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Abstract
Numerous pharmaceutical drugs have been repurposed for use as treatments for COVID-19 disease. These drugs have not 
consistently demonstrated high efficacy in preventing or treating this serious condition and all have side effects to differing 
degrees. We encourage the continued consideration of the use of the antioxidant and anti-inflammatory agent, melatonin, as a 
countermeasure to a SARS-CoV-2 infection. More than 140 scientific publications have identified melatonin as a likely useful 
agent to treat this disease. Moreover, the publications cited provide the rationale for the use of melatonin as a prophylactic 
agent against this condition. Melatonin has pan-antiviral effects and it diminishes the severity of viral infections and reduces 
the death of animals infected with numerous different viruses, including three different coronaviruses. Network analyses, 
which compared drugs used to treat SARS-CoV-2 in humans, also predicted that melatonin would be the most effective 
agent for preventing/treating COVID-19. Finally, when seriously infected COVID-19 patients were treated with melatonin, 
either alone or in combination with other medications, these treatments reduced the severity of infection, lowered the death 
rate, and shortened the duration of hospitalization. Melatonin’s ability to arrest SARS-CoV-2 infections may reduce health 
care exhaustion by limiting the need for hospitalization. Importantly, melatonin has a high safety profile over a wide range 
of doses and lacks significant toxicity. Some molecular processes by which melatonin resists a SARS-CoV-2 infection are 
summarized. The authors believe that all available, potentially beneficial drugs, including melatonin, that lack toxicity should 
be used in pandemics such as that caused by SARS-CoV-2.
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Introduction

Since the classification of SARS-CoV-2 infection as a pan-
demic, in excess of 140 publications have urged considera-
tion of melatonin as a safe and potentially effective treatment 
for this worldwide disease [1–13]. The rationale for its use 
not only stems from its high safety profile [14–16] but also 
from its multiple beneficial actions in experimental and clin-
ical studies related to the pandemic. This endogenously pro-
duced molecule is a broad-spectrum antiviral agent [17, 18] 
that has shown efficacy in reducing the severity of COVID-
19. Yet, the idea of its use has not generated any desirable 
interest at the governmental or pharmaceutical level. Mean-
while, numerous potentially toxic and expensive repurposed 
drugs have been espoused or used as clinical treatments, 
e.g., colchicine [19], glucocorticoids [20], remdesivir [14, 
21], and many others [22–25]. Although of significant value, 
even the currently available vaccines are not without occa-
sional serious side effects [26–28]. Moreover, the efficacy of 
the vaccines has decreased as the virus has mutated [29, 30]. 
Already, there are several variants that have been identified 
and there will likely be others that may further reduce the 
effectiveness of the vaccines. Summarized in this report are 
some actions of melatonin that support its use in the preven-
tion and/or treatment of SARS-CoV-2 infections.

The search terms used to identify the published litera-
ture related to melatonin and its potential association with 
COVID-19/SARS-CoV-2 are summarized in Table 1. The 
searches used PubMed.gov and were performed on Novem-
ber 21, 2021. Among these reports, publications related to 
the ability of melatonin to suppress inflammation and the 
cytokine storm associated with COVID-19 disease were 

most frequent. Melatonin use as a treatment for humans 
infected with SARS-CoV-2 also was a common considera-
tion. A summary of the outcomes/endpoints of the studies/
clinical trials in which melatonin was used as a treatment or 
in which network analysis suggested the high likelihood of 
melatonin being an effective treatment for COVID-19 is dis-
cussed in the appropriate section below (See Effective Dose, 
Timing of Administration, Limitations, and Future Studies). 
The already-published data confirming the efficacy of mela-
tonin in reducing the severity of human COVID-19 infection 
are summarized in tabulator form later in this report.

