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Molecular control of animal cell cytokinesis

Juan Pablo Fededa and Daniel W. Gerlich

Cytokinesis is the process by which mitotic cells physically split in two following chromosome segregation. Dividing animal

cells first ingress a cytokinetic furrow and then separate the plasma membrane by abscission. The general cytological events

and several conserved molecular factors involved in cytokinesis have been known for many years. However, recent progress

in microscopy, chemical genetics, biochemical reconstitution and biophysical methodology has tremendously increased our
understanding of the underlying molecular mechanisms. We discuss how recent insights have led to refined models of the
distinct steps of animal cell cytokinesis, including anaphase spindle reorganization, division plane specification, actomyosin ring
assembly and contraction, and abscission. We highlight how molecular signalling pathways coordinate the individual events to
ensure faithful partitioning of the genome to emerging daughter cells.

Animal cell cytokinesis is initiated during anaphase, when the mitotic
spindle reorganizes to form a dense array of antiparallel microtubules
midway between the two centrosomal asters — the central spindle (or
spindle midzone; Fig. 1). Together with microtubules from the spindle
asters, the central spindle defines the position of the division plane
between the segregated chromosomes. This spatial signal is transmitted
through a pathway involving the small GTPase RhoA, leading to the
assembly of an actomyosin ring at the equatorial cell cortex. Contraction
of the actomyosin ring results in ingression of the attached plasma
membrane to form a cytokinetic furrow, which partitions the cytoplasm
into two domains. At this stage, sister cells remain connected by a narrow
intercellular bridge containing dense antiparallel bundles of microtubules
that overlap at a central region termed the midbody (or Flemming body).
Physical separation of the emerging sister cells is finally accomplished by
plasma membrane fission at the intercellular bridge.

Faithful inheritance of the genome requires tight temporal coordination
of cytokinesis with chromosome segregation. This is achieved by a
common molecular cue, the activation of the E3 ubiquitin ligase anaphase
promoting complex (APC), which initiates both chromosome segregation
and cytokinetic furrow ingression'. The APC triggers chromosome
segregation by targeting securin, an inhibitor of the protease separase
that destroys the cohesive link between sister chromatids, for proteasome-
mediated destruction. Simultaneous targeting of the cyclin-dependent
kinase 1 (CDK1) coactivator cyclin B for degradation leads to CDK1
inactivation, resulting in dephosphorylation of many CDK1 substrates
by the counteracting phosphatases?, which promotes cytokinetic furrow
ingression and mitotic exit. Finally, abscission is temporally coordinated
with completion of chromosome segregation by a signalling pathway
involving the Aurora B mitotic kinase®”.

The timing of individual events, as well as the cellular mechanism of
cytokinesis, is distinct in different model organisms. For example, the

division plane in budding yeast is determined by the bud neck long before
mitosis, and the mitotic spindle subsequently aligns perpendicularly.
Actomyosin ring contraction occurs in budding yeast, but is not essential
for cytokinesis, presumably because assembly of a septum can substitute
its function to ensure efficient partitioning of the cells®. In fission yeast,
the division plane is specified by the position of the cell nucleus during
early mitosis’. Plant cells do not contain actomyosin rings but instead
assemble a separating membrane and cell wall through Golgi-derived
secretion at a specialized structure termed the phragmoplast®. The
diversity of cytokinesis mechanisms in different model organisms has
been covered in several excellent reviews’ .

In this Review, we discuss the cellular mechanisms and signalling
pathways of animal cell cytokinesis, focusing on recent advances and
discussing how they have led to a refined model of this process.

Central spindle assembly

Animal cell cytokinesis is initiated during anaphase, when the
decline of CDK1 activity leads to a stabilization of microtubules and
reorganization of the mitotic spindle. The assembly of the central
spindle is an early key event, as it contributes to division plane
specification and provides the template for the midbody, a targeting
platform for abscission factors (Fig. 2).

The central spindle is built from antiparallel bundles of microtubules
that overlap at a central region, where microtubule-associated proteins,
motor proteins and protein kinases accumulate'?. Microtubules of
the central spindle partly derive from interpolar microtubules of the
metaphase spindle, but also assemble de novo during anaphase through
non-centrosomal microtubule nucleation mediated by the augmin
complex'*' (Fig. 2a).

