A matrix formula for Schur complements of nonnegative selfadjoint linear relations

Maximiliano Contino, Alejandra Maestripieri and Stefania Marcantognini

Abstract

If a nonnegative selfadjoint linear relation A in a Hilbert space and a closed subspace \mathcal{S} are assumed to satisfy that the domain of A is invariant under the orthogonal projector onto \mathcal{S}, then A admits a particular matrix representation with respect to the decomposition $\mathcal{S} \oplus \mathcal{S}^{\perp}$. This matrix representation of A is used to give explicit formulae for the Schur complement of A on \mathcal{S} as well as the \mathcal{S}-compression of A.

Mathematics Subject Classification (2010). 47A06, 47B25, 47A64.
Keywords. Schur complement, Shorted operators, linear relations, unbounded selfadjoint operators.

1. Introduction

Given a nonnegative selfadjoint linear relation A in a Hilbert space \mathcal{H} and a closed subspace \mathcal{S} of \mathcal{H}, it is not always the case that A admits a 2×2 block matrix representation with respect to the decomposition $\mathcal{S} \oplus \mathcal{S}^{\perp}$. On the other hand, if it does, the matrix representation need not be unique. Results on this subject can be found in [8, 14, 11, 6, 10]. Under the hypothesis that $\operatorname{dom}(A)$ (the domain of A) is an invariant subspace for the orthogonal projection onto $\mathcal{S}, P_{\mathcal{S}}$ (that is $\left.\mathcal{D}_{1}:=P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)\right)$, we show that A can be represented by a 2×2 block matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where a, b, c and d are linear relations. Furthermore, A admits a specific representation $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ similar to the one for bounded operators (cf. [1], [7, Lema A.1]), in the sense that a and d in this decomposition are nonnegative selfadjoint linear relations and there exists a contraction $g: \mathcal{S}^{\perp} \rightarrow \mathcal{S}$ such that $b=\left.a^{1 / 2} g d^{1 / 2}\right|_{P_{\mathcal{S}^{\perp}}(\operatorname{dom}(A))}$ and $c=\left.d^{1 / 2} g^{*} a^{1 / 2}\right|_{P_{\mathcal{S}}(\operatorname{dom}(A))}$.

In [3], Arlinskiĭ proves that for \leq the forms order [12, 4], the maximum of the following set of nonnegative selfadjoint linear relations,

$$
\left\{X: 0 \leq X \leq A, \operatorname{ran}(X) \subseteq \mathcal{S}^{\perp}\right\}
$$

always exists and he defines the Schur complement of the relation A with respect to $\mathcal{S}, A_{/ \mathcal{S}}$, as this maximum. Under the invariance condition mentioned above, we give a matrix formula for $A_{/ \mathcal{S}}$ in terms of the matrix coefficients of A; namely,

$$
A_{/ \mathcal{S}}=\left(\begin{array}{cc}
0 & 0 \\
0 & T^{*} T
\end{array}\right)
$$

with $T:=\overline{\left.D_{g} d^{1 / 2}\right|_{P_{\mathcal{S}^{\perp}}(\operatorname{dom}(A))}}$, where $D_{g}:=\left(1-g^{*} g\right)^{1 / 2}$ is the defect operator associated to the matrix representation of A. We also give an alternate proof of the existence of the Schur complement. This formula is an extension of the well known formula by Anderson and Trapp for bounded operators [1]. We also define the \mathcal{S} compression $A_{\mathcal{S}}$ of A. If we assume further that $\operatorname{dom}\left(A^{1 / 2}\right)$ is an invariant subspace of the orthogonal projection $P_{\mathcal{L}}$, where $\mathcal{L}:=\overline{A^{1 / 2}\left(\mathcal{D}_{1}\right)} \cap \overline{\operatorname{dom}}(A)$, then we obtain Pekarev-type formulae for A / \mathcal{S} and $A_{\mathcal{S}}[15]$, and we show that $A=A_{\mathcal{S}}+A / \mathcal{S}$.

The paper is organized as follows. In Section 2 we outline some background material, primarly on linear relations. Section 3 is devoted to the problem of representing a selfadjoint linear relation A as a 2×2 relation matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with respect to the decomposition $\mathcal{S} \oplus \mathcal{S}^{\perp}$. In Proposition 3.5, we prove that the relation A admits a 2×2 block matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ if and only if its operator part A_{0} admits a block matrix representation with respect to $\overline{\mathcal{D}_{1}}$ plus the extra condition $\mathcal{S} \ominus \mathcal{D}_{1} \subseteq \operatorname{mul}(A)$ (the multivalued part of A). The main result of this section is Theorem 3.11 where this matrix representation of A is fully described when A is nonnegative. In Section 4, we again use the matrix representation of the nonnegative selfadjoint linear relation A to derive formulae for the Schur complement and compression of A.

2. Preliminaries

Throughout, all spaces are complex and separable Hilbert spaces. As usual, the direct sum of two subspaces \mathcal{M} and \mathcal{N} of a Hilbert space \mathcal{H} is indicated by $\mathcal{M}+\mathcal{N}$ and the orthogonal direct sum by $\mathcal{M} \oplus \mathcal{N}$. The orthogonal complement of a subspace $\mathcal{M} \subseteq \mathcal{H}$ is written as \mathcal{M}^{\perp}, or $\mathcal{H} \ominus \mathcal{M}$ interchangeably. The symbol $P_{\mathcal{M}}$ denotes the orthogonal projection with range \mathcal{M}.

The space of everywhere defined bounded linear operators from \mathcal{H} to \mathcal{K} is written as $L(\mathcal{H}, \mathcal{K})$, or $L(\mathcal{H})$ when $\mathcal{H}=\mathcal{K}$. The identity operator on \mathcal{H} is written as 1 , or $1_{\mathcal{H}}$ if it is necessary to disambiguate.

The notion of Schur complement (or shorted operator) of A to \mathcal{S} for a nonnegative selfadjoint operator $A \in L(\mathcal{H})$ and $\mathcal{S} \subseteq \mathcal{H}$ a closed subspace, was introduced by M.G. Krein [13]. When \leq is the usual order in $L(\mathcal{H})$, he proved that the set $\left\{X \in L(\mathcal{H}): 0 \leq X \leq A\right.$ and $\left.\operatorname{ran}(X) \subseteq \mathcal{S}^{\perp}\right\}$ has a maximum element, which he defined as the Schur complement $A_{/ \mathcal{S}}$ of A to \mathcal{S}. This notion was later rediscovered by Anderson and Trapp [1]. If A is represented as the 2×2 block matrix $\left(\begin{array}{c}a \\ b^{*} \\ d\end{array}\right)$ with respect to the decomposition of $\mathcal{H}=\mathcal{S} \oplus \mathcal{S}^{\perp}$, they established the formula

$$
A_{/ \mathcal{S}}=\left(\begin{array}{cc}
0 & 0 \\
0 & d-y^{*} y
\end{array}\right)
$$

where y is the unique solution of the equation $b=a^{1 / 2} x$ such that the range inclusion $\operatorname{ran}(y) \subseteq \overline{\operatorname{ran}}(a)$ holds.

Although familiarity with the theory of linear relations is presumed, some background material from [9] is summarized below.

A linear relation (l.r.) from a Hilbert space \mathcal{H} to a Hilbert space \mathcal{K} is a linear subspace T of the cartesian product $\mathcal{H} \times \mathcal{K}$. The domain, range, null space or kernel and multivalued part of T is denoted by $\operatorname{dom}(T), \operatorname{ran}(T), \operatorname{ker}(T)$ and $\operatorname{mul}(T)$, respectively. When $\operatorname{mul}(T)=\{0\}, T$ is an operator; in this case, the operator T is uniquely determinated by $T x=y$ for $(x, y) \in T$.

The sum of two linear relations T and S from \mathcal{H} to \mathcal{K} is the linear relation defined by

$$
T+S:=\{(x, y+z):(x, y) \in T \text { and }(x, z) \in S\} .
$$

The componentwise sum is the linear relation defined by

$$
T \hat{+} S:=\left\{\left(x_{1}+x_{2}, y+z\right):\left(x_{1}, y\right) \in T \text { and }\left(x_{2}, z\right) \in S\right\} .
$$

The componentwise sum of T and S with $T \perp S$ is denoted by $T \hat{\oplus} S$. Let T be a linear relation from \mathcal{H} to a Hilbert space \mathcal{E} and let S be a linear relation from \mathcal{E} to \mathcal{K} then the product $S T$ is a linear relation from \mathcal{H} to \mathcal{K} defined by

$$
S T:=\{(x, y):(x, z) \in T \text { and }(z, y) \in S \text { for some } z \in \mathcal{E}\}
$$

If $T \in L(\mathcal{H}, \mathcal{E})$ then $(x, y) \in S T$ if and only if $(T x, y) \in S$.
The closure of a linear relation from \mathcal{H} to \mathcal{K} is the closure of the linear subspace in $\mathcal{H} \times \mathcal{K}$, when the product is provided with the product topology. The closure of an operator need not be an operator; if it is then one speaks of a closable operator. The relation T is called closed when it is closed as a subspace of $\mathcal{H} \times \mathcal{K}$. The adjoint relation from \mathcal{K} to \mathcal{H} is defined by

$$
T^{*}:=J T^{\perp}=(J T)^{\perp},
$$

where $J(x, y)=(y,-x)$. The adjoint is automatically a closed linear relation and, if \bar{T} denotes the closure of T, then $\bar{T}=T^{* *}:=\left(T^{*}\right)^{*}$. By definition, it is immediate that $\bar{T}^{*}=T^{*}$. Clearly,

$$
T^{*}=\{(x, y) \in \mathcal{K} \times \mathcal{H}:\langle g, x\rangle=\langle f, y\rangle \text { for all }(f, g) \in T\}
$$

Hence $\operatorname{mul}\left(T^{*}\right)=\operatorname{dom}(T)^{\perp}$ and $\operatorname{ker}\left(T^{*}\right)=\operatorname{ran}(T)^{\perp}$. Then, if T is closed both $\operatorname{ker}(T)$ and $\operatorname{mul}(T)$ are closed subspaces.

