra adgu, that is, U(α) is generated by exp(adgtxα)
and exp(adgtx−α) with x±α ∈ g±α and t ∈ C. �e automorphism group of sl(2,C) is the adjoint
group PSL(2,C). By general theory of semisimple algebraic groups, see [21, p. 182], there is a surjective
morphism of algebraic groups U(α) → PSL(2,C). Let gα ∈ U(α) denote an inverse image under this
morphism of the restriction θ|u(α) ∈ PSL(2,C). If g ∈ U(α), then gαgg

−1
α = θgθ−1: this is easy to

check for generators exp(adgtx±α), the general case follows from that. If we take g = gα, then we get

θgαθ
−1 = gα, which proves that gα ∈ G0. Note that h = 〈hα〉 ⊕ ĥα where ĥα = {x ∈ h : α(x) = 0}, so

all elements of U(α) act as the identity on ĥα. Furthermore, hα ∈ u(α), so gα(hα) = θ(hα) = −hα. It
follows that gα acts as sα on h. �

Now our procedure for obtaining a classification of the semisimpleG0-orbits in g1 is as follows. Dynkin
devised an algorithm to find the root subsystems ofΦ up toW -conjugacy (see [32], and also [21, pp. 221]).
We use this algorithm to compute all subsystems up toW -conjugacy and discard those that are not com-
plete. We also add the empty set to the list. LetΠ1, . . . ,Πr denote the obtained subsystems. �en for each
Πi we compute the subspace

hΠi
= {p ∈ h : α(p) = 0 for all α ∈ Πi}.

We call the r sets h◦Πi
the canonical semisimple sets. Note that p ∈ hΠi

lies in h◦Πi
if and only if β(p) 6= 0

for all β ∈ Φ \ Πi; this leads to a finite number of linear conditions for β. Multiplying them, we obtain a
polynomial function Fi on hΠi

such that p ∈ hΠi
lies in h◦Πi

if and only if Fi(p) 6= 0. We determine the

groups ΓΠi
by computing the normalisersNW (WΠi

). (In our main example discussed belowwe construct
the quotient ΓΠi

as a complement toWΠi
inNW (WΠi

).) A set Σ of semisimpleG0-orbit representatives
in g1 can now be obtained by taking the union of the sets of ΓΠi

-representatives in h◦Πi
for all i.
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2.3. Mixed orbits. We now consider elements of mixed type, that is, x ∈ g1 that is neither nilpotent nor
semisimple. �e investigation of such elements is based on their Jordan decomposition (see Lemma 2.1).

Let Σ be the set of semisimple orbit representatives from the previous section; we also use the sets h◦Πi

defined above. If x = s+n is a mixed element in g1, then there exists a unique s′ ∈ Σ such that g(s) = s′

for some g ∈ G0, hence g(x) = s′ + g(n) with g(n) nilpotent and [s′, g(n)] = 0. Together with the
uniqueness of the Jordan decomposition, this shows the following.

Lemma 2.7. Every element of mixed type in g1 is G0-conjugate to an element in

M = {s+ n : s ∈ Σ and nonzero nilpotent n ∈ zg1(s)},

and s+ n, s′ + n′ ∈ M are G0-conjugate if and only if s = s′ and n′ = g(n) for some g ∈ ZG0
(s).

Because of this lemma we are interested in determining the centraliser ZG0
(s) of semisimple s. �is

requires the following preliminary lemma, which seems to be well-known; we include a proof because
we could not find a precise reference in the literature.

Lemma 2.8. Let K 6 GL(n,C) be a connected reductive algebraic group with semisimple Lie algebra
k 6 gl(n,C). If x ∈ k is semisimple, then ZK(x) = {g ∈ K : gxg−1 = x} is connected.

Proof. Let U be the smallest algebraic subgroup of K whose Lie algebra u contains x; such a subgroup
always exists and it is unique and connected, see [21, �eorem 4.1.5]. It follows from [21, Lemma 4.7.3]
thatZK(U) = {g ∈ K : gh = hg for all u ∈ U} equalsZK(u) = {g ∈ K : gu = ug for all u ∈ u}. LetA
be the associative matrix algebra with identity generated by x. It follows from [21, Example 3.6.9] that the
unit groupA∗ ofA is an algebraic subgroup ofGL(n,C)with Lie algebraAwhere the Lie bracket is given
by the commutator. By [21, �eorem 4.1.5] we have U 6 A∗. Since elements inA are linear combinations
of powers of x, it follows that every w ∈ ZK(x) also centralises A∗, in particular, w ∈ ZK(U), thus
ZK(x) 6 ZK(U) = ZG(u). Since x ∈ u, we have ZK(u) 6 ZK(x), hence ZK(x) = ZK(U). Since
U 6 A∗ consists of commuting semisimple elements, U 6 K is a subtorus; now it follows from [33,
Corollary 8.13a)] that ZK(U) is connected. �

�e next lemma shows that the determination of the centralisers for the infinitely many p ∈ Σ can
be reduced to a finite calculation: it suffices to consider one explicit element in each h◦Πi

. For x ∈ g1 we

denote its centraliser in g by zg(x).

Lemma 2.9. If x, y ∈ h◦Πi
, then zg(x) = zg(y) and ZG0

(x) = ZG0
(y).

Proof. Note that zg(x) = zg(y) as both equal h⊕
⊕

α∈Πi
gα. Intersecting with g0 yields zg0(x) = zg0(y).

As in the proof of Lemma 2.8, let Ux, Uy 6 G be the minimal subtori whose Lie algebras ux and uy
contain x and y, respectively; the proof also showed that ZG(x) = ZG(Ux) = ZG(ux) and ZG(y) =
ZG(Uy) = ZG(uy) are both connected. Moreover, both groups have the same Lie algebra zg(x) = zg(y):
consider the adjoint representationAd: G→ GL(g)with differential ad: g → gl(g). It follows from [21,
Corollary 4.2.8] that ZG(x) = {g ∈ G : Ad(g)(x) = x} has Lie algebra {y ∈ g : ady(x) = 0} = zg(x).
Now [21, �eorem 4.2.2] shows that ZG(x) = ZG(y), and so ZG0

(x) = ZG0
(y). �

Remark 2.10. Now let q1, q2 ∈ h◦Πi
, so zg(q1) = zg(q2) and ZG0

(q1) = ZG0
(q2). Write a = zg(q1) and

A0 = ZG0
(q1). We note that a = a0 ⊕ a1 is graded with each ai = gi ∩ a, the Lie algebra of A0 is a0, and

A0 acts on a1. Let n1, . . . , ns be representatives of the nilpotent A0-orbits in a1. �en the G0-orbits of
mixed elements with semisimple parts q1 and q2 have representatives q1 + ni and q2 + ni, respectively,
for i ∈ {1, . . . , s}. In particular, the nilpotent parts of mixed elements with semisimple part in h◦Πi

do not
depend on the choice of the particular semisimple element. In order to determine the nilpotent elements
ni, we first determine the nilpotent orbits of the identity componentA◦

0 acting on a1. �is can be done by
an algorithm that only works with the Lie algebra a, see [21, Section 8.4]. �e fusion of these A◦

0-orbits
in A0 can be decided by computing a set of representatives in A0 of the the component group A0/A

◦
0.
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3. The orbits of SL(2,C)4 on H4

In this section we classify the orbits of the group

Ĝ = SL(2,C)4

acting on the space H4 = C2 ⊗ C2 ⊗ C2 ⊗ C2. First, we show how this action comes from a symmetric
pair as studied in the previous section.