Melatonin and sepsis

While SARS-CoV-2 infections are generally thought of 
as a pulmonary issue, the consequences of this infection 
transcend the respiratory system. Ultimately, this disease 
becomes systemic with the development of severe sepsis 
or septic shock leading to multiple organ failure which is 
the condition that commonly leads to death of SARS-CoV-
2-infected patients. Sepsis can occur as a consequence of a 
viral, bacterial, or fungal infection and, from a pathophysi-
ological perspective, the damage to multiple organs leading 
to their failure and death of the patient has the same cause, 
i.e., the cytokine storm and hyperinflammation with exten-
sive oxidative damage [17, 31–33]. Due to is potent antioxi-
dant and anti-inflammatory effects, melatonin has frequently 
been proposed for use to overcome the cytokine storm in 
virus-related infections [34, 35], including that caused by 
SARS-CoV-2 [36–38]) (Fig. 1).

In bacteria-related sepsis as well, melatonin is an effec-
tive prophylactic agent [39, 40]. Importantly, melatonin 
prevented the death of premature newborn humans suffer-
ing from severe bacterial sepsis or septic shock [41] and 
melatonin has been suggested for use in individuals suffering 
from other serious bacterial infections, including necrotizing 
fasciitis [42, 43]. Recently, elevated levels of endogenous 
melatonin were found to correlate with the ability to resist 
brucellosis infection [44]. As observed by Snider et al. [45] 
in COVID-19-infected patients, excessive blood levels of 
sPLA2-IIA (a toxic phospholipase; see below) due to a bac-
terial infection are consequential in causing lung surfactant 
changes culminating in acute lung injury [46].

As with both gram-negative and gram-positive bacte-
rial infections inducing sepsis, likewise fungal infestations, 
which are highly detrimental to lung physiology and difficult 
to successfully treat, promote similar organ and systemic 
pathologies, including sepsis and all of its ramifications [47, 
48]. As highlighted by Root-Bernstein [12], the worst-case 
scenario for developing serious COVID-19 disease may 
involve combined infection of the lungs with the SARS-
CoV-2 virus and bacteria/fungi causing a synergistic action 

Table 1   Results (number of related publications) of the search terms 
using Pubmed.gov which relate to COVID-19 and melatonin

When SARS-CoV-2 was used in lieu of COVID-19, similar results 
were obtained. Searches were conducted on November 21, 2021
* ARDS Acute Respiratory Distress Syndrome

Search terms Number of 
publica-
tions

COVID-19, melatonin 143
COVID-19, melatonin, inflammation 47
COVID-19, melatonin, cytokine storm 30
COVID-19, melatonin, ARDS* 12
COVID-19, melatonin, sepsis 8
COVID-19, melatonin, anosmia, ageusia 1
COVID-19, melatonin, aging 10
COVID-19, melatonin, human 107
COVID-19, melatonin, treatment 97
COVID-19, melatonin, mechanisms 25
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in stimulating an exaggerated cytokine storm and inducing 
acute respiratory distress syndrome (ARDS). Since mela-
tonin is proposed to reduce the severity of viral, bacterial, 
and fungal infections, in the model proposed by Root-Bern-
stein [12], melatonin would seem to be a good treatment 
choice.

Melatonin/HIF1α interactions

A hallmark of septicemia, regardless of whether it is caused 
by a bacterium, virus, or a fungus, is the conversion of the 
metabolic phenotype of activated immune cells from mito-
chondrial oxidative phosphorylation to cytosolic glycolysis, 
i.e., Warburg-type metabolism [49–52]. Major contributors 
to the switch from mitochondrial glucose oxidation to the 
upregulation of pyruvate metabolism in the cytosol often are 
accompanied by stimulation of hypoxia-inducible factor-1α 
(HIF-1α) and activation of NF-ҝB and other transcription 
factors which exaggerate inflammation [53–55]. In COVID-
19-infected patients, macrophages convert from M2 anti-
inflammatory to M1 pro-inflammatory cells which, along 
with other immune cells that exhibit a similar switch, con-
tribute to the cytokine storm which leads to serious damage 
not only to the respiratory system but also in many other 
organs, thereby precipitating multiple organ failure [44, 56] 