Let T be a linear relation from \mathcal{H} to a Hilbert space \mathcal{E} and let S be a linear relation from \mathcal{E} to \mathcal{K} then

$$
\begin{equation*}
T^{*} S^{*} \subset(S T)^{*} \tag{2.1}
\end{equation*}
$$

and there is equality in (2.1) if $S \in L(\mathcal{E}, \mathcal{K})$. If T and S are linear relations from \mathcal{H} to \mathcal{K} then

$$
\begin{equation*}
T^{*}+S^{*} \subset(T+S)^{*} \tag{2.2}
\end{equation*}
$$

and there is equality in (2.2) if $S \in L(\mathcal{H}, \mathcal{K})$.
Let T be a (not necessarily closed) linear relation in \mathcal{H}. Define $T_{0}:=T \cap$ $\left.\overline{(\overline{\mathrm{dom}}}(T) \times \overline{\mathrm{dom}}\left(T^{*}\right)\right)$ and $T_{\mathrm{mul}}:=\{0\} \times \operatorname{mul}(T)$. Then T_{0} is a closable operator from $\overline{\mathrm{dom}}(T)$ to $\overline{\mathrm{dom}}\left(T^{*}\right)$ [11].

Theorem 2.1 ([11, Theorem 3.9]). Let T be a (not necessarily closed) linear relation in \mathcal{H}. If there exists a linear relation B in \mathcal{H} such that

$$
\begin{equation*}
T=B \hat{+} T_{\mathrm{mul}}, \quad \operatorname{ran}(B) \subseteq \overline{\operatorname{dom}}\left(T^{*}\right), \tag{2.3}
\end{equation*}
$$

then the sum in (2.3) is direct and B is a closable operator which coincides with T_{0}. In particular, the decomposition of T in (2.3) is unique.

Hence if T admits a componentwise sum decomposition of the form (2.3) then, since $\overline{\operatorname{dom}}\left(T^{*}\right)=\operatorname{mul}(\bar{T})^{\perp} \subseteq \operatorname{mul}(T)^{\perp}$, it follows that

$$
\begin{equation*}
T=T_{0} \hat{\oplus} T_{\mathrm{mul}} \tag{2.4}
\end{equation*}
$$

We say that T is decomposable if T admits the componentwise sum decomposition (2.3), or equivalently, (2.4).

In particular, if T is a closed linear relation in \mathcal{H} then $\operatorname{mul}(T)=\operatorname{dom}\left(T^{*}\right)^{\perp}$ and T is decomposable and (2.4) is valid. In this case, T_{0} is a closed operator from $\overline{\operatorname{dom}}(T)$ to $\overline{\operatorname{dom}}\left(T^{*}\right)$ and T_{mul} is a closed linear relation. Also, $\operatorname{dom}\left(T_{0}\right)=\operatorname{dom}(T)$ and $\operatorname{ran}\left(T_{0}\right) \subseteq \overline{\operatorname{dom}}\left(T^{*}\right)$. The operator part T_{0} is densely defined in $\overline{\operatorname{dom}}(T)$ and maps into $\overline{\mathrm{dom}}\left(T^{*}\right)$. The operator parts T_{0} and $\left(T^{*}\right)_{0}$ are connected by

$$
\begin{equation*}
\left(T_{0}\right)^{\times}=\left(T^{*}\right)_{0} \tag{2.5}
\end{equation*}
$$

where $\left(T_{0}\right)^{\times}$denotes the adjoint of T_{0} when viewed as an operator from $\overline{\operatorname{dom}}(T)$ to $\overline{\operatorname{dom}}\left(T^{*}\right)$.

A linear relation T in \mathcal{H} is symmetric if $T \subset T^{*}$, selfadjoint if $T=T^{*}$ and nonnegative if $\langle y, x\rangle \geq 0$ for all $(x, y) \in T$. If T is a nonnegative selfadjoint linear relation we write $T \geq 0$.

Lemma 2.2. Let T be a closed linear relation in \mathcal{H} and suppose that $T=T_{0} \hat{\oplus} T_{\mathrm{mul}}$ as in (2.4). Then T is selfadjoint if and only if $\overline{\operatorname{dom}}\left(T^{*}\right)=\overline{\operatorname{dom}}(T)$ and T_{0} is a selfadjoint operator in $\overline{\operatorname{dom}}(T)$.
Proof. If $T=T^{*}$ then clearly $\overline{\operatorname{dom}}\left(T^{*}\right)=\overline{\operatorname{dom}}(T)$ and, by $(2.5),\left(T_{0}\right)^{\times}=\left(T^{*}\right)_{0}=T_{0}$ [9]. Conversely, suppose that $\overline{\operatorname{dom}}\left(T^{*}\right)=\overline{\operatorname{dom}}(T)$ and T_{0} is a selfadjoint operator in $\overline{\operatorname{dom}}(T)$. Then $\operatorname{mul}(T)=\operatorname{dom}\left(T^{*}\right)^{\perp}=\operatorname{dom}(T)^{\perp}=\operatorname{mul}\left(T^{*}\right)$ and, by (2.5), $\left(T^{*}\right)_{0}=\left(T_{0}\right)^{\times}=T_{0}$. So that

$$
T^{*}=\left(T^{*}\right)_{0} \hat{\oplus}\left(\{0\} \times \operatorname{mul}\left(T^{*}\right)\right)=T_{0} \hat{\oplus}(\{0\} \times \operatorname{mul}(T))=T
$$

Next a well-known result due to von Neumann (see [16, Proposition 3.18]) is extended to closed linear relations:
Theorem 2.3 ([9, Lemma 2.4]). Let T be a closed linear relation in \mathcal{H}. Then $T^{*} T$ is a nonnegative selfadjoint linear relation in \mathcal{H}. Furthermore,

$$
\begin{equation*}
T^{*} T=T^{*} T_{0}=T_{0}{ }^{*} T_{0} \tag{2.6}
\end{equation*}
$$

where T_{0} is the operator part of T. In particular

$$
\begin{equation*}
\operatorname{ker}\left(T^{*} T\right)=\operatorname{ker}(T)=\operatorname{ker}\left(T_{0}\right) \text { and } \operatorname{mul}\left(T^{*} T\right)=\operatorname{mul}\left(T^{*}\right)=\operatorname{mul}\left(T_{0}^{*}\right) \tag{2.7}
\end{equation*}
$$

Also, the operator part of $T^{*} T$ is

$$
\begin{equation*}
\left(T^{*} T\right)_{0}=\left(T^{*}\right)_{0} T_{0}=\left(T_{0}\right)^{\times} T_{0} \tag{2.8}
\end{equation*}
$$

Let $T \geq 0$ be a linear relation in \mathcal{H}. Since T is selfadjoint (and therefore closed), $\operatorname{mul}(T)=\operatorname{dom}(T)^{\perp}$. Hence $\mathcal{H}=\overline{\operatorname{dom}}(T) \oplus \operatorname{mul}(T)$. In this case T can be written as $T=T_{0} \hat{\oplus} T_{\text {mul }}$ where, by Lemma [2.2, T_{0} is a nonnegative selfadjoint operator in $\overline{\operatorname{dom}}(T)$. For $T \geq 0$, the (unique) nonnegative selfadjoint square root of T is defined by

$$
T^{1 / 2}:=T_{0}^{1 / 2} \hat{\oplus}(\{0\} \times \operatorname{mul}(T)),
$$

where $T_{0}^{1 / 2}$ is the square root of T_{0} [5]. Then, $\operatorname{mul}\left(T^{1 / 2}\right)=\operatorname{mul}(T), T_{0}^{1 / 2}=\left(T^{1 / 2}\right)_{0}$ and $\overline{\operatorname{dom}}(T)=\overline{\operatorname{dom}}\left(T^{1 / 2}\right)$ [9, Lemma 2.5]. Also, by (2.7),

$$
\begin{equation*}
\operatorname{ker}(T)=\operatorname{ker}\left(T^{1 / 2}\right)=\operatorname{ker}\left(T_{0}\right) \tag{2.9}
\end{equation*}
$$

There is a natural ordering for nonnegative selfadjoint relations in \mathcal{H}. For two nonnegative selfadjoint relations A and B, we write $A \leq B$ if

$$
\begin{equation*}
\operatorname{dom}\left(B_{0}^{1 / 2}\right) \subseteq \operatorname{dom}\left(A_{0}\right)^{1 / 2} \text { and }\left\|A_{0}^{1 / 2} u\right\| \leq\left\|B_{0}^{1 / 2} u\right\|, \text { for all } u \in \operatorname{dom}\left(B_{0}^{1 / 2}\right) \tag{2.10}
\end{equation*}
$$