Let g be the simple Lie algebra of type D4 defined over the complex numbers. Let Ψ denote its root
system with respect to a fixed Cartan subalgebra t. Let γ1, . . . , γ4 be a fixed choice of simple roots such
that the Dynkin diagram of Ψ is labelled as follows

1 2 3

4

We now construct a Z/2Z-grading of g: let g0 be spanned by t along with the root spaces gγ , where
γ =

∑
i kiγi has k2 even, and let g1 be spanned by those gγ where γ =

∑
i kiγi has k2 odd. Let γ0 =

γ1 + 2γ2 + γ3 + γ4 be the highest root of Ψ. �e root system of g0 is {±γ0,±γ1,±γ3,±γ4}, hence

g0 ∼= sl(2,C)4 = sl(2,C) ⊕ sl(2,C) ⊕ sl(2,C) ⊕ sl(2,C).

Taking −γ0, γ1, γ3, γ4 as basis of simple roots of g0 we have that −γ2 is the highest weight of the g0-
module g1, which therefore is isomorphic toH4 = C2 ⊗C2 ⊗C2 ⊗C2. We fix a basis {e0, e1} of C

2 and
denote the basis elements ofH4 by

|i1i2i3i4〉 = ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4 .

Mapping any nonzero root vector in g−γ2 to |0000〉 extends uniquely to an isomorphism g1 → H4 of

sl(2,C)4-modules. We denote by G the adjoint group of g, and we write G0 for the connected algebraic
subgroup of G with Lie algebra adgg0 ∼= sl(2,C)4. �e isomorphism sl(2,C)4 → g0 li�s to a surjective

morphism π : Ĝ→ G0 of algebraic groups, which makes g1 into a Ĝ-module isomorphic toH4.

It is well-known (cf. [7]), and we have verified by computer, that

u1 = |0000〉+ |1111〉, u2 = |0110〉+ |1001〉, u3 = |0101〉+ |1010〉, u4 = |0011〉+ |1100〉

span a Cartan subspace h of g1. �is shows that the symmetric pair (g0, g1) is of maximal rank.

Let Φ be the root system corresponding to the Cartan subalgebra h of g. (Note that h is necessarily
different from t as h ⊂ g1 and t ⊂ g0.) By W we denote its Weyl group. Representing a root α by the
4-tuple (α(u1), . . . , α(u4)), a choice of simple roots is∆ = {α1, . . . , α4}, where

α1 = (0,−2, 0, 0), α2 = (1, 1, 1, 1), α3 = (0, 0,−2, 0), α4 = (0, 0, 0,−2);

here we use the same enumeration as in the above Dynkin diagram.

Remark 3.1. Consider the group Sym4 of all permutations of {1, 2, 3, 4}. For σ ∈ Sym4 we define the
linear map πσ : g1 → g1 that maps each |i1i2i3i4〉 to |i1σ i2σ i3σ i4σ〉. Since g1 generates g as a Lie algebra,
there is at most one way in which πσ extends to an automorphism of g. We have checked by computer
that indeed for all σ ∈ Sym4 this yields an automorphism of g. �e group generated by all these πσ fixes
u1 and permutes {u2, u3, u4} as Sym3. Specifically, π(2,3) swaps u3 and u4, and π(2,4) swaps u2 and u4.

Since Ĝ has no elements acting as a πσ , the spaceH4 is acted upon by the split product

S = Sym4 ⋉ SL(2, 4)4.

Classifications: We use the techniques described above to classify the Ĝ-orbits onH4, which are exactly
the G0-orbits in g1. Our classification of semisimple elements is given in �eorem 3.2 and Table 2; our
classification of mixed elements is given in �eorem 3.7. We then consider the group S : A classification
of semisimple, nilpotent, and mixed elements up to S-conjugacy is described in �eorem 4.2.
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3.1. �e orbits of semisimple elements. We use Dynkin’s algorithm to compute all root subsystems
ofΦ. �is yields 11 subsystems, up toW -conjugacy. One of these subsystems is of type 4A1 and therefore
not complete. �e others are complete and listed in the third column of Table 2. By adding the empty set
we obtain 11 subsystems Π1, . . . ,Π11. Table 2 also contains the data that we computed starting from the
complete root subsystems. �e fourth column has the description of hΠi

and the fi�h column gives the
polynomial conditions that an element of hΠi

has to satisfy to belong to h◦Πi
; see Remark 3.4 below for

more details. �e sixth column describes the groups ΓΠi
, see also the statement of �eorem 3.2 for more

details. Here we write I4 = diag(1, 1, 1, 1) for the 4× 4 identity matrix. Finally, the last column displays
the semisimple part of the reductive centraliser zg(pi), where pi is some element in h◦Πi

, cf. Lemma 2.9.

�eorem 3.2. Up toG0-conjugacy, the semisimple elements of g1 are the ΓΠi
-classes of elements in h◦Πi

for

i = 1, . . . , 11, as given in Table 2; each ΓΠi
is realised as a complement subgroup to WΠi

in NW (WΠi
):

the group ΓΠ2

∼= (Z/2Z)3 is generated by all 4× 4 diagonal matrices that have two 1s and two −1s on the

diagonal; the groups ΓΠ4
,ΓΠ5

,ΓΠ6

∼= Dih4 are isomorphic to the dihedral group of order 8 and defined as

ΓΠ4
= 〈







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1






,







0 0 0 −1

0 0 1 0

0 1 0 0

1 0 0 0






〉, ΓΠ5

= 〈







1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1






,







0 0 −1 0

0 0 0 −1

1 0 0 0

0 −1 0 0






〉, ΓΠ6

= 〈







−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1






,







0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0






〉.

In the following we denote by Σ a set of G0-orbit representatives of semisimple elements in g1.

iii type of Πi roots of Πi elements of hΠi
hΠihΠi

condition for being in h◦Πi
h◦Πi
h◦Πi

ΓΠi
ΓΠiΓΠi

zg(pi)
′zg(pi)
′zg(pi)
′

1 ∅ λ1u1 + · · ·+ λ4u4 λi 6= 0 and λ1 /∈ {±λ2 ± λ3 ± λ4} W 0
2 A1 α4 λ1u1 + λ2u2 + λ3u3 λi 6= 0 and λ1 /∈ {±λ2 ± λ3} (Z/2Z)3 sl(2,C)
3 A2 α2, α4 λ1(u1 − u2) + λ2(u1 − u3) λu 6= 0 and λ1 6= −λ2 〈−I4〉 sl(3,C)
4 2A1 α1, α3 λ1u1 + λ2u4 λi 6= 0 and λ1 /∈ {±λ2} Dih4 sl(2,C)2

5 2A1 α1, α4 λ1u1 + λ2u3 λi 6= 0 and λ1 /∈ {±λ2} Dih4 sl(2,C)2

6 2A1 α3, α4 λ1u1 + λ2u2 λi 6= 0 and λ1 /∈ {±λ2} Dih4 sl(2,C)2

7 A3 α1, α2, α3 λ1(u1 − u4) λ1 6= 0 〈−I4〉 sl(4,C)
8 A3 α1, α2, α4 λ1(u1 − u3) λ1 6= 0 〈−I4〉 sl(4,C)
9 A3 α2, α3, α4 λ1(u1 − u2) λ1 6= 0 〈−I4〉 sl(4,C)
10 3A1 α1, α3, α4 λ1u1 λ1 6= 0 〈−I4〉 sl(2,C)3

11 D4 α1, . . . , α4 0 0 1 so(4,C)

Table 2. Complete root subsystemsΠi ofΦ, corresponding sets hΠi
and h◦Πi

with param-
eters λ1, . . . , λ4 ∈ C, and groups ΓΠi

; the last column displays the derived algebra of the
centraliser zg(pi) for pi ∈ h◦Πi

.