The microtubules of the central spindle are spatially organized by
bundling factors that bind to overlapping microtubule plus ends.
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Figure 1 Overview of animal cell cytokinesis. Top: the activity and
localization of key kinases. Bottom: a schematic representation showing the

One key component is the microtubule bundling protein required for
cytokinesis 1 (PRC1)", which as a homodimer selectively binds to the
interface between antiparallel microtubules'®'”. PRCI is inhibited until
anaphase onset by CDK1-mediated phosphorylation, which prevents
its dimerization'®.

Another essential component of the central spindle is the tetrameric
centralspindlin complex, which consists of two copies of the kinesin
motor protein MKLP1 and the Rho-family GTPase activating protein
(GAP) CYK-4 (also termed MgcRacGAP)'*. Centralspindlin binds to
the central spindle as higher-order clusters that travel along microtubules
towards the plus ends to accumulate at the central region®. Several
mechanisms control centralspindlin targeting; MKLP1 affinity to
microtubules is negatively regulated by CDK1 phosphorylation of its
motor domain®, and phosphorylation of MKLP1 by Aurora B during
anaphase® promotes centralspindlin cluster formation by triggering
release from the inhibitory 14-3-3 protein®.

The chromosomal passenger complex (CPC), a multi-subunit protein
complex that contains Aurora B, is a third essential factor in central
spindle assembly. During metaphase, the CPC localizes to centromeres,
where it regulates attachment of chromosomes to the mitotic spindle. At
anaphase onset, the CPC relocates to the central spindle, which requires
the kinesin motors MKLP1 and MKLP2 in mammalian cells?>?°, but not
in Caenorhabditis elegans®. This translocation depends on the removal
of a CDK1 phosphorylation from the INCENP subunit of the CPC,
enabling INCENP binding to MKLP2 (ref. 28). The translocation of
Aurora B to the central spindle also depends on its efficient removal
from anaphase chromatin, which is promoted by the E3 ubiquitin
ligase Cul3 (ref. 29) and the ATPase p97 (ref. 30). An important
function of the CPC is the phosphoregulation of other central spindle
components such as PRCI (ref. 31) or MKLP1 (ref. 23), but it may also
mediate microtubule bundling as a structural component of the central
spindle'. Besides its function in central spindle assembly, the CPC also
contributes directly to actomyosin ring assembly*.

A mechanism of central spindle self-assembly has been recently
suggested on the basis of biochemical in vitro reconstitution experiments
with a minimal set of components (Fig. 2b). In this system, the specific
recognition of antiparallel microtubule overlaps by PRC1, which binds
in a manner that supports sliding of microtubules, enables assembly of

Midbody

reorganization of an animal cell progressing through the different stages of
cytokinesis. Red, microtubules; grey, chromosomes.

dynamic central-spindle-like structures'®'”. The kinesin KIF4A (Xklp1
in Xenopus laevis) is targeted to microtubule overlap regions by PRC1
and adjusts the length of the overlap zone by inhibiting microtubule
polymerization and dynamic instability'®*.

In cells, the central spindle assembly mechanism must be more
complex, because the localization of central spindle core components
(PRCI, centralspindlin and the CPC) is mutually interdependent, and all
these components are essential for central spindle assembly'. Multiple
microtubule bundling factors may be required in cells to stabilize the
central spindle when declining CDK1 activity simultaneously promotes
disassembly of astral spindle microtubules. Experiments with chemically
induced monopolar spindles showed that antiparallel microtubules are
not strictly required for microtubule binding of central spindle factors
and their delivery towards the cytokinetic furrow***. The finding that
monopolar spindles are able to induce cell polarization and cytokinesis
may be explained by interactions of microtubules with chromosomes™
or the actin cytoskeleton™.

Although the mitotic kinase PLK1 is not required for central spindle
assembly, its localization at the central spindle is essential for division
plane specification (see below). PLK1 is targeted to the central spindle
through binding to PRC1 after dephosphorylation of an inhibitory
CDK1 site on PRCI (ref. 36), and by binding to PLK1-phosphorylated
MKLP2 (ref. 37).

In summary, a decline of CDK1 activity at the metaphase-anaphase
transition leads to dephosphorylation of inhibitory sites on multiple
central spindle components. This initiates a stepwise self-assembly
process that involves preferential binding of microtubule bundling
factors to antiparallel microtubule overlap regions.

Division plane specification
Precise positioning of the division plane between the two masses of
segregated chromosomes is essential to prevent chromosome loss. In
animal cells, the division plane is specified by transmission of a spindle
position signal to the cell cortex during early anaphase (Fig. 3a). The
position of the spindle is controlled during tissue morphogenesis
through mechanical, geometrical and biochemical signals®-*!.