The following is a result given in [9, Theorem 3.4]; we include its proof for the sake of completeness.
Lemma 2.4. Let A, B be nonnegative selfadjoint linear relations such that $A \leq B$. Then, there exists a contraction $W \in L(\overline{\operatorname{dom}}(B), \overline{\operatorname{dom}}(A))$ such that

$$
\begin{equation*}
W B_{0}^{1 / 2} \subset A_{0}^{1 / 2} \tag{2.11}
\end{equation*}
$$

where A_{0} and B_{0} are the operator parts of A and B, respectively.
Proof. Since $A \leq B, \operatorname{dom}\left(B_{0}^{1 / 2}\right) \subseteq \operatorname{dom}\left(A_{0}^{1 / 2}\right)$ and

$$
\begin{equation*}
\left\|A_{0}^{1 / 2} u\right\| \leq\left\|B_{0}^{1 / 2} u\right\|, \tag{2.12}
\end{equation*}
$$

for every $u \in \operatorname{dom}\left(B_{0}^{1 / 2}\right)$. Define the linear relation

$$
W:=\left\{\left(B_{0}^{1 / 2} h, A_{0}^{1 / 2} h\right): h \in \operatorname{dom}\left(B_{0}^{1 / 2}\right)\right\} .
$$

If $(x, y) \in W$ then $(x, y)=\left(B_{0}^{1 / 2} h, A_{0}^{1 / 2} h\right)$ for some $h \in \operatorname{dom}\left(B_{0}^{1 / 2}\right)$. Then, by (2.12),

$$
\|y\|=\left\|A_{0}^{1 / 2} h\right\| \leq\left\|B_{0}^{1 / 2} h\right\|=\|x\| .
$$

So that W is a contraction from $\operatorname{ran}\left(B_{0}^{1 / 2}\right)$ to $\operatorname{ran}\left(A_{0}^{1 / 2}\right)$. Then W has a unique extension named again W from $\overline{\operatorname{ran}}\left(B_{0}^{1 / 2}\right) \subseteq \overline{\operatorname{dom}}(B)$ to $\overline{\operatorname{ran}}\left(A_{0}^{1 / 2}\right) \subseteq \overline{\operatorname{dom}}(A)$. Defining W as zero in $\overline{\operatorname{dom}}(B) \ominus \operatorname{ran}\left(B_{0}^{1 / 2}\right)$, the result follows.

If T is a linear relation in $\mathcal{H} \times \mathcal{K}$ and \mathcal{S} is a subspace of $\operatorname{dom}(T)$ then
$\left.T\right|_{\mathcal{S}}:=\{(x, y) \in T: x \in \mathcal{S}\}$ and $T(\mathcal{S}):=\{y:(x, y) \in T$ for some $x \in \mathcal{S}\}$.
A linear subspace \mathcal{D} of $\operatorname{dom}(T)$ is a core of T if the set $\left.T\right|_{\mathcal{D}}$ is dense in T, in which case $\overline{T(\mathcal{D})}=\overline{\operatorname{ran}} T$. If T admits the sum decomposition $T=T_{0} \hat{\oplus} T_{\mathrm{mul}}$ as in (2.4) and \mathcal{D} is a core of T_{0} then \mathcal{D} is a core of T. If T is a selfadjoint linear relation in \mathcal{H} and \mathcal{D} is a core of T then $\left(\left.T\right|_{\mathcal{D}}\right)^{*}=T$.

3. Matrix decomposition of nonnegative selfadjoint relations

Let \mathcal{S} be a closed subspace of \mathcal{H} and let $a \subseteq \mathcal{S} \times \mathcal{S}, b \subseteq \mathcal{S}^{\perp} \times \mathcal{S}, c \subseteq \mathcal{S} \times \mathcal{S}^{\perp}$ and $d \subseteq \mathcal{S}^{\perp} \times \mathcal{S}^{\perp}$ be linear relations. In [10, Definition 5.1], the linear relation in $\mathcal{H} \times \mathcal{H}$ generated by the blocks a, b, c and d is defined as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right):=\left\{\left(\binom{x_{1}}{x_{2}},\binom{w_{1}+z_{1}}{w_{2}+z_{2}}\right): \begin{array}{l}
\left(x_{1}, w_{1}\right) \in a,\left(x_{2}, z_{1}\right) \in b \\
\left(x_{1}, w_{2}\right) \in c,\left(x_{2}, z_{2}\right) \in d
\end{array}\right\} .
$$

On the other hand, given a linear relation A in \mathcal{H} and \mathcal{S} a closed subspace of \mathcal{H}, we say that A admits a 2×2 block matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ if there exist blocks $a \subseteq \mathcal{S} \times \mathcal{S}, b \subseteq \mathcal{S}^{\perp} \times \mathcal{S}, c \subseteq \mathcal{S} \times \mathcal{S}^{\perp}$ and $d \subseteq \mathcal{S}^{\perp} \times \mathcal{S}^{\perp}$ such that $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. In this case, it is easy to check that:

1. $\operatorname{dom}(a) \cap \operatorname{dom}(c)=\mathcal{S} \cap \operatorname{dom}(A)$ and $\operatorname{dom}(b) \cap \operatorname{dom}(d)=\mathcal{S}^{\perp} \cap \operatorname{dom}(A)$.
2. $\operatorname{mul}(a)+\operatorname{mul}(b)=\mathcal{S} \cap \operatorname{mul}(A)$ and $\operatorname{mul}(c)+\operatorname{mul}(d)=\mathcal{S}^{\perp} \cap \operatorname{mul}(A)$.

Lemma 3.1. Let \mathcal{M} and \mathcal{S} be subspaces of \mathcal{H} with \mathcal{S} closed. Then the following are equivalent:
(i) $P_{\mathcal{S}}(\mathcal{M}) \subseteq \mathcal{M}$;
(ii) $\mathcal{M}=\mathcal{S} \cap \mathcal{M} \oplus \mathcal{S}^{\perp} \cap \mathcal{M}$;
(iii) $P_{\mathcal{S}}(\mathcal{M})=\mathcal{S} \cap \mathcal{M}$.

Theorem 3.2 (cf. [10, Theorem 5.1]). Let A be a linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H}. Then the following are equivalent:
(i) A admits a 2×2 block matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$;
(ii) $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and $P_{\mathcal{S}}(\operatorname{mul}(A)) \subseteq \operatorname{mul}(A)$;
(iii) A admits a representation as

$$
A=\left(\begin{array}{ll}
a & b \tag{3.1}\\
c & d
\end{array}\right)
$$

where $a:=\left.P_{\mathcal{S}} A\right|_{\mathcal{S}}, b:=\left.P_{\mathcal{S}} A\right|_{\mathcal{S}^{\perp}}, c:=\left.P_{\mathcal{S}^{\perp}} A\right|_{\mathcal{S}}$ and $d:=\left.P_{\mathcal{S}^{\perp}} A\right|_{\mathcal{S}^{\perp}}$.
Lemma 3.3. Let A be a selfadjoint linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H}. If $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ then $P_{\mathcal{S}}(\operatorname{mul}(A)) \subseteq \operatorname{mul}(A)$.

Proof. Since A is selfadjoint, $\operatorname{mul}(A)=\operatorname{dom}(A)^{\perp}$. Let $y \in \operatorname{mul}(A)$. Then, for all $h \in \operatorname{dom}(A)$

$$
\left\langle P_{\mathcal{S}} y, h\right\rangle=\left\langle y, P_{\mathcal{S}} h\right\rangle=0,
$$

because $P_{\mathcal{S}} h \in \operatorname{dom}(A)$. Therefore $P_{\mathcal{S}} y \in \operatorname{dom}(A)^{\perp}=\operatorname{mul}(A)$.

Let A be a selfadjoint linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H}. Define

$$
\begin{align*}
& \mathcal{D}_{1}:=\mathcal{S} \cap \operatorname{dom}(A), \mathcal{D}_{2}:=\mathcal{S}^{\perp} \cap \operatorname{dom}(A) \tag{3.2}\\
& \mathcal{M}_{1}:=\mathcal{S} \cap \operatorname{mul}(A) \text { and } \mathcal{M}_{2}:=\mathcal{S}^{\perp} \cap \operatorname{mul}(A) \tag{3.3}
\end{align*}
$$

If $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ then, by Lemmas 3.1 and 3.3

$$
\begin{equation*}
\operatorname{dom}(A)=\mathcal{D}_{1} \oplus \mathcal{D}_{2} \text { and } \operatorname{mul}(A)=\mathcal{M}_{1} \oplus \mathcal{M}_{2} \tag{3.4}
\end{equation*}
$$

and A admits a 2×2 block matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$.
Define $\mathcal{N}_{i}:=\overline{\mathcal{D}_{i}}$, for $i=1$, 2. Clearly, $\overline{\operatorname{dom}}(A)=\mathcal{N}_{1} \oplus \mathcal{N}_{2}$.
Lemma 3.4. Let A be a selfadjoint linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H}. Then, the following are equivalent:
(i) $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$;
(ii) $P_{\mathcal{N}_{1}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and $\mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$;
(iii) $P_{\mathcal{N}_{2}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and $\mathcal{S}^{\perp}=\mathcal{N}_{2} \oplus \mathcal{M}_{2}$.