Remark 3.3. To determine Σ explicitly, one still has to consider the ΓΠi
-classes of elements in h◦Πi

for
every i = 1, . . . , 10; note that the case i = 11 only contributes the zero element. In view of Remark 3.1, the
cases i = 4, 5, 6 are all symmetric and classifications for one of these i can be translated to classifications
for the other two cases by applying one of the automorphisms π(2,3) or π(2,4) of g; similarly, the cases

i = 7, 8, 9 are symmetric. If i ∈ {3, 7, 8, 9, 10}, then the elements listed under hΠi
in column four of

Table 2 need to be reduced modulo multiplication by −1. If i = 2, then we can change two signs of
u1, u2, u3, u4 at once; since u4 is not involved in elements of hΠ2

, for fixed λ1, λ2, λ3, all the elements
e1λ1u1 + e2λ2u2 + e3λ3u3 ∈ h◦Π2

with e1, e2, e3 ∈ {±1} are ΓΠ2
-conjugate. If i = 4, then we can swap

u1 and u4, or change their signs; cases i ∈ {5, 6} are analogous. For i = 1 we act with W ; a direct
calculation shows that every element inW acts as PQi for some i ∈ {0, 1, 2} where

Q = 1
2







1 −1 −1 1

1 −1 1 −1

−1 −1 1 1

1 1 1 1







and P is any signed permutation matrix induced by an element in 〈(1, 2)(3, 4), (1, 3)(2, 4)〉.

Remark 3.4. We comment on the construction of h◦Πi
as listed in Table 2. Recall that p ∈ hΠi

lies in h◦Πi

if and only if β(p) 6= 0 for all β ∈ Φ \ Πi. Representing a positive root by the 4-tuple of its values on



10 Dietrich-de Graaf-Marrani-Origlia

u1, . . . , u4, we have α1 = (0,−2, 0, 0), α2 = (1, 1, 1, 1), α3 = (0, 0,−2, 0), α4 = (0, 0, 0,−2), and

α1 + α2 = (1,−1, 1, 1), α2 + α3 = (1, 1,−1, 1)

α2 + α4 = (1, 1, 1,−1), α1 + α2 + α3 = (1,−1,−1, 1),

α1 + α2 + α4 = (1,−1, 1,−1), α2 + α3 + α4 = (1, 1,−1,−1),

α1 + α2 + α3 + α4 = (1,−1,−1,−1), α1 + 2α2 + α3 + α4 = (2, 0, 0, 0).

Consider the third line of Table 2, so p = λ1(u1 − u2) + λ2(u1 − u3); the coordinate vector with respect
to the chosen basis of h is (λ1+λ2,−λ1,−λ2, 0). �e positive roots inΠ3 are α2, α4, α2+α4. For p to be
in h◦Π3

, the inner product of (λ1 + λ2,−λ1,−λ2, 0) with all positive roots other than {α2, α4, α2 + α4}
has to be nonzero; it is straightforward to see that this reduces to the condition λ1λ2(λ1 + λ2) 6= 0. In a
similar way, one can determine the conditions for the other sets h◦Πi

.

3.2. �eorbits ofmixed elements. As before, Ĝ = SL(2,C)4; recall that there is a surjectivemorphism

π : Ĝ→ G0 of algebraic groups and Ĝ acts as G0 on g1. We start with an observation.

Lemma 3.5. If x, y ∈ h◦Πi
for some i, then Z

Ĝ
(x) = Z

Ĝ
(y).

Proof. By Lemma 2.9 we have ZG0
(x) = ZG0

(y). Note that Z
Ĝ
(x) is the preimage of ZG0

(x) in Ĝ under
π, and similarly for Z

Ĝ
(y); therefore Z

Ĝ
(x) = Z

Ĝ
(y). �

Proposition 3.6. If s ∈ Σ lies in h◦Πi
as in Table 2, then Z

Ĝ
(s) is given in Row i of Table 3.

Proof. �e group Ĝ acts naturally on g1 ∼= C2 ⊗ C2 ⊗ C2 ⊗ C2, and we can write down the equa-
tions for g(s) = s where g = (A,B,C,D) ∈ SL(2,C)4 is a general element with 16 indeterminates
aij , bi,j, cij , dij defining the matrices A,B,C,D. We use Gröbner basis techniques to obtain a useful de-

scription of Z
Ĝ
(s). Table 3 summarises our results, where for A =

(

a b

c d

)

and u, v ∈ C with u 6= 0 we

write

�(3.1)
A# =

(

d c

b a

)

, D(u, v) =
(

u 0

v u
−1

)

, D(u) =
(

u 0

0 u
−1

)

, L(v) = D(1, v), L =D(ı)

M(a, b) =
(

a b

b a

)

, I =
(

1 0

0 1

)

, J =
(

0 1

−1 0

)

, K =
(

0 ı

ı 0

)

.

In Table 3 we o�en have (J, J, J, J)2 = −(I, I, I, I) ∈ Z
Ĝ
(s)◦, in which case Z

Ĝ
(s)◦ does not split in

Z
Ĝ
(s), that is, the generators listed in the right column of Table 3 generate a group that is larger than the

component group Z
Ĝ
(s)/Z

Ĝ
(s)◦.

By Lemma 2.7, up toG0-conjugacy, every mixed element has the form p+ewhere p ∈ Σ is semisimple
(as in Table 2) and e ∈ zg(p)

′ ∩ g1 is nilpotent; recall that zg(p) is reductive and its center consists of
semisimple elements, so e lies in the semisimple part zg(p)

′. Moreover, p+ e and p+ e′ areG0-conjugate
if and only if e and e′ are ZG0

(p)-conjugate. Writing a = zg(p)
′ and ai = a ∩ gi for i = 0, 1, we need to

classify the nilpotent ZG0
(p)-orbits in a1.

Lemma 2.9 shows that any element in the same row of Table 2 has the same centraliser. Moreover,
the proof of Lemma 2.9 shows that ZG(p) is connected with Lie algebra zg(p). It follows from p ∈ g1
that zg(p) = zg0(p)⊕ zg1(p); thus, zg(p) is a reductive graded Lie algebra with adjoint group ZG(p), and
ZG0

(p)◦ 6 ZG(p) is the connected algebraic subgroup with Lie algebra zg0(p). We can now use standard
methods, such as described in [21, Chapter 8.3.2], to classify the (finitely many) nilpotent ZG0

(p)◦-orbits
in a1; we have done this in GAP [23] using the GAP package SLA. It remains to reduce the obtained list
up to conjugacy under the component group of ZG0

(p).