(Fig. 1). Thus, melatonin may reduce the damage resulting 
from COVID-19-mediated septicemia by quelling HIF-1α, 
suppressing NF-ҝB, inhibiting the inflammasome and con-
verting pro-inflammatory M1 macrophages to anti-inflam-
matory M2 macrophages while also reversing Warburg-type 
metabolism [57, 58] (Fig. 1). The negative role of inducible 
factor-1α (HIF-1α) activation has been mentioned as a con-
tributing factor to serious SARS-CoV-2 infections which 
involve the upregulation of the cytokine storm and the asso-
ciated multi-organ failure [59–62].

HIF1-α, also known as oxygen sensing transcription 
factor, is activated as a result of systemic hypoxia which 
occurs after the accumulation of edema and cellular debris 
in the respiratory alveoli which leads to poor O2/CO2 
exchange. Increased mortality is observed in patients with 
elevated HIF-1α and an associated severe cytokine release 
[63]. Incremental changes in the level of HIF-1α also help 
to explain why diabetics are more prone to severe SARS-
CoV-2 infections [64]; hyperglycemia leads to increased gly-
colysis in inflammatory monocytes and macrophages. This 
facilitates viral replication which contributes to elevated 
reactive oxygen species (ROS) generation which, in turn, 
stabilizes HIF1-α. This supports glycolysis and exaggerates 
the cytokine storm in these individuals.

Melatonin is a well-recognized suppressor of HIF-1α 
under a number of experimental conditions [65–67]. While 

Fig. 1   The actions of melatonin 
that contribute to the ability of 
this ubiquitously distributed 
molecule in reducing the sever-
ity of a SARS-CoV-2 infection. 
HIF-1α = hypoxia-inducible 
factor 1 alpha; M1 = pro-inflam-
matory macrophage; M2 = anti-
inflammatory macrophage; 
mtDNA = mitochondrial DNA; 
NF-ҝB = nuclear factor kappa 
B; Nrf2 = transcription factor 
NF-E2 p45 transcription factor; 
PLA2 = phospholipase A2; 
RNS = reactive nitrogen species; 
ROS = reactive oxygen species; 
SOD2 = superoxide dismutase 
2. Pointed arrow = stimulation; 
blunt arrows = inhibition
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the mechanism of that suppression is not specifically known 
[68], it may be the result of its direct inhibition of the cyto-
solic oxygen sensor or related to the potent antioxidant 
activity of the molecule which removes the agents that 
stabilize HIF-1α, i.e., ROS [69]. Thus, if the prediction of 
Codo et al. [64] is valid, which we feel it is, the inhibition of 
HIF-1α would contribute to a reduction in lung damage and 
COVID-19 severity, then the use of melatonin as a treatment 
of SARS-CoV-2-infected patients would be further justified 
[70–72].

Melatonin/PLA2 interactions

The recent discovery of a correlation between circulating 
secreted phospholipase-A2 (Group IIA) (sPLA2-IIA) and 
the severity of COVID-19 disease [45] prompted the con-
sideration of another potential mechanism by which mela-
tonin may inhibit this viral infection. What Snider et al. [45] 
reported is that sPLA2-IIA levels and blood urea nitrogen 
(BUN) concentrations, indicative of renal damage, were 
strongly associated with the intensity of the infection and 
mortality of the infected patients. As a result of these cor-
relations, the authors used the PLA-BUN index as a means 
to evaluate the likelihood of severe COVID-19 infections. 
Moreover, they proposed that suppression of sPLA2-IIA 
levels could be an important target to prevent or attenuate 
multiple organ failure, disseminated intravascular coagula-
tion, and death of SARS-CoV-2-infected subjects.