In this case, $\mathcal{N}_{1}=\mathcal{S} \cap \overline{\operatorname{dom}}(A)$ and $\mathcal{N}_{2}=\mathcal{S}^{\perp} \cap \overline{\mathrm{dom}}(A)$.
Proof. $(i) \Leftrightarrow($ ii $)$: If $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ then by (3.4), $\overline{\operatorname{dom}}(A)=\mathcal{N}_{1} \oplus \mathcal{N}_{2}$, $\mathcal{D}_{1}=\mathcal{N}_{1} \cap \operatorname{dom}(A)$ and $\mathcal{D}_{2}=\mathcal{N}_{2} \cap \operatorname{dom}(A)$. Therefore

$$
\begin{equation*}
\operatorname{dom}(A)=\mathcal{N}_{1} \cap \operatorname{dom}(A) \oplus \mathcal{N}_{2} \cap \operatorname{dom}(A) \tag{3.5}
\end{equation*}
$$

Hence $P_{\mathcal{N}_{1}}(\operatorname{dom}(A))=\mathcal{D}_{1} \subseteq \operatorname{dom}(A)$.
Also $\overline{\operatorname{dom}}(A) \subseteq\left(\mathcal{S} \ominus \mathcal{N}_{1}\right)^{\perp}$ or, equivalently, $\mathcal{S} \ominus \mathcal{N}_{1} \subseteq \operatorname{mul}(A)$. In fact, $\left(\mathcal{S} \ominus \mathcal{N}_{1}\right)^{\perp}=\mathcal{S}^{\perp} \oplus \mathcal{N}_{1} \supseteq \mathcal{N}_{2} \oplus \mathcal{N}_{1}=\overline{\mathrm{dom}}(A)$. Hence

$$
\mathcal{S}=\mathcal{N}_{1} \oplus\left(\mathcal{S} \ominus \mathcal{N}_{1}\right) \subseteq \mathcal{N}_{1} \oplus(\mathcal{S} \cap \operatorname{mul}(A))=\mathcal{N}_{1} \oplus \mathcal{M}_{1} \subseteq \mathcal{S} .
$$

Conversely, suppose that $P_{\mathcal{N}_{1}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and $\mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$. Then $P_{\mathcal{S}}=$ $P_{\mathcal{N}_{1}}+P_{\mathcal{M}_{1}}$. Since $\operatorname{dom}(A) \subseteq \operatorname{mul}(A)^{\perp} \subseteq \mathcal{M}_{1}^{\perp}$, it follows that

$$
P_{\mathcal{S}}(\operatorname{dom}(A))=\left(P_{\mathcal{N}_{1}}+P_{\mathcal{M}_{1}}\right)(\operatorname{dom}(A))=P_{\mathcal{N}_{1}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A) .
$$

$(i) \Leftrightarrow(i i i)$: It follows as $(i) \Leftrightarrow(i i)$ using that $P_{\mathcal{S}^{\perp}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$.
In this case, $\mathcal{N}_{1}=\mathcal{S} \cap \overline{\operatorname{dom}}(A)$. The inclusion $\mathcal{N}_{1}=\overline{\mathcal{S} \cap \operatorname{dom}(A)} \subseteq \mathcal{S} \cap$ $\overline{\operatorname{dom}}(A)$ always holds. Conversely, if $x \in \mathcal{S} \cap \overline{\operatorname{dom}}(A)$ write $x=x_{1}+x_{2}$, with $x_{1} \in \mathcal{N}_{1}$ and $x_{2} \in \mathcal{N}_{2}$. Then $x_{2}=x-x_{1} \in \mathcal{S} \cap \mathcal{S}^{\perp}$. So that $x_{2}=0$. Likewise, $\mathcal{N}_{2}=\mathcal{S}^{\perp} \cap \overline{\operatorname{dom}}(A)$.

Now, suppose that the selfadjoint linear relation A is written as

$$
\begin{equation*}
A=A_{0} \hat{\oplus} A_{\mathrm{mul}}, \tag{3.6}
\end{equation*}
$$

where A_{0} is the selfadjoint operator part of A in $\overline{\operatorname{dom}}(A)$.
Proposition 3.5. Let A be a selfadjoint linear relation in \mathcal{H}, let \mathcal{S} be a closed subspace of \mathcal{H} and suppose that A is written as in (3.6). Then A admits a 2×2 block matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ if and only if A_{0} admits a 2×2 block matrix representation with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$ and $\mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$, where $\mathcal{N}_{1}=\overline{\mathcal{D}_{1}}$, $\mathcal{N}_{2}=\overline{\mathcal{D}_{2}}$, and $\mathcal{D}_{1}, \mathcal{D}_{2}$ and \mathcal{M}_{1} are defined as in (3.2) and (3.3).

Proof. If A admits a 2×2 block matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$, by Theorem 3.2, $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Then, by Lemma 3.4 equation (3.5) follows and $P_{\mathcal{N}_{1} / / \mathcal{N}_{2}}\left(\operatorname{dom}\left(A_{0}\right)\right) \subseteq \operatorname{dom}\left(A_{0}\right)$, where $P_{\mathcal{N}_{1} / / \mathcal{N}_{2}}$ is the orthogonal projection onto \mathcal{N}_{1} in $L\left(\overline{\operatorname{dom}}\left(A_{0}\right)\right)$. Therefore, by Theorem 3.2 the linear operator A_{0} admits a 2×2 block matrix representation (in $\overline{\operatorname{dom}}\left(A_{0}\right)$) with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$ and, by Lemma 3.4 $\mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$. Conversely, if the linear operator A_{0} admits a 2×2 block matrix representation with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$, by Theorem $3.2, P_{\mathcal{N}_{1} / / \mathcal{N}_{2}}\left(\operatorname{dom}\left(A_{0}\right)\right) \subseteq$ $\operatorname{dom}\left(A_{0}\right)$. So that, by Lemma 3.1, equation (3.5) follows. Then, $P_{\mathcal{N}_{1}}(\operatorname{dom}(A)) \subseteq$
$\operatorname{dom}(A)$ and, since $\mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$, by Lemma 3.4 $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Hence, by Theorem 3.2, A admits a 2×2 block matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$.

Corollary 3.6. Let A be a selfadjoint linear relation in \mathcal{H}, let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and suppose that A is written as in (3.6).

If A_{0} admits the representation with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}, A_{0}=\left(\begin{array}{ll}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right)$, then A admits the representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$,

$$
A=\left(\begin{array}{ll}
a_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}^{\prime}\right) & b_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}^{\prime \prime}\right) \\
c_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}^{\prime}\right) & d_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}^{\prime \prime}\right)
\end{array}\right)
$$

where $\mathcal{M}_{1}^{\prime}, \mathcal{M}_{1}^{\prime \prime}$ are subspaces of \mathcal{S} and $\mathcal{M}_{2}^{\prime}, \mathcal{M}_{2}^{\prime \prime}$ are subspaces of \mathcal{S}^{\perp} such that $\mathcal{M}_{1}^{\prime}+\mathcal{M}_{1}^{\prime \prime}=\mathcal{M}_{1}$ and $\mathcal{M}_{2}^{\prime}+\mathcal{M}_{2}^{\prime \prime}=\mathcal{M}_{2}$.

Conversely, if A admits the representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}, A=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then A_{0} admits the representation with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$,

$$
A_{0}=\left(\begin{array}{ll}
P_{\mathcal{N}_{1}} a & P_{\mathcal{N}_{1}} b \\
P_{\mathcal{N}_{2}} c & P_{\mathcal{N}_{2}} d
\end{array}\right)
$$

Proof. Suppose that A_{0} admits the representation with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$

$$
A_{0}=\left(\begin{array}{ll}
a_{0} & b_{0} \\
c_{0} & d_{0}
\end{array}\right)
$$

Set $a:=a_{0} \hat{\oplus}\left\{\{0\} \times \mathcal{M}_{1}^{\prime}\right\}, b:=b_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}^{\prime \prime}\right), c:=c_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}^{\prime}\right)$, $d:=d_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}^{\prime \prime}\right)$. Since $\mathcal{M}_{1}^{\prime}, \mathcal{M}_{1}^{\prime \prime} \subseteq \mathcal{M}_{1}, \mathcal{M}_{2}^{\prime}, \mathcal{M}_{2}^{\prime \prime} \subseteq \mathcal{M}_{2}, \mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$ and $\mathcal{S}^{\perp}=\mathcal{N}_{2} \oplus \mathcal{M}_{2}$, it is clear that $a \subseteq \mathcal{S} \times \mathcal{S}, b \subseteq \mathcal{S}^{\perp} \times \mathcal{S}, c \subseteq \mathcal{S} \times \mathcal{S}^{\perp}$ and $d \subseteq \mathcal{S}^{\perp} \times \mathcal{S}^{\perp}$. Also,

$$
\begin{aligned}
\operatorname{dom}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\operatorname{dom}(a) \cap \operatorname{dom}(c) \oplus \operatorname{dom}(b) \cap \operatorname{dom}(d) \\
& =\operatorname{dom}\left(a_{0}\right) \cap \operatorname{dom}\left(c_{0}\right) \oplus \operatorname{dom}\left(b_{0}\right) \cap \operatorname{dom}\left(d_{0}\right) \\
& =\mathcal{N}_{1} \cap \operatorname{dom}(A) \oplus \mathcal{N}_{2} \cap \operatorname{dom}(A) \\
& =\mathcal{D}_{1} \oplus \mathcal{D}_{2}=\operatorname{dom}(A)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{mul}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\operatorname{mul}(a)+\operatorname{mul}(b) \oplus \operatorname{mul}(c)+\operatorname{mul}(d) \\
& =\mathcal{M}_{1}^{\prime}+\mathcal{M}_{1}^{\prime \prime} \oplus \mathcal{M}_{2}^{\prime}+\mathcal{M}_{2}^{\prime \prime}=\mathcal{M}_{1} \oplus \mathcal{M}_{2}=\operatorname{mul}(A)
\end{aligned}
$$