According to Table 2, we have 11 cases, namely p ∈ Σ ∩ h◦Πi
with i ∈ {1, . . . , 11}. For i = 1 we have

a = 0, so there are no nonzero nilpotent elements, and p = 0 for i = 11; in both cases there are no mixed
elements. �us, it remains to consider i ∈ {2, . . . , 10}; we report on the outcome of our computations:
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iii identity component Z
Ĝ
(s)◦Z

Ĝ
(s)◦Z

Ĝ
(s)◦ preimages of generators ofZ

Ĝ
(s)/Z

Ĝ
(s)◦Z

Ĝ
(s)/Z

Ĝ
(s)◦Z

Ĝ
(s)/Z

Ĝ
(s)◦

1 1 (J, J, J, J), (−I,−I, I, I), (−I, I,−I, I), (K,K,K,K)

2
{
(D(a)−1,D(a)−1,D(a),D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I), (J, J, J, J)

3
{
(A#, A#, A,A) : A ∈ SL(2,C)

}
(−I,−I, I, I), (−I, I,−I, I)

4
{
(D(a)−1,D(a),D(b)−1,D(b)) : a, b ∈ C×} (−I, I,−I, I), (J, J, J, J)

5
{
(D(a)−1,D(b)−1,D(a),D(b)) : a, b ∈ C×} (−I,−I, I, I), (J, J, J, J)

6
{
(D(a)−1,D(b),D(b)−1,D(a)) : a, b ∈ C×} (−I, I,−I, I), (J, J, J, J)

7
{
(A#, A,B#, B) : A,B ∈ SL(2,C)

}
(−I, I,−I, I)

8
{
(A#, B#, A,B) : A,B ∈ SL(2,C)

}
(−I,−I, I, I)

9
{
(A#, B,B#, A) : A,B ∈ SL(2,C)

}
(−I, I,−I, I)

10
{
(D(abc)−1,D(a),D(b),D(c)) : a, b, c ∈ C×} (J, J, J, J)

Table 3. �e groups Z
Ĝ
(s): the entry i is the label of the canonical semisimple set h◦Πi

that contains s, as in Table 2; the notation A#,D(a), I , J , andK is as explained in (3.1).

Case i = 2. Here a = sl(2,C) and there are two nilpotent Z
Ĝ
(p)◦-orbits in a1; these are interchanged

by the component group. In conclusion, one nilpotent orbit remains with representative

n2,1 = |0011〉.

Case i = 3. Here a = sl(3,C) and its grading is induced by an outer automorphism of a. �ere are
two nilpotent Z

Ĝ
(p)◦-orbits in a1 and the component group acts trivially. In conclusion, there are two

nilpotent orbits with representatives

n3,1 = |0011〉 and n3,2 = |0111〉+ |1011〉+ |0010〉+ |0001〉.

Case i = 4, 5, 6. First let i = 4. Here a = sl(2,C)2 and there are eight nilpotent Z
Ĝ
(p)◦-orbits in a1. Up

to the action of the component group, four of them remain, with representatives

n4,1 = |0110〉+ |1010〉, n4,2 = |0110〉+ |0101〉, n4,3 = |0110〉, n4,4 = |0101〉.

For i = 5, 6, Remark 3.1 yields n5,1 = |0110〉+ |1100〉, n5,2 = |0110〉+ |0011〉, n5,3 = |0110〉, n5,4 = |0011〉

and n6,1 = |0011〉+ |1010〉, n6,2 = |0011〉+ |0101〉, n6,3 = |0011〉, n6,4 = |0101〉, respectively.

Case i = 7, 8, 9. First let i = 7. Here a = sl(4,C) and its grading is induced by an outer automorphism
of a; we have that a0 = sl(2,C)2 and there are six nilpotent Z

Ĝ
(p)◦-orbits in a1. �e component group

acts trivially, and representatives of nilpotent orbits are

n7,1 = |1101〉+ |1011〉+ |1000〉+ |0001〉, n7,2 = |1101〉+ |1010〉+ |0001〉,

n7,3 = |1011〉+ |1000〉+ |0101〉, n7,4 = |1011〉+ |1000〉,

n7,5 = |1101〉+ |0001〉, n7,6 = |1001〉.

Remark 3.1 yields n8,1 = |1011〉 + |1101〉 + |1000〉 + |0001〉, n8,2 = |1011〉 + |1100〉 + |0001〉, n8,3 =
|1101〉+ |1000〉+ |0011〉, n8,4 = |1101〉+ |1000〉, n8,5 = |1011〉+ |0001〉, n8,6 = |1001〉 for the case i = 8,
and n9,1 = |1101〉+ |1110〉+ |1000〉+ |0100〉, n9,2 = |1101〉+ |1010〉+ |0100〉, n9,3 = |1110〉+ |1000〉+ |0101〉,
n9,4 = |1110〉+ |1000〉, n9,5 = |1101〉+ |0100〉, n9,6 = |1100〉 for i = 9.
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Case i = 10. Here a = sl(2,C)3 and there are 26 nilpotent Z
Ĝ
(p)◦-orbits in a1. Up to the action of the

component group, 13 of them remain, with representatives

n10,1 = |1100〉+ |1010〉+ |0110〉, n10,2 = |1010〉+ |0110〉, n10,3 = |1010〉+ |0110〉+ |0011〉,

n10,4 = |1100〉+ |0110〉, n10,5 = |0110〉, n10,6 = |0110〉+ |0011〉,

n10,7 = |1100〉+ |0110〉+ |0101〉, n10,8 = |0110〉+ |0101〉, n10,9 = |0110〉+ |0101〉+ |0011〉,

n10,10 = |1100〉+ |1010〉, n10,11 = |1010〉, n10,12 = |1010〉+ |0011〉,

n10,13 = |0011〉.

In conclusion, we have shown:

�eorem 3.7. For i ∈ {2, . . . , 10} let Σi be a set of G0-conjugacy representatives of semisimple elements

in h◦Πi
as specified in Table 2 and Remark 3.3. Up to G0-conjugacy, the mixed type elements in g1 are the

elements s+ ni,j where i ∈ {2, . . . , 10}, s ∈ Σi, and ni,j as specified in Case i above.

4. A classification up to S-conjugacy

�is section has two aims. First, we compare our classificationswith the families determined by Verstraete
et al. [7]; the la�er families have been reconsidered and corrected by Chterental & Djokovič [8]. Second,
we describe our classification of nilpotent, semisimple, and mixed elements up to S-conjugacy where
S = Sym4 ⋉ SL2(C)

4. We start with a preliminary section on deciding conjugacy of elements.

4.1. Deciding conjugacy. Let u, v ∈ H4. In our classification below we need to decide whether u and v

lie in the same Ĝ-orbit and, if so, to find a g ∈ Ĝ with gv = u. A general method for this is based on the
computational technique of Gröbner bases [34]: the relation gv = u gives linear relations on the entries
of the four matrices in g; to these relations we add the polynomials that express that the determinants of
the matrices are 1. We then compute a Gröbner basis of the ideal generated by the resulting polynomials.
�is Gröbner basis is trivial (i.e., consists only of 1) if and only if there is no solution. If the Gröbner basis
is not trivial, then in many cases it can be used to effectively solve the equations and find a solution. A
related problem is to find, given a u ∈ H4, an element v in our classification to which u is conjugate to.

First, suppose u is semisimple. It follows from [18, �eorem 3] that two semisimple u and v are con-
jugate if and only if F(u) = F(v), where F is defined in (5.1) below (it maps u to the values of the

generating invariants of C[g1]
Ĝ). We compute F(u) with Table 10, and use a Gröbner basis computation

to find an element v in one of the 10 semisimple classes with F(u) = F(v); we then find a conjugating
element via the above method. If u is nilpotent, then we have to perform at most 30 Gröbner basis com-
putations to find the element in Table 7 that is conjugate to u. By computations in g, we can also reduce
the number of candidates of nilpotent elements in Table 7 that are possibly conjugate to u. For example,
conjugate elements have centralisers in g0 of the same dimension. Moreover, the theory of sl2-triples
can be used to reduce the number of candidates, see [21, §8.3.2]. If u is mixed, then we first identify its
semisimple part with an element in our classification; subsequently we deal with the nilpotent part.