How the mitotic spindle defines the division plane position has been
a matter of intense debate, owing to controversial results obtained in
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Figure 2 Central spindle assembly. (a) Localization and activity of central
spindle assembly factors. During anaphase, the augmin protein complex
promotes de novo assembly of microtubules (dashed black lines),

which together with interpolar microtubules (solid black lines) form an
array of antiparallel microtubules at the central spindle. The overlap is
stabilized by PRC1 after removal of an inhibitory CDK1 phosphorylation.
Dephosphorylation of a CDK1 site and phosphorylation of an Aurora B site

different model organisms*. Genetic and laser-micromanipulation
studies in C. elegans embryos eventually clarified that the spindle sends
two redundant signals to the cell cortex, one originating from the central
spindle, and a second signal deriving from the spindle asters**~**. The
predominance of either signal varies between cell types and organisms*.

Spindle microtubules can provide positional cues by direct contact
with the cell cortex***>*~* (Fig. 3a). Stable microtubules have been
proposed to provide signals that promote contractility at the equatorial
cortex, in contrast to microtubules with higher dynamic instability that
inhibit cortical contractility at the poles*®. Another model proposes
that microtubules generally inhibit cortical contractility, thus leading
to cytokinetic furrow formation at equatorial regions with minimal
microtubule density*. Further studies are needed to clarify the regulatory
role of astral microtubules in division plane specification.

The central spindle also contributes to the specification of the division
plane by promoting concentration and activation of the small GTPase
RhoA at the equatorial cortex'®*"*? (Fig. 3b). Like most other small
GTPases, RhoA is regulated by guanine-nucleotide exchange factors
(GEFs) and a GAP. Activation of equatorial RhoA critically depends

on MKLP1 (a component of the centralspindlin complex, green) promotes its
binding and bundling of central spindle microtubules. (b) Model for central
spindle self-assembly. Dimers of PRC1 specifically recognize antiparallel
microtubule overlap regions, but still allow microtubule sliding. KIF4A

then binds to microtubules and moves towards the plus end to stabilize the
overlap zone by inhibiting dynamic instability of microtubules. Adapted with
permission from ref. 16.

on Rho-GEF ECT?2 (Pebble in Drosophila melanogaster, and LET-21
or ECT-2 in nematodes), which is localized to the central spindle by
binding to the CYK-4 subunit of centralspindlin following CYK-4
phosphorylation by PLK1 (refs 51-55). ECT-2 translocates to the
equatorial cell cortex after CDK1 inactivation, thereby temporally
coordinating cytokinesis with chromosome segregation®. As well as
ECT?2, GEF-H1 may further activate RhoA at the cell cortex™. However,
defining the exact role of GEF-HI in cytokinesis requires further
experimental investigation, owing to the pleiomorphic loss-of-function
phenotypes.

RhoA activation at the equatorial cortex also depends on the GAP
activity of CYK-4 (refs 58,59). CYK-4 GAP has been suggested to promote
a constant cycling of RhoA through GDP- and GTP-bound states, which
may be required for RhoA activity®®. Alternatively, CYK-4 GAP may
activate RhoA by positive regulation of ECT-2 (ref. 59). It is controversial
whether the GAP domain of CYK-4 also regulates another small GTPase,
Rac (refs 59,60). Genetic disruption of Rac renders furrow ingression
partially insensitive to mutation of CYK-4 GAP activity, which has led
to the proposal that suppression of Rac by CYK-4 is needed to prevent
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Figure 3 Division plane specification and the RhoA pathway. (a) The central
spindle stimulates equatorial contractility (arrows). Stable microtubules
(green) from the spindle asters can also stimulate cortical contractility,
whereas dynamic microtubules (red) inhibit cortical contractility. The
actomyosin ring assembles at the specified division site of the equatorial

branched actin filament nucleation by the Rac effector Arp2/3 complex
at the equatorial cell cortex®. Genetic inactivation of Rac, however, could
also facilitate cytokinetic furrow ingression independently of CYK-4; for
example, by reducing cortical tension®.