Let $(x, y) \in A=A_{0} \hat{\oplus}(\{0\} \times \operatorname{mul}(A))$. Then there exists $m \in \operatorname{mul}(A)$ such that $(x, y)=\left(x, A_{0} x\right)+(0, m)$. Then $x=x_{1}+x_{2}$ for some $x_{1} \in \mathcal{D}_{1}$ and $x_{2} \in \mathcal{D}_{2}$ and $m=m_{1}+m_{2}$ for some $m_{1} \in \mathcal{M}_{1}$ and $m_{2} \in \mathcal{M}_{2}$. Since $m_{1} \in \mathcal{M}_{1}$ and $m_{2} \in \mathcal{M}_{2}$, there exist $m_{1}^{\prime} \in \mathcal{M}_{1}^{\prime}, m_{1}^{\prime \prime} \in \mathcal{M}_{1}^{\prime \prime}, m_{2}^{\prime} \in \mathcal{M}_{2}^{\prime}$ and $m_{2}^{\prime \prime} \in \mathcal{M}_{2}^{\prime \prime}$ such that $m_{1}=m_{1}^{\prime}+m_{1}^{\prime \prime}$
and $m_{2}=m_{2}^{\prime}+m_{2}^{\prime \prime}$. Then

$$
\begin{aligned}
(x, y) & =\left(x, A_{0} x\right)+(0, m)=\left(\binom{x_{1}}{x_{2}},\left(\begin{array}{ll}
a_{0} & b_{0} \\
c_{0} & d_{0}
\end{array}\right)\binom{x_{1}}{x_{2}}\right)+\left(0,\binom{m_{1}}{m_{2}}\right) \\
& =\left(\binom{x_{1}}{x_{2}},\binom{a_{0} x_{1}+b_{0} x_{2}+m_{1}}{c_{0} x_{1}+d_{0} x_{2}+m_{2}}\right) \\
& =\left(\binom{x_{1}}{x_{2}},\binom{a_{0} x_{1}+b_{0} x_{2}+m_{1}^{\prime}+m_{1}^{\prime \prime}}{c_{0} x_{1}+d_{0} x_{2}+m_{2}^{\prime}+m_{2}^{\prime \prime}}\right) .
\end{aligned}
$$

Now, since $\left(x_{1}, a_{0} x_{1}+m_{1}^{\prime}\right)=\left(x_{1}, a_{0} x_{1}\right)+\left(0, m_{1}^{\prime}\right) \in a,\left(x_{2}, b_{0} x_{2}+m_{1}^{\prime \prime}\right)=\left(x_{2}, b_{0} x_{2}\right)+$ $\left(0, m_{1}^{\prime \prime}\right) \in b,\left(x_{1}, c_{0} x_{1}+m_{2}^{\prime}\right)=\left(x_{1}, c_{0} x_{1}\right)+\left(0, m_{2}^{\prime}\right) \in c$ and $\left(x_{2}, d_{0} x_{2}+m_{2}^{\prime \prime}\right)=$ $\left(x_{2}, d_{0} x_{2}\right)+\left(0, m_{2}^{\prime \prime}\right) \in d$, it follows that $(x, y) \in\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Hence, $A \subset\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and, since $\operatorname{dom}(A)=\operatorname{dom}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\operatorname{mul}(A)=\operatorname{mul}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, by [9] Corollary 2.2], $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Conversely, suppose that A is represented as $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Set $a_{0}:=P_{\mathcal{N}_{1}} a$, $b_{0}:=P_{\mathcal{N}_{1}} b, c_{0}:=P_{\mathcal{N}_{2}} c$ and $d_{0}:=P_{\mathcal{N}_{2}} d$. Then a_{0} is an operator in \mathcal{N}_{1}. In fact, if $(0, y) \in a_{0}$, then there exists $z \in \mathcal{S}$ such that $(0, z) \in a$ and $y=P_{\mathcal{N}_{1}} z$. Therefore, $z \in \operatorname{mul}(a) \subseteq \mathcal{M}_{1} \perp \mathcal{N}_{1}$ and then $y=0$. Analogously, b_{0}, c_{0} and d_{0} are operators. Also,

$$
\begin{aligned}
\operatorname{dom}\left(\begin{array}{ll}
a_{0} & b_{0} \\
c_{0} & d_{0}
\end{array}\right) & =\operatorname{dom}\left(a_{0}\right) \cap \operatorname{dom}\left(c_{0}\right) \oplus \operatorname{dom}\left(b_{0}\right) \cap \operatorname{dom}\left(d_{0}\right) \\
& =\operatorname{dom}(a) \cap \operatorname{dom}(c) \oplus \operatorname{dom}(b) \cap \operatorname{dom}(d) \\
& =\mathcal{D}_{1} \oplus \mathcal{D}_{2}=\operatorname{dom}\left(A_{0}\right)
\end{aligned}
$$

Let $(x, y) \in\left(\begin{array}{ll}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right)$. Then $x=x_{1}+x_{2} \in \mathcal{D}_{1} \oplus \mathcal{D}_{2} \subseteq \overline{\operatorname{dom}}(A)$ and $y=\binom{a_{0} x_{1}+b_{0} x_{2}}{c_{0} x_{1}+d_{0} x_{2}} \in \mathcal{N}_{1} \oplus \mathcal{N}_{2}=\overline{\operatorname{dom}}(A)$.

Set $w_{1}:=a_{0} x_{1}$ and $z_{1}:=b_{0} x_{2}$. Then $\left(x_{1}, w_{1}\right) \in a_{0}=P_{\mathcal{N}_{1}} a$ and $\left(x_{2}, z_{1}\right) \in$ $b_{0}=P_{\mathcal{N}_{1}} b$. Then, there exists $s_{1} \in \mathcal{S}$ such that $\left(x_{1}, s_{1}\right) \in a$ and $w_{1}=P_{\mathcal{N}_{1}} s_{1}$, and there exists $t_{1} \in \mathcal{S}$ such that $\left(x_{2}, t_{1}\right) \in b$ and $z_{1}=P_{\mathcal{N}_{1}} t_{1}$. Recall that $\mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$ then $P_{\mathcal{N}_{1}}+P_{\mathcal{M}_{1}}=P_{\mathcal{S}}$ so that

$$
w_{1}=P_{\mathcal{N}_{1}} s_{1}=s_{1}-P_{\mathcal{M}_{1}} s_{1} \text { and } z_{1}=P_{\mathcal{N}_{1}} t_{1}=t_{1}-P_{\mathcal{M}_{1}} t_{1} .
$$

Hence, since $P_{\mathcal{M}_{1}} s_{1}+P_{\mathcal{M}_{1}} t_{1} \in \mathcal{M}_{1}=\operatorname{mul}(a)+\operatorname{mul}(b)$, there exist $m_{1} \in \operatorname{mul}(a)$ and $n_{1} \in \operatorname{mul}(b)$ such that $P_{\mathcal{M}_{1}} s_{1}+P_{\mathcal{M}_{1}} t_{1}=m_{1}+n_{1}$. Then $\left(0, m_{1}\right) \in a$ and $\left(0, n_{1}\right) \in b$. Therefore $w_{1}+z_{1}=\left(s_{1}-m_{1}\right)+\left(t_{1}-n_{1}\right)$ and

$$
\left(x_{1}, s_{1}-m_{1}\right)=\left(x_{1}, s_{1}\right)-\left(0, m_{1}\right) \in a \text { and }\left(x_{2}, t_{1}-n_{1}\right)=\left(x_{2}, t_{1}\right)-\left(0, n_{1}\right) \in b .
$$

Similarly, set $w_{2}:=c_{0} x_{1}$ and $z_{2}:=d_{0} x_{2}$. Then, there exist $s_{2}, t_{2} \in \mathcal{S}^{\perp}, m_{2} \in \operatorname{mul}(c)$ and $n_{2} \in \operatorname{mul}(d)$ such that $w_{2}+z_{2}=\left(s_{2}-m_{2}\right)+\left(t_{2}-n_{2}\right),\left(x_{1}, s_{2}-m_{2}\right) \in c$ and
$\left(x_{2}, t_{2}-n_{2}\right) \in d$. Therefore,

$$
(x, y)=\left(\binom{x_{1}}{x_{2}},\binom{w_{1}+z_{1}}{w_{2}+z_{2}}\right)=\left(\binom{x_{1}}{x_{2}},\binom{\left(s_{1}-m_{1}\right)+\left(t_{1}-n_{1}\right)}{\left(s_{2}-m_{2}\right)+\left(t_{2}-n_{2}\right)}\right) \in A
$$

Hence, $(x, y) \in A \cap(\overline{\operatorname{dom}}(A) \times \overline{\operatorname{dom}}(A))=A_{0}$. Then, $\left(\begin{array}{ll}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right) \subset A_{0}$ and, since dom $\left(\begin{array}{cc}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right)=\operatorname{dom}\left(A_{0}\right)$, it follows that $A_{0}=\left(\begin{array}{ll}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right)$.