4.2. Classification results. Before we describe our classification, we first recall the classification in [8]
in the language of our paper:

�eorem 4.1 (�eorem 3.6 in [8]). �e S-orbits on g1 are classified by the nine familiesD1,. . . ,D9 in Table 4.

Elements belonging to different families are not equivalent under S-operations. However, within the same

family, different families of the parameters may give elements belonging to the same S-orbit.

�e next theorem identifies in which of these nine families our G0-orbit representatives lie, up to S-
conjugacy; we also present a new, complete and irredundant classification up to S-conjugacy.
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fam. elements

D1 S1(a, b, c, d) +N1 where S1(a, b, c, d) =
a+d
2 u1 +

b−c
2 u2 +

b+c
2 u3 +

a−d
2 u4 and N1 = 0

D2 S2(a, b, c) +N2 where S2(a, b, c) =
a+c
2 u1 +

b−c
2 u2 +

b+c
2 u3 +

a−c
2 u4 and

N2 =
ı
2 (u3 + u4 − u2 − u1 + |1110〉+ |0001〉+ |1000〉+ |0111〉− |1101〉− |0010〉− |1011〉− |0100〉)

D3 S3(a, b) +N3 where S3(a, b) =
a
2u1 +

b
2u2 +

b
2u3 +

a
2u4 and

N3 =
1
2 (u3 − u2 + |0010〉+ |1101〉− |1110〉− |0001〉)

D4 S4(a, b) +N4 where S4(a, b) =
a+b
2 u1 + bu3 +

a−b
2 u4 and

N4 = ı(|1001〉− |0110〉) + 1
2 (|1101〉+ |0100〉+ |1011〉+ |0010〉− |1110〉− |0001〉− |1000〉− |0111〉)

D5 S5(a) +N5 where S5(a) = au1 + au3 and N5 = 2ı (|0001〉+ |0110〉− |1011〉)

D6 S6(a) +N6 where S6(a) =
a
2u1 +

a
2u2 +

a
2u3 +

a
2u4 and

N6 =
ı+1
2 (|0010〉+ |1101〉− u2) +

ı−1
2 (|1110〉+ |0001〉− u3)−

ı
2(|1011〉+ |0100〉+ |1000〉+ |0111〉− u1 − u4)

D7 S7 +N7 where S7 = 0 and

N7 = (|1010〉− |1001〉+ |0011〉+ |0000〉) + (ı+ 1)(|0110〉+ |0101〉)− ı(|1011〉+ |1000〉+ |0010〉− |0001〉)

D8 S8 +N8 where S8 = 0 and

N8 =
ı+1
2 u1 −

ı−1
2 u4 +

ı−1
2 (|1110〉+ |0001〉)− ı+1

2 (|1101〉+ |0010〉)

N8 = +1
2(|1011〉+ |0110〉+ |0101〉+ |1000〉) + 1−2ı

2 (|0111〉+ |1010〉+ |1001〉+ |0100〉)

D9 S9 +N9 where S9 = 0 and

N9 =
1
2 (|1111〉+ |1100〉+ |1011〉+ |1000〉+ ı|1110〉+ ı|1101〉− ı|1010〉+ ı|1001〉)

N9 = +1
2(|0111〉+ |0100〉+ |0011〉+ |0000〉+ ı|0110〉+ ı|0101〉− ı|0010〉+ ı|0001〉)

Table 4. �e nine families of �eorem 4.1 with parameters a, b, c, d ∈ C.

�eorem 4.2. a) Up to S-conjugacy, the nilpotent orbits in g1 are the elements N1, . . . , N9 in Table 4.

b) Up to S-conjugacy, the semisimple orbits in g1 are the elements in Table 5.

c) Up to S-conjugacy, the mixed elements in g1 are the elements in Table 6.

�e right column in Table 5 and the second column in Table 6 indicate to which familyDi (as in Table 4) the

element is S-conjugate to. Tables 3, 6, and 8 contain information about the centralisers in Ĝ.

Proof. As before, all the direct computations mentioned in this proof have been carried out in GAP [23]
and its interface to Singular [24]. We briefly comment on our approach; let s, t ∈ g1 and let σ ∈ Sym4. By
abuse of notation, we also denote by σ the induced automorphism of g, see Remark 3.1. It is straightfor-
ward to compute the image σ(s). As in the proof of Proposition 3.6, we use Gröbner basis techniques to

determine Ĝ-conjugacy of σ(s) and t: for example, if g = (A,B,C,D) ∈ Ĝ is a general element with 16
indeterminates aij , bi,j, cij , dij , then the command HasTrivialGroebnerBasis allows us to decide
quickly whether a solution to g(σ(s)) = t exists. �is approach can also be used if s and t are semisimple
or mixed elements defined by parameters λi and λ

′
i: if the Gröbner basis is trivial, then the elements are

not conjugate; if nontrivial, then the elements are potentially conjugate. In the la�er situation one still
has to determine whether a solution exists that satisfies the conditions on the parameters λi and λ

′
i. As

explained below, we usually reduce Ĝ-conjugacy testing to testing ofW -conjugacy, see Proposition 2.5;
the la�er is a finite explicit calculation.

a) Table 4 yields nine elements N1, . . . , N9, and a direct calculation shows that they are all nilpotent.
Another direct computation (using Gröbner bases) shows that all these elements are not S-conjugate, as
expected by �eorem 4.1. It has been determined in [10] that there are 31 nilpotent G0-orbits in g1; the
corresponding classification over the reals has been presented in [35]. In Table 7 (le�) we list represen-
tatives for the nilpotent orbits (taken from [35, Table I]) and determine (using Gröbner bases) to which
nilpotent elementN1, . . . , N9 the element is S-conjugate to; the claim follows.

b) Recall that u1, . . . , u4 span the Cartan subspace h, which shows that all the elements S1, . . . , S9 in
Table 4 are semisimple. By�eorem3.2, every semisimple element is conjugate to an element in familyD1.
It remains to reduce our classification of semisimple elements (as given in Table 2) up to S-conjugacy. Due
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to Remark 3.1, it suffices to consider elements in h◦Πi
for i ∈ {1, 2, 3, 4, 7, 10}. First, we note that if s ∈ h◦Πi

and t ∈ h◦Πj
with distinct i, j ∈ {1, 2, 3, 4, 7, 10}, then s and t are not S-conjugate: this follows because s

and t have centralisers of different dimensions (see Table 2) and because the permutation action of every
σ ∈ Sym4 on g1 extends to Lie algebra automorphisms of g (cf. Remark 3.1). �us, it remains to determine
when s, t ∈ h◦Πi

are S-conjugate; note that G0-conjugacy is already determined in Table 2. We also note
that Sym4 stabilises h, so G0-conjugacy of Sym4-conjugate elements in h can be decided by considering
the action ofW , see Proposition 2.5. For example, consider i = 3. Elements s = λ1(u1−u2)+λ2(u1−u3)
and t = λ′1(u1−u2)+λ

′
2(u1−u3) areG0-conjugate if and only if (λ

′
1, λ

′
2) = ±(λ1, λ2). We now consider

every Sym4-conjugate of s, for example s′ = λ1(u1−u4)+λ2(u1−u2), and then determineλ′1 andλ
′
2 such

that s′ isW -conjugate to λ′1(u1−u2)+λ
′
2(u1−u3). In this particular example, (λ′1, λ