So how do spindle-localized division plane regulators reach their
targets at the cell cortex? One possibility is transport along microtubules
that contact the equatorial cell cortex; for example, through the motor
activity of MKLP1 (ref. 61). Communication between the central spindle
and cortex may also proceed along actin cables, as observed in chemically
induced monopolar mitosis®. A fluorescence resonance energy transfer
biosensor for Aurora B phosphorylation revealed a phosphorylation
gradient around the central spindle®, consistent with a diffusible signal
transmission between cortex and central spindle®. Future studies will
be needed to clarify which of these spindle-cortex communication
mechanisms is most relevant for division plane specification.

Overall, these studies indicate that a combination of stimulatory
and inhibitory signals from the mitotic apparatus lead to increased
contractility at the equatorial cortex and relaxation at the polar cortex.
The multitude and partial redundancy of signals may be required to
make the system robust and to increase spatial precision.

Contractile ring assembly

The RhoA pathway promotes assembly of the actomyosin ring by two
main effectors (Fig. 3b). First, RhoA stimulates nucleation of unbranched
actin filaments by activation of Diaphanous-related formins®-*. Second,
RhoA promotes myosin II activation by the kinase ROCK, which
activates myosin II directly by phosphorylation of the myosin light
chain and also inhibits myosin phosphatase by phosphorylation of the
phosphatase-targeting subunit MYPT (ref. 67).

Actin and myosin II bind to the cell cortex independently,
concentrate at the cell equator by several distinct mechanisms, and
preferentially accumulate directly at the site where the contractile ring
forms*>6-68-70 Additional actin filaments®®”, and in some organisms
also myosin II patches***”°, move towards the cell equator by cortical
flow. During a specialized form of cytokinesis, cellularization of
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cortex. (b) ECT2, GEF-H1, and CYK-4 regulate the Rho-GTP cycle. Active
RhoA-GTP promotes polymerization of unbranched actin filaments and
activates myosin Il to assemble and contract the actomyosin ring. CYK-4
may also inhibit Rac, which could be important to suppress branched actin
filament network formation at the cytokinetic furrow.

Drosophila embryos, spindle microtubules also contribute to actin
delivery to the cleavage site™

Besides actin and myosin II, the contractile ring contains the
scaffolding protein anillin”. Anillin binds to actin, myosin, RhoA and
CYK-4, and thereby links the equatorial cortex with the signals from
the central spindle’ 7. This is particularly important for late stages of
furrow ingression®”*””. Anillin has also been proposed to contribute
to the linkage of the actomyosin ring to the plasma membrane”. The
organization and function of the contractile ring further involves actin
crosslinking proteins’, septin filaments”-* and specific lipids®.

Cytokinetic furrow ingression

Following its assembly, contraction of the actomyosin ring leads
to ingression of the attached plasma membrane, which partitions
the cytoplasm into two domains of emerging sister cells. Despite its
central importance in cell division, the force-generating mechanism
of actomyosin ring contraction is not understood. Several different
models have been proposed on the basis of ultrastructural analysis and
biophysical considerations.

A classical model proposes that bipolar myosin filaments move
along actin filaments similarly to the force-generating mechanism in
muscle sarcomeres®. Supporting this model, filamentous myosin IT has
been visualized at the cytokinetic furrow by total internal reflection
fluorescence microscopy® %, and mutant myosin II that cannot
polymerize is unable to promote cytokinesis®. For a ‘purse-string’
mechanism to generate force, alignment of filaments with the division
plane is needed, and has been observed by electron microscopy in a
number of organisms® -5,

However, many actin filaments of the contractile ring are oriented in
directions other than along the division plane’®. It is not clear whether
non-aligned actin filaments contribute to ring contraction, although
randomly oriented actin filaments can contract in vitro by gelation®.
Contraction of an interconnected actin network could be driven by
motor activity, or by depolymerization when filaments are linked by
end-tracking crosslinkers”.
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Photobleaching experiments revealed a dynamic turnover of actin” and
myosin®”" at the contractile ring, indicating that the filament network
of the actomyosin ring is constantly remodelled. However, stable pools
of actin” and myosin® have also been observed at the actomyosin ring
with variable abundance in different species. To what extent the stable
and dynamic pools of actin and myosin filaments contribute to contractile
force generation is not known, but theoretical modelling provides an
interesting framework for further experimental investigation®®*.

The concentration of actin and myosin per unit length remains
constant during the early stages of furrow ingression in urchins* and
C. elegans®, indicating that contractile ring components disassemble
with the same rate as they contract. The C. elegans furrow ingresses with
a constant rate throughout the initial phases of ring contraction and the
ingression speed correlates with the initial perimeter®®. This has led
to a model proposing that the contractile ring is built from a series of
contractile units that shorten simultaneously, and where the number of
units is defined by the original perimeter of the ring™.