Corollary 3.7. Let A be a selfadjoint linear relation in \mathcal{H}, let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and suppose that A admits the representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}, A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.If $\operatorname{dom}(a) \subseteq \operatorname{dom}(c)$ and $\operatorname{mul}(b) \subseteq \operatorname{mul}(a)$ then

$$
a=P_{\mathcal{N}_{1}} a \hat{\oplus}(\{0\} \times \operatorname{mul}(a)) .
$$

Similar results can be stated for b, c and d.
Proof. By Corollary 3.6, A admits the representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$,

$$
A=\left(\begin{array}{ll}
P_{\mathcal{N}_{1}} a \hat{\oplus}(\{0\} \times \operatorname{mul}(a)) & P_{\mathcal{N}_{1}} b \hat{\oplus}(\{0\} \times \operatorname{mul}(b)) \\
P_{\mathcal{N}_{2}} c \hat{\oplus}(\{0\} \times \operatorname{mul}(c)) & P_{\mathcal{N}_{2}} d \hat{\oplus}(\{0\} \times \operatorname{mul}(d))
\end{array}\right) .
$$

Set $\tilde{a}:=P_{\mathcal{N}_{1}} a \hat{\oplus}(\{0\} \times \operatorname{mul}(a)), \tilde{b}:=P_{\mathcal{N}_{1}} b \hat{\oplus}(\{0\} \times \operatorname{mul}(b)), \tilde{c}:=P_{\mathcal{N}_{2}} c \hat{\oplus}(\{0\} \times$ $\operatorname{mul}(c))$ and $\tilde{d}:=P_{\mathcal{N}_{2}} d \hat{\oplus}(\{0\} \times \operatorname{mul}(d))$.

Clearly, $\operatorname{dom}(a)=\operatorname{dom}(\tilde{a})$ and $\operatorname{mul}(a)=\operatorname{mul}(\tilde{a})$. Let $(x, y) \in a$ then there exists $y^{\prime} \in \mathcal{S}^{\perp}$ such that $\left(x, y^{\prime}\right) \in c$ because $\operatorname{dom}(a) \subseteq \operatorname{dom}(c)$. So that

$$
(x, y)=\left(\binom{x}{0},\binom{y+0}{y^{\prime}+0}\right) \in A=\left(\begin{array}{cc}
\tilde{a} & \tilde{b} \\
\tilde{c} & \tilde{d}
\end{array}\right) .
$$

Then $(x, y)=\left(\binom{x}{0},\binom{y}{y^{\prime}}\right)=\left(\binom{x}{0},\binom{w+z}{w^{\prime}+z^{\prime}}\right)$ with $(x, w) \in \tilde{a},\left(x, w^{\prime}\right) \in$ $\tilde{c},(0, z) \in \tilde{b}$ and $\left(0, z^{\prime}\right) \in \tilde{d}$.

Then $(0, z) \in \operatorname{mul}(\tilde{b})=\operatorname{mul}(b) \subseteq \operatorname{mul}(a)=\operatorname{mul}(\tilde{a})$ so that, $(0, z) \in \tilde{a}$. Hence

$$
(x, y)=(x, w+z)=(x, w)+(0, z) \in \tilde{a} .
$$

Then $a \subseteq \tilde{a}$ and since $\operatorname{dom}(a)=\operatorname{dom}(\tilde{a})$ and $\operatorname{mul}(a)=\operatorname{mul}(\tilde{a})$, by [9, Corollary 2.2], $a=\tilde{a}=P_{\mathcal{N}_{1}} a \hat{\oplus}(\{0\} \times \operatorname{mul}(a))$. The analogous results for b, c and d follow in a similar way.

Next we focus on describing the matrix decompositions of nonnegative selfadjoint linear relations (operators).

The following lemmas are needed for the proof of Proposition 3.10 .
Lemma 3.8. Let A be a selfadjoint linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Consider the matrix representation of A as in (3.1). Then a and d are symmetric linear relations, $c \subset b^{*}$ and a, b, c and d are decomposable linear relations with (unique) decompositions: $a=P_{\mathcal{N}_{1}} a \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), b=P_{\mathcal{N}_{1}} b \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), c=P_{\mathcal{N}_{2}} c \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$ and $d=P_{\mathcal{N}_{2}} d \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$.

Proof. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be the matrix representation of A with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ given by Theorem 3.2. From Lemma 3.4 $\mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$ and $\mathcal{S}^{\perp}=\mathcal{N}_{2} \oplus \mathcal{M}_{2}$. Write $A=A_{0} \hat{\oplus} A_{\text {mul }}$ as in (3.6). Then, by Corollary 3.6, A_{0} admits the matrix representation with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$

$$
A_{0}=\left(\begin{array}{ll}
a_{0} & b_{0} \tag{3.7}\\
c_{0} & d_{0}
\end{array}\right)
$$

where $a_{0}:=P_{\mathcal{N}_{1}} a, b_{0}:=P_{\mathcal{N}_{1}} b, c_{0}:=P_{\mathcal{N}_{2}} c$ and $d_{0}:=P_{\mathcal{N}_{2}} d$. Since $\operatorname{dom}(a)=$ $\operatorname{dom}(c)=\mathcal{D}_{1}$ and $\operatorname{mul}(a)=\operatorname{mul}(b)=\mathcal{M}_{1}$, by Corollary 3.7] $a=a_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right)$. Likewise, $b=b_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), c=c_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$ and $d=d_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$.

Define

$$
\hat{A}_{0}:=\left(\begin{array}{cc}
a_{0}^{\times} & c_{0}^{\times} \\
b_{0}^{\times} & d_{0}^{\times}
\end{array}\right)
$$

with $\operatorname{dom}\left(\hat{A}_{0}\right)=\operatorname{dom}\left(a_{0}^{\times}\right) \cap \operatorname{dom}\left(b_{0}^{\times}\right) \oplus \operatorname{dom}\left(c_{0}^{\times}\right) \cap \operatorname{dom}\left(d_{0}^{\times}\right)$, where a_{0}^{\times}denotes the adjoint of a_{0} when viewed as an operator from \mathcal{N}_{1} to \mathcal{N}_{1}, likewise $b_{0}^{\times}, c_{0}^{\times}$and d_{0}^{\times}.

Since A is selfadjoint, $A_{0}=A_{0}^{\times}$, where A_{0}^{\times}denotes the adjoint of A_{0} when viewed as an operator from $\overline{\operatorname{dom}}(A)$ to $\overline{\operatorname{dom}}(A)$. Then A_{0}^{\times}admits a matrix decomposition with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$. Then, by [6, Theorem 2.2], $A_{0}=A_{0}^{\times}=\hat{A}_{0}$. So that

$$
A_{0}=\left(\begin{array}{ll}
a_{0} & b_{0} \\
c_{0} & d_{0}
\end{array}\right)=\left(\begin{array}{cc}
a_{0}^{\times} & c_{0}^{\times} \\
b_{0}^{\times} & d_{0}^{\times}
\end{array}\right)=\hat{A}_{0} .
$$

Then

$$
a_{0} \subset a_{0}^{\times}, \quad d_{0} \subset d_{0}^{\times}, \quad b_{0} \subset c_{0}^{\times} \text {and } c_{0} \subset b_{0}^{\times} .
$$

So that a_{0} and d_{0} are symmetric operators on \mathcal{N}_{1} and \mathcal{N}_{2}, respectively, and b_{0} and c_{0} are closable operators. Also, since $a_{0}, b_{0}, c_{0}, d_{0}$ are closable operators, by Theorem 2.1 a, b, c and d are decomposable with (unique) decompositions: $a=P_{\mathcal{N}_{1}} a \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), b=P_{\mathcal{N}_{1}} b \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), c=P_{\mathcal{N}_{2}} c \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$ and $d=P_{\mathcal{N}_{2}} d \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$.

Let us see that $a \subset a^{*}$. Let $\left(x_{1}, w_{1}\right) \in a$, then $x_{1} \in \mathcal{D}_{1}$ and there exists $m_{1} \in \mathcal{M}_{1}$ such that

$$
\left(x_{1}, w_{1}\right)=\left(x_{1}, a_{0} x_{1}\right)+\left(0, m_{1}\right) .
$$

Also, let $(f, g) \in a$, then $f \in \mathcal{D}_{1}$ and there exists $m \in \mathcal{M}_{1}$ such that

$$
(f, g)=\left(f, a_{0} f\right)+(0, m)
$$

Hence

$$
\begin{aligned}
\left\langle g, x_{1}\right\rangle_{\mathcal{H}} & =\left\langle a_{0} f+m, x_{1}\right\rangle_{\mathcal{H}}=\left\langle a_{0} f, x_{1}\right\rangle_{\mathcal{H}}=\left\langle a_{0} f, x_{1}\right\rangle_{\mathcal{N}_{1}} \\
& =\left\langle a_{0}^{\times} f, x_{1}\right\rangle_{\mathcal{N}_{1}}=\left\langle f, a_{0} x_{1}\right\rangle_{\mathcal{N}_{1}}=\left\langle f, a_{0} x_{1}+m_{1}\right\rangle_{\mathcal{H}}=\left\langle f, w_{1}\right\rangle_{\mathcal{H}} .
\end{aligned}
$$

Then $\left(x_{1}, w_{1}\right) \in a^{*}$. Likewise, $d \subset d^{*}$ and $c \subset b^{*}$.