′
2) = (λ1+λ2,−λ1),

which shows that λ1(u1 −u2)+λ2(u1 −u3) is S-conjugate to (λ1 +λ2)(u1 −u2)−λ1(u1 −u3). Doing
this for all Sym4-conjugates of semisimple representatives in h◦Πi

allows us to determine the conditions
for S-conjugacy; the result is listed in Table 5.

c) Let x = s+ ni,j be a mixed element as in �eorem 3.7. Due to Remark 3.1, up to S-conjugacy, we can
assume that i ∈ {2, 3, 4, 7, 10}. (�ere are no mixed elements for i = 1.) As in part a), we first determine
to which nilpotent elementN1, . . . , N9 the element ni,j is S-conjugate to; this is listed in Table 7 (right).
If we have determined that ni,j is S-conjugate to Nk , then we use Gröbner basis computations to verify
that x is indeed S-conjugate to an element of the form Sk + Nk, hence, up to S-conjugacy, x lies in
familyDk . Recall that Sym4 preserves h and the action of every σ ∈ Sym4 on g1 extends to a Lie algebra
automorphism of g. In particular, it follows that σ(x) = σ(s) + σ(ni,j) is the Jordan decomposition of
σ(x). �e centraliser information in Table 2 now implies that the only S-conjugacies between elements of
the form s+ ni,j (with i ∈ {2, 3, 4, 7, 10}, s ∈ h◦Πi

\ {0}, and permissible j) are between elements whose
semisimple parts lie in the same component h◦Πi

. �us, it remains to decide S-conjugacy of elements

x = s + ni,j and y = t+ ni,ℓ where i ∈ {2, 3, 4, 7, 10}, s, t ∈ h◦Πi
as in Table 2, and ni,j and ni,ℓ in the

same family Dk . In this situation, explicit Gröbner basis computations show that if s = t, then x and y
are S-conjugate. It therefore remains to consider S-conjugacy between elements

x = s+ ni,j and y = t+ ni,j

with s, t ∈ h◦Πi
as in Table 2; by what is said in the previous sentence, for each i we only have to consider

one j for each class Dk . For this we consider every possible Sym4-conjugate of x, say x′ = σ(x) =
σ(s) + σ(ni,j), and check whether x

′ is potentiallyG0-conjugate to an element t+ ni,j with t ∈ h◦Πi
: for

this we first check whether σ(ni,j) is potentially conjugate to ni,j , and if so, then we test the same for
σ(x) and y. If the test is positive, then we check whether σ(s) is W -conjugate to an element t, cf. the
proof of part b). We briefly comment on each case.

If i = 7, then s = λ1u1 and t = λ′1u1, and a direct computation shows that x and y are S-conjugate if
and only if s = ±t; the same holds for i = 10. If i = 4, then s = λ1u1 + λ2u4 and t = λ′1u1 + λ′2u4. A
computation shows that σ(x) and y are potentiallyG0-conjugate if and only if σ(s) = s. More precisely,
if j = 3, then σ(x) = s + σ(n4,3), and the la�er can be shown to be G0-conjugate to s + n4,3. If j = 1,
then σ(x) = s+ σ(n4,1) is G0-conjugate to s + n4,1. In conclusion, for i = 4 it follows that x and y are
S-conjugate if and only if s and t are G0-conjugate. If i = 2, then for every permutation σ, the element
σ(x) = σ(s) + σ(n2,1) has mixed type and must be G0-conjugate to some t + n2,1; this follows from
the centraliser dimension in Table 2 and �eorem 3.7. We can determine the possible transformations
s → σ(s) → t by using the same computations as in b). Now consider i = 3. One can show that every
Sym4-conjugate of s isG0-conjugate to an element in h◦Π3

as in Table 2; since the possible nilpotent parts
n3,1 and n3,2 lie in different families Dk , they are not G0-conjugate, thus, if x = s + n3,i, then each
σ(x) is G0-conjugate to an element t + n3,i with t ∈ h◦Π3

as in Table 2, and we determine the possible

transformations s→ σ(s) → t as in b). All the results are listed in Table 6. �
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element component conditions family

λ1u1 + λ2u2 + λ3u3 + λ4u4 h◦Π1
with λ1, . . . , λ4 6= 0 and λ1 /∈ {±λ2 ± λ3 ± λ4} D1

up to the action of PQi with i ∈ {0, 1, 2} where Q as

in Remark 3.3d) and P is any 4× 4 signed permutation matrix

λ1u1 + λ2u2 + λ3u3 h◦Π2
with λ1, λ2, λ3 6= 0 and λ1 /∈ {±λ2 ± λ3} D1

up to the action of 3× 3 signed permutation matrices

λ1(u1 − u2) + λ2(u1 − u3) h◦Π3
with λ1, λ2 6= 0 and λ1 6= −λ2
up to action of 〈( 0 1

1 0 ) ,
(
1 1
0 −1

)
〉 ∼= Dih6 D1

λ1u1 + λ2u4 h◦Π4
with λ1, λ2 6= 0 and λ1 6= ±λ2
up to the action of 〈

(−1 0
0 1

)
, ( 0 1

1 0 )
∼= Dih4 D1

λ1(u1 − u4) h◦Π7
with λ1 6= 0 up to the action of 〈(−1)〉 D1

λ1u1 h◦Π10
with λ1 6= 0 up to the action of 〈(−1)〉 D1

Table 5. �e classification of semisimple elements up to S-conjugacy; the action of each
matrix group is on the vector of parameters (λ1), (λ1, λ2), etc. �e corresponding cen-
traliser of an element in h◦Πi

is given in Row i of Table 3.

element fam. identity component Z◦Z◦Z◦ preimages of generators of Z/Z◦Z/Z◦Z/Z◦

s+ n2,1 D2 1 (−I,−I, I, I), (−I, I,−I, I), (L,L,L,L)

s+ n3,1 D2 {(L(a′)⊺, L(a′)⊺, L(a′), L(a′)) : a′ ∈ C} (−I,−I, I, I), (−I, I,−I, I), (L,L,L,L)

s+ n3,2 D4 1 (−I,−I, I, I), (−I, I,−I, I), (−I,−I,−I,−I)

s+ n4,1 D3 1 (−I,−I, I, I), (−I, I,−I, I), (L,L,L,L)

s+ n4,3 D2

{
(D(a)−1,D(a),D(a)−1,D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I)

s+ n7,1 D4

{
(L(a′)−1, L(a′)−⊺, L(a′)⊺, L(a′)) : a′ ∈ C

}
(−I,−I, I, I), (−I, I,−I, I), (−I,−I,−I,−I)

s+ n7,2 D5 1 (−I,−I, I, I), (−I, I,−I, I), (−I,−I,−I,−I)

s+ n7,4 D3

{
(L(a′), L(a′)⊺,D(b)−1,D(b)) : a′ ∈ C, b ∈ C×} (−I,−I, I, I), (−I, I,−I, I), (L,L, J, J)

s+ n7,6 D2 (D(a−1, c′),D(a, c′)⊺,D(a−1, b′)⊺,D(a, b′)) (−I,−I, I, I), (−I, I,−I, I)

with a ∈ C× and b′, c′ ∈ C

s+ n10,1 D6 1 (−I,−I, I, I), (−I, I,−I, I), (L,L,L,L)

s+ n10,2 D3

{
(D(a)−1,D(a)−1,D(a),D(a)) : a ∈ C×} (−I,−I, I, I), (−I, I,−I, I)

s+ n10,5 D2

{
(D(a)−1,D(b)−1,D(b),D(a)) : a, b ∈ C×} (−I,−I, I, I)

Table 6. �e classification of mixed elements up to S-conjugacy; for each listed element
s + ni,j the semisimple part s ∈ h◦Πi

is as given in Table 5. Last two columns describe
their centralisers, where the notation is from (3.1).