Activated sPLA2-IIA is an inflammatory agent that is 
particularly destructive to cell biomembranes due to its abil-
ity to hydrolyzed fatty acids [73–75]. The membrane dam-
age leads to the release of arachidonic acids and lysophos-
pholipids; the arachidonic acids are then metabolized by 
cyclooxygenase to thromboxanes, prostacyclins, prosta-
glandins, etc. These eicosanoids promote inflammation and 
oxidative stress in multiple organs [76–78], which signifi-
cantly contributes to vital organ dysfunctions (Fig. 1). The 
cell membranes that are damaged under systemic hyperin-
flammatory conditions include those of the mitochondria 
with energy failure being commonplace in these diseased 
situations [79]. By inhibiting cyclooxygenase, melatonin 
attenuates the hyperinflammatory response that accompa-
nies a SARS-CoV-2 infection [80]. Hyperinflammation is 
often also accompanied by metabolic reprogramming, i.e., 
conversion of the inflamed cells to a usually pathological 
Warburg-type metabolism [81], a process that is reversed 
by melatonin [82, 83].

In addition to being elevated in individuals infected with 
SARS-CoV-2, high sPLA2-IIA levels have been measured 
in patients suffering from bacterial sepsis, a major killer of 
humans throughout the world, as well as from cardiac and 
hemorrhage shock [84]. The toxic actions of snake venoms 

also involve, along with an elevation of metalloprotease activi-
ties, increases in PLA2 [85]. Symptoms of snake venom tox-
icity include out-of-control inflammation and coagulopathy 
along with other complications and metabolic reprogramming 
of macrophages to the M1 hyperinflammatory phenotype [86]. 
In this context, the ability of melatonin to mitigate the toxic-
ity of snake venoms has been documented [87, 88]. Although 
neither of these studies specifically examined the actions of 
melatonin on PLA2 activity, they report that it did counteract 
the extensive oxidative damage and inflammation in animals 
that were injected with the venom of the Egyptian cobra (Naja 
haje) or that of the saw scaled viper (Echis carinatus). The 
other enzymes known to be upregulated as a result of a ven-
omous bite are metalloproteinases which in other pathological 
situations are also inhibited by melatonin [89]. Additionally, 
melatonin counteracts the effects of the nematocyst toxin of 
the purple-striped jelly fish (Pelagia noctiluca) [90]. The com-
position of this toxin is not well characterized but includes 
neuropeptides, prostanoids, membrane pore forming toxins, 
etc.

The commonality among the symptoms of these different 
conditions as they relate to sPLA2-IIA may explain some of 
the beneficial actions of melatonin as observed in a variety 
of disease situations, especially when intensive inflammation, 
excessive oxidative stress, mitochondrial dysfunction, meta-
bolic reprogramming, and so on are involved. These signs are 
all common in individuals infected with SARS-CoV-2, where 
melatonin is protective. Melatonin has an unusually diverse 
skill set for suppressing diseases that are associated with these 
changes. Melatonin is a confirmed potent anti-inflammatory 
agent and antioxidant in many experimental models and clini-
cal situations [32, 91–94]. It has been widely suggested for 
use as an antidote to COVID-19 infections, a recommendation 
supported by studies in both animal and in human studies [95, 
96]. Clinically, melatonin treatment reduces the severity of 
SARS-CoV-2 infections in terms of lowering the seriousness 
of symptoms, decreasing the need for hospitalization (which 
simultaneously helps control health care exhaustion), reducing 
the duration of hospital stay when this is necessary, elimi-
nating the need for mechanical intubation, and lessening the 
death rate [4, 11]. Even prior to the identification of the current 
COVID-19 pandemic, melatonin was shown effective in reduc-
ing oxidative damage and lowering the inflammatory burden in 
other viral diseases [97–101], including those caused by other 
coronaviruses [102], and it has been classified as a potential 
pan-antiviral agent, although it is not viricidal.
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Effective dose, timing of administration, 
limitations, and future studies

Applications have been made for 10 clinical trials; most of 
these are on-going and are summarized in tabular form in 
the comprehensive report of Ramos et al. [16]. In these tri-
als, total melatonin doses ranging between 2 mg daily and 
500 mg daily are proposed for use; these are either given 
orally once per day or equally divided in multiple doses 
over a 24-h period. One study is designed to use intrave-
nously infused melatonin. The adult patients selected for 
treatment range from newly diagnosed to critically ill sub-
jects in intensive care units; the primary outcomes to be 
assessed vary widely among the trials. None of these stud-
ies have proposed the use of children, possibly because 
SARS-CoV-2 infections are less common in young indi-
viduals. As in adults, melatonin use and safety in children 
has been tested where high doses of melatonin have been 
proven safe [41].