By the proof of the last lemma, $A \subset\left(\begin{array}{cc}a^{*} & c^{*} \\ b^{*} & d^{*}\end{array}\right)$ and, by [10, Proposition 6.1], the other inclusion always holds. So that A admits the matrix representation

$$
A=\left(\begin{array}{ll}
a^{*} & c^{*} \\
b^{*} & d^{*}
\end{array}\right)
$$

Lemma 3.9 (cf. [12, Chapter VI], [4, Lemma 5.3.1]). Let A be a nonnegative symmetric linear relation in \mathcal{H}. If A_{F} is the Friedrichs extension of A, then $\operatorname{dom}(A)$ is a core of $A_{F}^{1 / 2}$ and $\operatorname{mul}\left(A_{F}\right)=\operatorname{mul}\left(A^{*}\right)$.
Proposition 3.10. Let $A \geq 0$ be a linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Then A admits the 2×2 block matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$

$$
\left(\begin{array}{cc}
a_{F} & b \tag{3.8}\\
c & d_{F}
\end{array}\right)
$$

where a_{F} and d_{F} are the Friedrichs extensions of $a:=\left.P_{\mathcal{S}} A\right|_{\mathcal{S}}$ and $d:=\left.P_{\mathcal{S}^{\perp}} A\right|_{\mathcal{S}^{\perp}}$, respectively, $b:=\left.P_{\mathcal{S}} A\right|_{\mathcal{S}^{\perp}}, c:=\left.P_{\mathcal{S}^{\perp}} A\right|_{\mathcal{S}}$ are decomposable linear relations and $c \subset b^{*}$.

Moreover, if A is written as in (3.6) then A_{0} admits the matrix representation with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$:

$$
A_{0}=\left(\begin{array}{cc}
\left(a_{F}\right)_{0} & b_{0} \tag{3.9}\\
c_{0} & \left(d_{F}\right)_{0}
\end{array}\right)
$$

where $\left(a_{F}\right)_{0}$ and $\left(d_{F}\right)_{0}$ are the nonnegative selfadjoint operator parts of a_{F} and d_{F}, respectively and $a_{F}=\left(a_{F}\right)_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), b=b_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), c=$ $c_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$ and $d=\left(d_{F}\right)_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$, where $b_{0}=P_{\mathcal{N}_{1}} b, c_{0}=P_{\mathcal{N}_{2}} c$ and $\left(a_{F}\right)_{0}$ and $\left(d_{F}\right)_{0}$ are the Friedrichs extensions of $a_{0}=P_{\mathcal{N}_{1}} a$ and $d_{0}=P_{\mathcal{N}_{2}} d$, respectively.

Proof. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be the matrix representation of A with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ as in Lemma3.8. Since $A \geq 0$, it follows that a and d are nonnegative symmetric linear relations.

Also, by Corollaries 3.6 and 3.7 if A is written as in (3.6) then A_{0} admits the matrix representation with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}: A_{0}=\left(\begin{array}{cc}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right)$, where $a=a_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), b=b_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), c=c_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$ and $d=$ $d_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$.

Let a_{F} and d_{F} be the Friedrichs extensions of a and d, respectively. By Lemma $3.9 \operatorname{dom}(a)=\mathcal{D}_{1}$ is a core of $a_{F}^{1 / 2}$ and $\operatorname{dom}(d)=\mathcal{D}_{2}$ is a core of $d_{F}^{1 / 2}$.

Set

$$
A^{\prime}:=\left(\begin{array}{cc}
a_{F} & b \\
c & d_{F}
\end{array}\right)
$$

Then $\operatorname{dom}\left(A^{\prime}\right)=\operatorname{dom}\left(a_{F}\right) \cap \operatorname{dom}(c) \oplus \operatorname{dom}(b) \cap \operatorname{dom}\left(d_{F}\right)=\mathcal{D}_{1} \oplus \mathcal{D}_{2}=\operatorname{dom}(A)$, because $\operatorname{dom}(c)=\mathcal{D}_{1}$ and $\operatorname{dom}(b)=\mathcal{D}_{2}$. $\operatorname{Also}, \operatorname{mul}\left(A^{\prime}\right)=\operatorname{mul}\left(a_{F}\right)+\operatorname{mul}(b) \oplus$
$\operatorname{mul}(c)+\operatorname{mul}\left(d_{F}\right)=\mathcal{M}_{1} \oplus \mathcal{M}_{2}=\operatorname{mul}(A)$, because $\operatorname{mul}\left(a_{F}\right)=\operatorname{mul}\left(a^{*}\right)=\operatorname{dom}(a)^{\perp}=$ $\mathcal{M}_{1}, \operatorname{mul}(b)=\mathcal{M}_{1}, \operatorname{mul}\left(d_{F}\right)=\operatorname{mul}\left(d^{*}\right)=\operatorname{dom}(d)^{\perp}=\mathcal{M}_{2}$ and $\operatorname{mul}(c)=\mathcal{M}_{2}$. But, since $A \subset A^{\prime}$, it follows that

$$
A=A^{\prime}=\left(\begin{array}{cc}
a_{F} & b \\
c & d_{F}
\end{array}\right) .
$$

Since a_{F} and d_{F} are selfadjoint, a_{F} and d_{F} are decomposable and $a_{F}=\left(a_{F}\right)_{0} \hat{\oplus}(\{0\} \times$ $\left.\mathcal{M}_{1}\right)$ and $d_{F}=\left(d_{F}\right)_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$ where $\left(a_{F}\right)_{0}$ and $\left(d_{F}\right)_{0}$ are the nonnegative selfadjoint operator parts of a_{F} and d_{F}, respectively.

Let us see that $\left(a_{F}\right)_{0}$ is the Friedrichs extension of a_{0} and $\left(d_{F}\right)_{0}$ is the Friedrichs extension of d_{0}, cf. [4, Theorem 5.3.3]. Since a is a nonnegative symmetric linear relation in \mathcal{S}, the form t_{a} given by $\mathrm{t}_{a}[u, v]:=\left\langle u^{\prime}, v\right\rangle$ for $\left(u, u^{\prime}\right),\left(v, v^{\prime}\right) \in a$ with $\operatorname{dom}\left(\mathrm{t}_{a}\right)=\operatorname{dom}(a)$, is nonnegative and closable, [4, Lemma 5.1.17]. Also, by the proof of Lemma 3.8, a_{0} is a nonnegative symmetric linear operator on \mathcal{N}_{1}, then the form $\mathrm{t}_{a_{0}}$ given by $\mathrm{t}_{a_{0}}[u, v]:=\left\langle a_{0} u, v\right\rangle$ for $u, v \in \operatorname{dom}\left(a_{0}\right)$, with $\operatorname{dom}\left(\mathrm{t}_{a_{0}}\right)=\operatorname{dom}\left(a_{0}\right)$, is nonnegative and closable. But

$$
\mathrm{t}_{a}=\mathrm{t}_{a_{0}} .
$$

In fact, it is clear that $\operatorname{dom}\left(\mathrm{t}_{a_{0}}\right)=\operatorname{dom}\left(\mathrm{t}_{a}\right)$. Let $u, v \in \operatorname{dom}\left(\mathrm{t}_{a}\right)=\operatorname{dom}(a)$ then there exist $u^{\prime}, v^{\prime} \in \mathcal{H}$ such that $\left(u, u^{\prime}\right),\left(v, v^{\prime}\right) \in a$. Then $u^{\prime}=a_{0} u+m$ for some $m \in \mathcal{M}_{1} \perp \mathcal{N}_{1}$. Then

$$
\mathrm{t}_{a}[u, v]=\left\langle a_{0} u+m, v\right\rangle=\left\langle a_{0} u, v\right\rangle=\mathrm{t}_{a_{0}}[u, v],
$$

because $v \in \mathcal{D}_{1}$. Hence, the closures of the forms coincide, i.e., $\overline{\mathrm{t}_{a}}=\overline{\mathrm{t}_{a_{0}}}$. Then, by the Second Representation Theorem [4, Theorem 5.1.23],

$$
\overline{\mathfrak{t}_{a}}[u, v]=\left\langle\left(a_{F}\right)_{0}^{1 / 2} u,\left(a_{F}\right)_{0}^{1 / 2} v\right\rangle
$$

for every $u, v \in \operatorname{dom}\left(\left(a_{F}\right)_{0}^{1 / 2}\right)=\operatorname{dom}\left(\overline{\mathfrak{t}_{a}}\right)$ and

$$
\overline{\mathfrak{t}_{a_{0}}}[u, v]=\left\langle\left(a_{0}\right)_{F}^{1 / 2} u,\left(a_{0}\right)_{F}^{1 / 2} v\right\rangle
$$

for every $u, v \in \operatorname{dom}\left(\left(a_{0}\right)_{F}^{1 / 2}\right)=\operatorname{dom}\left(\overline{\mathfrak{t}_{a_{0}}}\right)$, where $\left(a_{0}\right)_{F}$ is the Friedrichs extension of a_{0}. So that $\left(a_{F}\right)_{0}=\left(a_{0}\right)_{F}$. Likewise, $\left(d_{F}\right)_{0}=\left(d_{0}\right)_{F}$. Then, $a_{0} \subset\left(a_{F}\right)_{0}, d_{0} \subset$ $\left(d_{F}\right)_{0}$ and, by Lemma 3.9, $\operatorname{dom}\left(a_{0}\right)=\mathcal{D}_{1}$ is a core of $\left(a_{F}\right)_{0}^{1 / 2}$ and $\operatorname{dom}\left(d_{0}\right)=\mathcal{D}_{2}$ is a core of $\left(d_{F}\right)_{0}^{1 / 2}$. Then

$$
A_{0} \subset A^{\prime \prime}:=\left(\begin{array}{cc}
\left(a_{F}\right)_{0} & b_{0} \\
c_{0} & \left(d_{F}\right)_{0}
\end{array}\right) .
$$

But, $\operatorname{dom}\left(A^{\prime \prime}\right)=\operatorname{dom}\left(\left(a_{F}\right)_{0}\right) \cap \operatorname{dom}\left(c_{0}\right) \oplus \operatorname{dom}\left(b_{0}\right) \cap \operatorname{dom}\left(\left(d_{F}\right)_{0}\right)=\mathcal{D}_{1} \oplus \mathcal{D}_{2}=$ $\operatorname{dom}\left(A_{0}\right)$, because $\operatorname{dom}\left(c_{0}\right)=\mathcal{D}_{1}$ and $\operatorname{dom}\left(b_{0}\right)=\mathcal{D}_{2}$. Then $A_{0}=A^{\prime \prime}$.