5. Invariants

�e aim of this section is to describe the invariant ringR = C[g1]
Ĝ. LetB = {b1, . . . , b16} be the basis of

g1 such that b1 = |1111〉, b2 = |1110〉, b3 = |1101〉, b4 = |1100〉, . . . in lexicographical ordering. LetC[g1] be
the ring of polynomial functions on g1. We identify C[g1] with the polynomial ring C[x1, . . . , x16] using
the basis B, so f ∈ C[x1, . . . , x16] is identified with the polynomial function on g1 that maps p ∈ g1 to
f(c1, . . . , c16) where c1, . . . , c16 are the coefficients of p with respect to B.

�e group Ĝ acts on C[g1] by g · f(x) = f(g−1 · x), and the invariant ring C[g1]
Ĝ consists of all

polynomials f ∈ C[g1] such that g · f = f for all g ∈ Ĝ. �e invariants are interesting in our con-
text because they are invariant on orbits. By a celebrated theorem of Hilbert, C[g1] is finitely generated.
Vinberg has proved a generalization of Chevalley’s restriction theorem, see [18, �eorem 7] or [25, �eo-

rem 3.62], showing that the restriction map C[g1]
Ĝ → C[h]W is an isomorphism. Moreover, the degrees
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orbit representative SSS-conjugate to
1 |1100〉 N2 in D2

2 |1100〉+ |0000〉 N3 in D3

3 |1100〉+ |1001〉 N3 in D3

4 |1100〉+ |1010〉 N3 in D3

5 |1101〉+ |0100〉 N3 in D3

6 |1110〉+ |0100〉 N3 in D3

7 |1110〉+ |1101〉 N3 in D3

8 |1101〉+ |0100〉+ |1000〉 N6 in D6

9 |1110〉+ |0100〉+ |1000〉 N6 in D6

10 |1110〉+ |1101〉+ |1000〉 N6 in D6

11 |1110〉+ |1101〉+ |0100〉 N6 in D6

12 |0101〉+ |1100〉+ |1001〉+ |0000〉 N9 in D9

13 |0110〉+ |1100〉+ |1010〉+ |0000〉 N9 in D9

14 |1111〉+ |1100〉+ |1001〉+ |1010〉 N9 in D9

15 |0111〉+ |1110〉+ |1101〉+ |0100〉 N9 in D9

16 |1110〉+ |1101〉+ |0100〉+ |1000〉 N4 in D4

17 |1110〉+ |1101〉+ |0000〉 N5 in D5

18 |1110〉+ |0100〉+ |1001〉 N5 in D5

19 |1101〉+ |0100〉+ |1010〉 N5 in D5

20 |0101〉+ |1110〉+ |1000〉 N5 in D5

21 |0110〉+ |1101〉+ |1000〉 N5 in D5

22 |1111〉+ |0100〉+ |1000〉 N5 in D5

23 |1110〉+ |0100〉+ |0000〉+ |1001〉 N8 in D8

24 |0110〉+ |1101〉+ |1000〉+ |0000〉 N8 in D8

25 |1111〉+ |0100〉+ |1000〉+ |1001〉 N8 in D8

26 |1111〉+ |0100〉+ |1000〉+ |1010〉 N8 in D8

27 |0101〉+ |1110〉+ |0000〉+ |1001〉 N7 in D7

28 |0110〉+ |1101〉+ |0000〉+ |1010〉 N7 in D7

29 |1111〉+ |0100〉+ |1001〉+ |1010〉 N7 in D7

30 |1111〉+ |0110〉+ |0101〉+ |1000〉 N7 in D7

31 0

element ni,jni,jni,j SSS-conjugate to
n2,1 N2 in D2

n3,1 N2 in D2

n3,2 N4 in D4

n4,1 N3 in D3

n4,2 N3 in D3

n4,3 N2 in D2

n4,4 N2 in D2

n7,1 N4 in D4

n7,2 N5 in D5

n7,3 N5 in D5

n7,4 N3 in D3

n7,5 N3 in D3

n7,6 N2 in D2

n10,1 N6 in D6

n10,2 N3 in D3

n10,3 N6 in D6

n10,4 N3 in D3

n10,5 N2 in D2

n10,6 N3 in D3

n10,7 N6 in D6

n10,8 N3 in D3

n10,9 N6 in D6

n10,10 N3 in D3

n10,11 N2 in D2

n10,12 N3 in D3

n10,13 N2 in D2

Table 7. Complex nilpotent orbits (le�) and nilpotent elements ni,j from �eorem 3.7
(right).

fam. iii identity component Z◦Z◦Z◦ preimages of generators ofZ/Z◦Z/Z◦Z/Z◦

N2 1 {(D(b−1cd, a′),D(b, b′),D(c, c′)⊺,D(d, d′)⊺)

with a′, b′, c′, d′ ∈ C and b, c, d ∈ C×

N3 2
{
(B−⊺, B,D(d−1, c′)⊺,D(d, d′)⊺) : B ∈ SL(2,C), d ∈ C×, c′, d′ ∈ C

}
(−I, I,−I, I)

N4 16
{
(L(b′ + c′ + d′)−1, L(b′), L(c′)⊺, L(d′)⊺) : b′, c′, d′ ∈ C

}
(−I,−I, I, I), (−I, I,−I, I), (−L,L,L,L)

N5 17
{
(D(b)−1,D(b), L(d′)−⊺, L(d′)⊺) : b ∈ C×, d ∈ C

}
(−I, I,−I, I), (−I, I, I,−I)

N6 8 (D(d−1,−(b′ + d′)),D(d−1, b′),D(d−1, c′)⊺,D(d, d′)⊺) (−I,−I, I, I), (−I, I,−I, I)

with d ∈ C× and b′, c′, d′ ∈ C

N7 27 1 (−I,−I, I, I), (−I, I,−I, I), (−I, I, I,−I)

N8 23 {(L(a′), I, L(a′)⊺, L(a′)⊺) : a′ ∈ C} (−I,−I, I, I), (−I, I,−I, I), (−I, I, I,−I)

N9 12 (M(c, d)−1M(a, b)−1,M(c, d), L(u)⊺,M(a, b)) (−I, I,−I, I), (L,L,L,L)

with a, b, c, d, u ∈ C and a2 = 1 + b2 and c2 = 1 + d2

Table 8. �e centralisers Z = Z
Ĝ
(e) where e is the representative of the nilpotent orbit

labelled i in Table 7; the notation is explained in (3.1).

of the generating invariants of C[h]W are known to be 2, 4, 4, 6 (this can be read from Table 1 by se�ing
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pol. list of monomials

H -8.9, 7.10, 6.11, -5.12, 4.13, -3.14, -2.15, 1.16

L 4.7.10.13, -4.7.9.14, -4.6.11.13, 4.6.9.15, 4.5.11.14, -4.5.10.15, -3.8.10.13, 3.8.9.14, 3.6.12.13, -3.6.9.16, -3.5.12.14, 3.5.10.16,

2.8.11.13, -2.8.9.15, -2.7.12.13, 2.7.9.16, 2.5.12.15, -2.5.11.16, -1.8.11.14, 1.8.10.15, 1.7.12.14, -1.7.10.16, -1.6.12.15, 1.6.11.16

M -6.7.10.11, 6.7.9.12, 5.8.10.11, -5.8.9.12, 4.6.11.13, -4.6.9.15, -4.5.11.14, 4.5.9.16, -3.6.12.13, 3.6.10.15, 3.5.12.14, -3.5.10.16,