The wide variety of melatonin doses proposed in these 
trials is much like the already-published reports on the use 
of melatonin to treat COVID-infected adults (Table 2). In 
these reports the amounts of melatonin given fall between 
3 and 600 mg daily. Whereas all the studies reported posi-
tive outcomes when melatonin was used, none observed 
any toxicity of melatonin, including at the highest doses 
employed. In the report of a network analysis of drugs 
potentially useful in treating COVID, melatonin was sug-
gested as the one to have the greatest likelihood of control-
ling SARS-CoV-2 infections [11]. The dose of melatonin 
that may be effective would possibly vary according to 

the age of the infected patient, since in aged individuals 
melatonin levels are often greatly diminished [106, 107]. 
Indeed, the greater susceptibility of the elderly to a SARS-
CoV-2 has been speculated to be a result of the reduc-
tion in endogenous melatonin production [108]. Likewise, 
body size may be a consideration regarding the amount of 
melatonin administered. As a general rule, perhaps 1 mg 
per kg body weight may be a starting point. Due to the 
high safety profile of melatonin, subsequent trials should 
also include individuals over a wide age range, including 
children.

When melatonin is used as a sleep aid or for some other 
uses, it is typically taken just before bedtime. This also is 
consistent with the rise in the nighttime endogenous mela-
tonin released from the pineal gland [109]. In extreme situa-
tions, such as serious illness as during a COVID-19 infection 
(Table 2), melatonin was sometimes given in divided doses 
throughout each 24-h period. The rationale for this is that the 
elevated free radical generation as well as the inflammatory 
response associated with this disease persists during both 
the light and dark period. To aid in the inhibition of these 
damaging responses, it may improve the clinical outcome 
if melatonin is used as a treatment of infected individuals 
during the day, when circulating melatonin levels are at their 
nadir [109, 110].

There are some limitations to the already-published stud-
ies. While the endpoints were generally objective in terms 
of their measurement, usually the studies were not blinded. 
Co-morbidities among the treated patients varied as did the 
other drugs that were used concurrently. Some of the studies 
included a small number of patients. At this point, there is 
no standardization of the optimal route of administration or 

Table 2   Clinical studies/trials in which melatonin was tested as a treatment for SARS-CoV-2 infection

The studies varied widely in terms of melatonin dosage and endpoints measured. Each of the reports suggest melatonin has efficacy in improving 
the outcome of the infected patients. The readers are urged to consult the original publications for further details
* CRP C-reactive protein

Reference Study type Number of patients Total dose of melatonin Outcomes

Castillo et al
[95]

Retrospective case 20 Oral, 36–72 mg (4 doses) ↓Need for mechanical ventilation
↓Duration of hospitalization
↑Survival

Farnoosh et al. [96] Randomized double-blind 44 9 mg (3 doses) ↓Pulmonary symptoms
↓CRP*
↓Duration of hospitalization

Hassan et al. [103] Randomized prospective 158 10 mg ↓Sepsis
↓Microvascular coagulation
↓Mortality