Efficient furrow ingression also requires reduction of contractility
at polar cortex regions*. Misregulated polar cortex contractility (for
example, by astral microtubule stabilization) leads to unstable and
oscillating furrows®. Stabilization of the cytokinetic furrow position
involves dampening of cytoplasmic and cortex fluctuations by plasma
membrane blebbing®.

The ingressing cytokinetic furrow needs a supply of additional
membrane as the total cell surface increases. In embryos of echinoderms,
Xenopus, Drosophila and C. elegans, this involves targeted secretion of
vesicles that travel along microtubules towards the furrow’>*"'%2, Targeted
secretion also delivers specific lipids to the equatorial cortex, thus
contributing to the assembly and function of the contractile ring®>'%1*,

Our current knowledge thus provides a consistent picture of RhoA-
stimulated actin and myosin II filament formation at the equatorial cortex.
The exact spatial arrangement of the filaments and the force-generating
mechanism of the contractile ring, however, remain key open questions.

Abscission

The cytokinetic furrow ingresses until the actomyosin ring has reached a
diameter of about 1-2 um. Most animal cell types then remain connected
by an intercellular bridge for up to several hours until they are split by an
actin-independent process termed abscission'*>'%. Abscission proceeds
by removal of cytoskeletal structures from the intercellular bridge,
constriction of the cell cortex, and plasma membrane fission (Fig. 4).

The intercellular bridge is filled with dense bundles of antiparallel
microtubules that derive from the central spindle. These microtubules
overlap at the midbody, which also contains an electron-dense matrix
of unknown composition. More than 100 different proteins localize at
the intercellular bridge'”, but the specific function of many components
remains unclear. Generally, the midbody is thought to provide a targeting
platform for the abscission machinery.

Briefly after complete cytokinetic furrow ingression, Golgi- and
endosome-derived vesicles accumulate at regions adjacent to the
midbody'®"°, Vesicles in the intercellular bridge fuse with the plasma
membrane before abscission'®™"", and several vesicle-targeting and
tethering factors, including centriolin and the exocyst complex'®, Rab35
(ref. 111), Rab11 (ref. 112), v- and t-SNARES (refs 108,113) and BRUCE
(ref. 114), are required for efficient abscission. These observations are
consistent with a compound vesicle fusion model of abscission, which
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Figure 4 The intercellular bridge and abscission. (a) Electron tomogram

of a late-stage intercellular bridge. 17 nm diameter filaments assemble at
a cortical constriction zone adjacent to the midbody. (b) Enlarged grazing
section of a reveals a regular array of 17 nm diameter filaments. Scale bars,
200 nm. a and b reprinted with permission from ref. 116. (c) Speculative
model for abscission mechanism.

assumes that a separating membrane assembles inside the intercellular
bridge, analogous to cytokinesis in plant cells'®'*>.

Kinetic studies of mammalian tissue culture cells, however, showed that
vesicles disappear from the intercellular bridge before abscission'*>!*!.
Larger internal membrane structures resembling cell plate formation
in plant cytokinesis have not been observed in animal cell intercellular
bridges!®!"®. Electron microscopy of late-stage intercellular bridges instead
revealed cortical constriction zones adjacent to the midbody that contain
membrane-associated 17 nm diameter filaments forming large intertwined
helices surrounding the intercellular bridge''® (Fig. 4a,b). The secondary
constriction of the cell cortex indicates that abscission may proceed by
direct contact and fission of opposing plasma membranes'®''*!*¢ (Fig. 4c).
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The endosomal sorting complex required for transport (ESCRT)-III
is a candidate component of the 17 nm diameter filaments because it
co-localizes with constriction zones®”* and is required for the formation
of these filaments''®. ESCRT-III is an essential abscission factor''*™'* that
mediates membrane deformation and scission from the cytosolic face in
a variety of biological processes, including virus budding, intraluminal
vesicle budding and autophagy'*. Recombinant ESCRT-III subunits can
form polymers in the shape of filaments, rings, sheets or tubes in vitro,
providing an interesting framework to speculate about mechanisms
by which 17 nm filaments may generate constriction force during
abscission'”!. For example, ESCRT-III may constrict the intercellular
bridge by inward-directed curvature of filaments during polymerization,
or by filament remodelling after assembly of 17 nm filament helices.
Alternatively, ESCRT-III may narrow membrane necks by the capture
and stabilization of spontaneous lipid-driven membrane bulging.