-2.8.11.13, 2.8.9.15, 2.7.11.14, -2.7.9.16, -2.3.14.15, 2.3.13.16, 1.8.12.13, -1.8.10.15, -17.12.14, 1.7.10.16, 1.4.14.15, -1.4.13.16

D -4.6.8.9.11.13, 4.6.8.9.9.15, -4.6.7.10.11.13, 4.6.7.9.12.13, 4.6.7.9.11.14, -4.6.7.9.9.16, 4.6.6.11.11.13, -4.6.6.9.11.15, 4.5.8.10.11.13,

-4.5.8.9.10.15, -4.5.7.9.12.14, 4.5.7.9.10.16, -4.5.6.11.12.13, -4.5.6.11.11.14, 4.5.6.10.11.15, 4.5.6.9.11.16, 4.5.5.11.12.14,

-4.5.5.10.11.16, 4.4.6.11.13.13, -4.4.6.9.13.15, -4.4.5.11.13.14, 4.4.5.9.14.15, 3.6.8.10.11.13, -3.6.8.9.10.15, -3.6.7.9.12.14,

3.6.7.9.10.16, -3.6.6.11.12.13, 3.6.6.9.12.15, -3.5.8.10.12.13, -3.5.8.10.11.14, 3.5.8.10.10.15, 3.5.8.9.12.14, 3.5.7.10.12.14,

-3.5.7.10.10.16, 3.5.6.12.12.13, 3.5.6.11.12.14, -3.5.6.10.12.15, -3.5.6.9.12.16, -3.5.5.12.12.14, 3.5.5.10.12.16, -3.4.6.12.13.13,

-3.4.6.11.13.14, 3.4.6.10.13.15, 3.4.6.9.13.16, 3.4.5.12.13.14, 3.4.5.11.14.14, -3.4.5.10.14.15, -3.4.5.9.14.16, 3.3.6.12.13.14,

-3.3.6.10.13.16, -3.3.5.12.14.14, 3.3.5.10.14.16, 2.8.8.9.11.13, -2.8.8.9.9.15, -2.7.8.9.12.13, -2.7.8.9.11.14, 2.7.8.9.10.15, 2.7.8.9.9.16,

2.7.7.9.12.14, -2.7.7.9.10.16, -2.6.8.11.11.13, 2.6.8.9.11.15, 2.6.7.11.12.13, -2.6.7.9.12.15, 2.5.8.11.11.14, -2.5.8.10.11.15,

2.5.8.9.12.15, -2.5.8.9.11.16, -2.5.7.11.12.14, 2.5.7.10.11.16, -2.4.8.11.13.13, 2.4.8.9.13.15, 2.4.7.11.13.14, -2.4.7.9.14.15,

-2.4.6.11.13.15, 2.4.6.9.15.15, 2.4.5.11.13.16, -2.4.5.9.15.16, 2.3.8.12.13.13, -2.3.8.10.13.15, 2.3.8.9.14.15, -2.3.8.9.13.16,

-2.3.7.12.13.14, 2.3.7.10.13.16, 2.3.6.11.13.16, -2.3.6.9.15.16, 2.3.5.12.14.15, -2.3.5.12.13.16, -2.3.5.11.14.16, 2.3.5.9.16.16,

2.2.8.11.13.15, -2.2.8.9.15.15, -2.2.7.11.13.16, 2.2.7.9.15.16, -1.8.8.10.11.13, 1.8.8.9.10.15, 1.7.8.10.12.13, 1.7.8.10.11.14,

-1.7.8.10.10.15, -1.7.8.9.10.16, -1.7.7.10.12.14, 1.7.7.10.10.16, 1.6.8.11.12.13, -1.6.8.9.12.15, -1.6.7.12.12.13, 1.6.7.10.12.15,

-1.6.7.10.11.16, 1.6.7.9.12.16, -1.5.8.11.12.14, 1.5.8.10.11.16, 1.5.7.12.12.14, -1.5.7.10.12.16, 1.4.8.11.13.14, -1.4.8.9.14.15,

-1.4.7.11.14.14, 1.4.7.10.14.15, -1.4.7.10.13.16, 1.4.7.9.14.16, 1.4.6.12.13.15, 1.4.6.11.14.15, -1.4.6.11.13.16, -1.4.6.10.15.15,

-1.4.5.12.14.15, 1.4.5.10.15.16, -1.3.8.12.13.14, 1.3.8.10.13.16, 1.3.7.12.14.14, -1.3.7.10.14.16, -1.3.6.12.14.15, 1.3.6.10.15.16,

1.3.5.12.14.16, -1.3.5.10.16.16, -1.2.8.12.13.15, -1.2.8.11.14.15, 1.2.8.10.15.15, 1.2.8.9.15.16, 1.2.7.12.13.16, 1.2.7.11.14.16,

-1.2.7.10.15.16, -1.2.7.9.16.16, 1.1.8.12.14.15, -1.1.8.10.15.16, -1.1.7.12.14.16, 1.1.7.10.16.16

Table 9. Generators ofC[g1]
Ĝ: each generator is the sum of the listed monomials, where

i1.i2.i3 . . . stands for xi1xi2xi3 . . ., and −i1.i2.i3 . . . represents −xi1xi2xi3 . . .

n = 4 in the fourth row and recalling the isomorphism SO(4,C) = SL(2,C)2). It follows that C[g1]
Ĝ is

generated by four homogeneous invariants of degrees 2, 4, 4, 6. Formulas for generating invariants have
been determined by Luque & �ibon [36]; in this reference they are denoted H , L, M , Dxt. In Table 9
we give their explicit form, where we write D instead of Dxt. We have checked the correctness of these
expressions by computer in the following way: Let C[g1]k denote the space of homogeneous polynomials

of degree k. �ere is a canonical isomorphism of Ĝ-modules C[g1]k → Symk(g∗1), where g
∗
1 denotes the

dual module of g1. Under this isomorphism, every invariant spans a trivial 1-dimensional submodule. For

k = 2, 4, 4, 6 we determined the trivial 1-dimensional submodules of Symk(g∗1) by linear algebra methods

using the Lie algebra of Ĝ; this way we found the same invariants as Luque & �ibon. We now define

F : g1 → C4, F(s) = (H(s), L(s),M(s),D(s)).(5.1)

For a 4-tuple v ∈ C4 denote by Uv = {s ∈ g1 : F(s) = v} the corresponding fibre of F ; all these fibres

partition g1. Recall that e ∈ g1 is nilpotent if and only if there are g1, g2, . . . ∈ Ĝ with limi→∞ gi(e) = 0,
see [18, Proposition 1]. Since F is polynomial, this implies that F(0) = limi→∞F(gi(e)) = F(e). In
particular, if p+ e ∈ Uv is a mixed element, so [p, e] = 0, then we can assume that each gi ∈ Z

Ĝ
(p), and

hence F(p + e) = F(gi(p + e)) = F(p + gi(e)), with limit F(p) = v. By [18, �eorem 3], each fibre

Uv consists of a single semisimple orbit Ĝp (with p ∈ g1 semisimple such that F(p) = v) along with the

mixed orbits that have an element in Ĝp as their semisimple part; in particular, each fiber is the union of
finitely many orbits, cf. [18, �eorem 4]. �e different values F(s) with s ∈ h◦Πi

are listed in Table 10.
Furthermore, in Table 11 we list generators of the ideal of the polynomial relations between these values.
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