Mousavi et al. [104] Randomized prospective 96 3 mg ↑Blood oxygen
↑Sleep time

Alizadeh et al. [105] Randomized prospective 31 6 mg ↓COVID symptoms
↓CRP

Ramlall et al. [4] Retrospective 13, 394 Different doses ↓Need for intubation
↑Outcome for those intubated
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of the time of day that would yield the best results. The most 
effective or necessary dose is also not established. On the 
positive side, melatonin has essentially no toxicity and, as a 
result, no LD50 has been established despite attempts to do 
so. As much as 1000 mg has been given to healthy humans 
every day for a month without any substantial negative 
effects [111]. Also, melatonin is safe when administered via 
multiple routes. A key observation in a couple of the clinical 
reports was the reduced mortality of the melatonin-treated 
subjects (Table 2). Considering the preliminary findings in 
humans and the very large experimental base of information 
that strongly supports its efficacy as a treatment of COVID-
19, well-designed, placebo-controlled, double-blinded stud-
ies are needed. Hopefully, the on-going approved clinical 
trials will resolve essential treatment issues. Meanwhile, 
steps to identify in greater detail the mechanisms by which 
melatonin resists this viral and other viral infections should 
continue.

Concluding remarks

Beyond melatonin’s well-known antioxidant and anti-
inflammatory actions which have proven the efficacy of 
this molecule in the treatment of diseases/ conditions where 
excessive free radical-mediated oxidative damage and 
hyperinflammation are causative factors [112–116], the 
studies summarized herein also support its use as a pos-
sible treatment for COVID-19 disease. Melatonin has been 
proposed as a potential effective inhibitor of the destructive 
inflammatory consequences of a SARS-CoV-2 infection 
[2, 4, 7, 11], an idea supported by observed and predicted 
improvements in the outcome of patients with this disease 
[95, 96] (Table 2). Numerous inter-related factors conspire 
to enhance the cytokine storm and multiple organ failure 
associated with COVID-19 disease severity and mortality, 
including elevated sPLA2-IIA, development of pro-inflam-
matory M1 macrophages, activation of HIF-1α, conversion 
to Warburg-type metabolism of immune cells, damage to 
mitochondria, massive release of cytokines, oxidative stress, 
etc. [117–120] (Fig. 1); each of these actions have been 
shown to be counteracted by melatonin. A center piece of 
this series of processes may be the alterations in mitochon-
drial physiology and the shift of glucose oxidation to the 
cytosol. This change in glucose handling markedly alters the 
metabolism of the mitochondria, which is critical to limit-
ing cellular dysfunction, resisting disease, and preventing 
organismal death. Indeed, there are numerous maladies that 
are specifically classified as mitochondria-related diseases 
[121–125] with this category, including viral infections, such 
as SARS-CoV-2 [126–129].

If melatonin is in fact a significant antidote to SARS-
CoV-2 infection, the development of a Warburg-type 

metabolism by hyperactive immune cells and other diseased 
cells [130], may be indirectly a major contributor to COVID-
19 disease. This is because when intracellular glucose 
metabolism is reprogrammed from the mitochondria into 
the cytosol, the mitochondria can no longer synthesize acetyl 
coenzyme A (acetyl-CoA). This has high importance, since 
acetyl-CoA is a required co-substrate for intramitochondrial 
melatonin production [131], which normally occurs in these 
organelles of healthy cells but likely not in the mitochondria 
of highly inflamed cells [129]. Thus, in the absence of local 
melatonin synthesis in infected cells, the loss of this locally 
produced potent endogenously generated anti-inflammatory 
and antioxidant agent, the mitochondria lose a major portion 
of their protection against reactive oxygen species, inflam-
matory cytokines, etc., leading to their dysfunction; this 
contributes to a weakening of the cells with an increased 
susceptibility to cellular destruction by SARS-CoV-2. This 
would help explain the published data documenting the abil-
ity of melatonin to resist virus-related diseases, including 
that related to several different coronaviruses [102]. The 
ability of melatonin to reverse the Warburg effect in patho-
logical cells in humans was recently documented, presum-
ably allowing the mitochondria also to synthesize melatonin 
[129, 130].