ESCRT-III accumulates at cortical regions adjacent to the midbody
during late telophase''®'?2. This is regulated by the centrosomal protein
Cep55, which binds to the midbody component MKLP1 after removal
of an inhibitory phosphate on PLK1, once PLK1 is degraded by the APC
(ref. 123). Cep55 then recruits the ESCRT-III targeting factor ALIX to the
midbody'”'". Further factors contribute to ESCRT-III targeting to the
abscission site, including Tsg101 (ref. 117) and FYVE-CENT (ref. 124).

Complete cortical constriction at the abscission site requires removal
of the underlying cytoskeletal structures. Actin filament disassembly
during late cytokinesis depends on the PKC€-14-3-3 complex, which
inactivates RhoA after furrow ingression'?. Actin disassembly is further
controlled by the GTPase Rab35 and its effector, the phosphatidylinositol-
4,5-bisphosphate 5-phosphatase OCRL (refs 111,126).

Disassembly of microtubule bundles inside the intercellular bridge
depends on the microtubule severing protein spastin''®'?, which
binds to midbody-localized ESCRT-III-associated protein CHMP1B
(refs 116,127,128). Spastin may be targeted to the abscission site by high
levels of tubulin polyglutamylation within the intercellular bridge'”.
Complementary to spastin-mediated severing, a high local curvature
at the constriction site may also facilitate microtubule disassembly''°.

Despite the progress in understanding regulation of individual
abscission factors, the overall temporal control of abscission is still poorly
understood. Abscission occurs only after removal of all chromatin from
the division site, as the abscission machinery may otherwise damage
unsegregated chromosomes, or fail due to mechanical hindrance. A
tight temporal coordination between chromosome segregation and
cytokinesis is ensured by the Aurora B kinase, which is kept active by
unsegregated chromatin at the division plane to inhibit abscission until
the division plane is cleared of chromatin®~. A recent study further
indicates that abscission is temporally coordinated with postmitotic
nuclear envelope reassembly'*.

Cytokinesis failure results in tetraploid cells with extra centrosomes
that are genetically instable owing to perturbed chromosome segregation
in subsequent cell divisions*'*2, Tetraploid cells derived from
experimentally perturbed cytokinesis induce cancer in a mouse model'”,
indicating that understanding the molecular control of cytokinesis may
help to elucidate cellular defects underlying carcinogenesis.

Following abscission, the residual midbody structure, known as the
midbody derivative, can have different fates depending on the cell type.
The midbody derivative is either released to the extracellular medium"¢'*,
degraded by autophagy'*>'** or persists in the cytoplasm'*®!*!%,

REVIEW

Asymmetric accumulation of midbody derivatives has been proposed to
contribute to the maintenance of an undifferentiated phenotype in stem
cells and cancer cells'**'*. The asymmetric accumulation of midbody
derivatives is regulated by their selective removal from differentiating
daughter cells either by autophagy'*® or shedding to the extracellular
medium'. The mechanism by which midbody derivatives contribute
to cell fate specification, however, is not known.

In summary, abscission proceeds by a secondary ingression of the
cell cortex, involving helices of 17 nm diameter filaments spanning the
intercellular bridge. Understanding the mechanism by which the plasma
membrane ultimately splits and how vesicles contribute to abscission will
require further investigation.

Concluding remarks and future perspectives

The molecular pathways regulating animal cell cytokinesis are now
relatively well defined, owing to recent advances in imaging technology,
biochemical reconstitution systems, chemical genetics and physical
perturbation tools. However, the mechanisms of the force-generating
structures are still poorly understood. How exactly are actin and
myosin II filaments arranged in the contractile ring and generate
contractile force? How do 17 nm diameter filaments assemble and
how do they generate constriction force during abscission? Does the
final fission of the plasma membrane proceed by a rupture-resealing
mechanism, or by membrane hemifusion-fission? Answering these
questions will need improved analytical tools to study these processes in
cells. New super-resolution microscopy techniques'”” and new labelling
strategies in electron microscopy'®® are promising developments.
Dissecting the underlying molecular mechanisms will further require
sophisticated biochemistry, and recent progress in reconstitution
of complex structures like central spindle microtubule arrays'®", or
ESCRT-III-mediated membrane fission'®, indicates that we face exciting
times uncovering the remaining mysteries in cytokinesis.
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