The failure of melatonin to attract attention as a potential 
treatment for COVID-19 is somewhat disappointing consid-
ering a number of scientific/medical papers that have rec-
ommended its use. This may relate to a number of factors, 
including the lack of promotion of its therapeutic use for this 
disease by any influential group. Numerous already-available 
pharmaceutical drugs have been repurposed for the potential 
treatment of COVID-19. Yet, no organization/agency has 
proposed the use of melatonin even though it is much less 
expensive (sometimes a 100-fold less costly than the pro-
posed prescription medications), and based on the outcomes 
of recent published trials [95, 96], it has efficacy in treating 
this condition. After an analysis of 27 publications related 
to the ability of drugs to successfully treat COVID-19, the 
authors concluded that melatonin is at least twice as effective 
as remdesivir or tocilizumab in reducing the inflammatory 
markers of a coronavirus 2019 infection [132]. Both remde-
sivir (Veklury) and tocilizumab (Actemra) are FDA author-
ized for use to treat select COVID patients suffering with a 
severe infection; both drugs have notable side effects and are 
given intravenously [133, 134]. In contrast, melatonin has a 
high safety profile and can be taken orally or administered by 
any other route [16]. Since melatonin is non-patentable and 
is inexpensive, the incentive of the pharmaceutical industry 
to support its use is lost. Finally, pharmaceutical drugs are 
sometimes enthusiastically advanced by individuals who 
stand to gain financially [135].

Better means of treatment for COVID-19 and other dis-
eases, especially when a medication is less expensive and 
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the toxicity of the suggested drug is minimal. All reason-
able treatment options should equally be considered, not 
only those that have the backing of the most influential 
medical/pharmaceutical personnel [136]. Some in the 
profession have considered the COVID-19 pandemic an 
opportunity that should be exploited for personal gain. 
This is not permissible in medicine. There are examples 
of bias and/or conflicts of interest when treatment options 
for COVID-19 are considered [137].

A major purpose of the current report is to urge “lev-
eling of the playing field” such that all potential reasonable 
options be considered to fight any serious, rapidly spread-
ing disease, not only the COVID-19 pandemic [138]. The 
World Health Organization made a similar claim in 2014 
during the Ebola outbreak in western Africa. In grave cri-
ses, such as during an Ebola epidemic or the COVID-19 
pandemic, it is ethical to take advantage of all possible 
available and safe treatments even if their efficacy may 
not be definitively established especially when the drug 
has no serious side effects. Indeed, considering a large 
number of deaths that continue to occur worldwide due to 
SARS-CoV-2 infections, it may be unethical not to take 
advantage of any potentially safe treatments, especially if 
the vaccines become less effective due to continued muta-
tions of the virus. People who are vulnerable and may be 
infected with such diseases should not have to wait for the 
development of a new vaccine which often requires months 
to years, an interval during which death of many patients 
may be the outcome. Additionally, the currently available 
mRNA COVID-19 vaccines are not safe for everyone, 
in particular for those who may have multiple allergies, 
and many individuals refuse to be vaccinated [139–141]. 
Moreover, the vaccines are not universally protective since 
vaccinated individuals still die of SARS-CoV-2 infections. 
The use of melatonin would be especially advantageous 
because it can be orally self-administered, it is low in cost, 
and it lacks significant toxicity. This applies especially 
to impoverished regions of the world where the populace 
has fewer financial resources to devote to the treatment of 
this disease and where health care is not readily available. 
Additionally, although this paper considers melatonin as 
a sole treatment for SARS-CoV-2 infections, it has also 
been suggested as a co-treatment with vaccines to improve 
their efficacy [15, 142–144] and in combination with other 
drugs [132]; this latter suggestion would be especially 
applicable when the medications have different but com-
plimentary mechanisms of action to those of melatonin. 
Finally, to avoid or to reduce the likelihood of pervasive 
viral infections (e.g., by the highly deadly zoonotic Nipah 
virus currently invading India or the Omicron variation 
of SARS-CoV-2)) in the future, the profession should be 
more proactive as opposed to being reactive.
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