Theorem 3.11. Let $A \geq 0$ be a linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Then A admits a matrix decomposition in \mathcal{H} with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$,

$$
A=\left(\begin{array}{ll}
a & b \tag{3.10}\\
c & d
\end{array}\right)
$$

such that:

1. a and d are nonnegative selfadjoint linear relations with $\mathcal{D}_{1} \subseteq \operatorname{dom}(a)$, $\mathcal{D}_{2} \subseteq \operatorname{dom}(d), \mathcal{D}_{2}=\operatorname{dom}(b), \mathcal{D}_{1}=\operatorname{dom}(c)$, and $c \subset b^{*} ;$
2. \mathcal{D}_{1} is a core of $a^{1 / 2}$ and \mathcal{D}_{2} is a core of $d^{1 / 2}$;
3. there exists a contraction $g: \mathcal{S}^{\perp} \rightarrow \mathcal{S}$ such that

$$
b=\left.a^{1 / 2} g d^{1 / 2}\right|_{\mathcal{D}_{2}} \text { and } c=\left.d^{1 / 2} g^{*} a^{1 / 2}\right|_{\mathcal{D}_{1}} .
$$

Proof. Items 1 and 2 are proved in Proposition 3.10 .
3: Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be the block matrix representation of A given in (3.8).
From Lemma 3.4 $\mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$ and $\mathcal{S}^{\perp}=\mathcal{N}_{2} \oplus \mathcal{M}_{2}$. Write $A=A_{0} \hat{\oplus} A_{\text {mul }}$ as in (3.6). Then, by Proposition 3.10, A_{0} admits the matrix representation with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$:

$$
A_{0}=\left(\begin{array}{ll}
a_{0} & b_{0} \\
c_{0} & a_{0}
\end{array}\right)
$$

where a_{0} and d_{0} are the nonnegative selfadjoint operator parts of a and d, respectively, \mathcal{D}_{1} is a core of $a_{0}^{1 / 2}, \mathcal{D}_{2}$ is a core of $d_{0}^{1 / 2}, a=a_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right)$, $b=b_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), c=c_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$ and $d=d_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$.

Since $A \geq 0$, then A_{0} is a nonnegative selfadjoint operator on $\overline{\operatorname{dom}}(A)$. Then

$$
\left\langle A_{0}^{1 / 2} h, A_{0}^{1 / 2} k\right\rangle=\left\langle A_{0} h, k\right\rangle \text { for every } h, k \in \operatorname{dom}(A)
$$

because $A_{0}=A_{0}^{1 / 2} A_{0}^{1 / 2}$. In particular, for every $h_{1} \in \mathcal{D}_{1}$

$$
\left\langle A_{0}^{1 / 2} h_{1}, A_{0}^{1 / 2} h_{1}\right\rangle=\left\langle A_{0} h_{1}, h_{1}\right\rangle=\left\langle a_{0} h_{1}, h_{1}\right\rangle=\left\langle a_{0}^{1 / 2} h_{1}, a_{0}^{1 / 2} h_{1}\right\rangle .
$$

Then the map $a_{0}^{1 / 2}\left(\mathcal{D}_{1}\right) \rightarrow A_{0}^{1 / 2}\left(\mathcal{D}_{1}\right)$,

$$
a_{0}^{1 / 2} h_{1} \mapsto A_{0}^{1 / 2} h_{1}
$$

can be extended to a partial isometry V_{1} on all of \mathcal{N}_{1}, with initial space $\overline{a_{0}^{1 / 2}\left(\mathcal{D}_{1}\right)}=$ $\overline{\operatorname{ran}}\left(a_{0}^{1 / 2}\right)$ (where we used that \mathcal{D}_{1} is a core of $a_{0}^{1 / 2}$), so that $\operatorname{ker}\left(V_{1}\right)=\operatorname{ker}\left(a_{0}^{1 / 2}\right)$, and final space $\overline{A_{0}^{1 / 2}\left(\mathcal{D}_{1}\right)}$. Therefore

$$
\begin{equation*}
V_{1} a_{0}^{1 / 2}=A_{0}^{1 / 2} \text { on } \mathcal{D}_{1} . \tag{3.11}
\end{equation*}
$$

So, for every $h_{2} \in \mathcal{D}_{2}$ and $k_{1} \in \mathcal{D}_{1}$,

$$
\begin{aligned}
\left\langle b_{0} h_{2}, k_{1}\right\rangle & =\left\langle A_{0} h_{2}, k_{1}\right\rangle=\left\langle A_{0}^{1 / 2} h_{2}, A_{0}^{1 / 2} k_{1}\right\rangle=\left\langle A_{0}^{1 / 2} h_{2}, V_{1} a_{0}^{1 / 2} k_{1}\right\rangle \\
& =\left\langle V_{1}{ }^{*} A_{0}^{1 / 2} h_{2}, a_{0}^{1 / 2} k_{1}\right\rangle .
\end{aligned}
$$

Therefore, $V_{1}{ }^{*} A_{0}^{1 / 2} h_{2} \in \operatorname{dom}\left(\left(a_{0}^{1 / 2}\right)^{\times}\right)$and $\left(a_{0}^{1 / 2}\right)^{\times} V_{1}{ }^{*} A_{0}^{1 / 2} h_{2}=b_{0} h_{2}$. Since $a_{0}^{1 / 2}$ is selfadjoint and the above holds for any $h_{2} \in \mathcal{D}_{2}$, it follows that

$$
b_{0}=a_{0}^{1 / 2} V_{1}^{*} A_{0}^{1 / 2} \text { on } \mathcal{D}_{2}
$$

Likewise, there exists a partial isometry V_{2} in \mathcal{N}_{2} with initial space $\overline{d_{0}^{1 / 2}\left(\mathcal{D}_{2}\right)}$ and final space $\overline{A_{0}^{1 / 2}\left(\mathcal{D}_{2}\right)}$, such that

$$
V_{2} d_{0}^{1 / 2}=A_{0}^{1 / 2} \text { on } \mathcal{D}_{2} \text { and } c_{0}=d_{0}^{1 / 2} V_{2}^{*} A_{0}^{1 / 2} \text { on } \mathcal{D}_{1}
$$

Then

$$
b_{0} h_{2}=a_{0}^{1 / 2} V_{1}{ }^{*} A_{0}^{1 / 2} h_{2}=a_{0}^{1 / 2} V_{1}{ }^{*} V_{2} d_{0}^{1 / 2} h_{2} \text { for every } h_{2} \in \mathcal{D}_{2} .
$$

Set $f:=V_{1}{ }^{*} V_{2}$. Then f is a contraction from \mathcal{N}_{1} to \mathcal{N}_{2} such that $b_{0}=a_{0}^{1 / 2} f d_{0}^{1 / 2}$ on \mathcal{D}_{2}. Likewise, $c_{0}=d_{0}^{1 / 2} f^{*} a_{0}^{1 / 2}$ on \mathcal{D}_{1}.

Using that $\mathcal{S}^{\perp}=\mathcal{N}_{2} \oplus \mathcal{M}_{2}, f$ has an extension, again a contraction from \mathcal{S}^{\perp} to \mathcal{S}, named g such that $g x=0$ for every $x \in \mathcal{M}_{2}$. Let $\left.(x, y) \in a^{1 / 2} g d^{1 / 2}\right|_{\mathcal{D}_{2}}$. Then there exists $z \in \mathcal{S}^{\perp}$ such that $\left.(x, z) \in d^{1 / 2}\right|_{\mathcal{D}_{2}}$ and $(z, y) \in a^{1 / 2} g$. Then

$$
(x, z)=\left(x, d_{0}^{1 / 2} x\right)+\left(0, m_{2}\right)
$$

for some $m_{2} \in \mathcal{M}_{2}$ and so $z=d_{0}^{1 / 2} x+m_{2}$. Also, since $(z, y) \in a^{1 / 2} g$, it follows that $(g z, y) \in a^{1 / 2}$. Then $(g z, y)=\left(g z, a_{0}^{1 / 2} g z\right)+\left(0, m_{1}\right)$ for some $m_{1} \in \mathcal{M}_{1}$. Then, since $m_{2} \in \operatorname{ker}(g)$ and $d_{0}^{1 / 2} x \in \mathcal{N}_{2}$,

$$
y=a_{0}^{1 / 2} g z+m_{1}=a_{0}^{1 / 2} g\left(d_{0}^{1 / 2} x+m_{2}\right)+m_{1}=a_{0}^{1 / 2} f d_{0}^{1 / 2} x+m_{1}=b_{0} x+m_{1} .
$$

Hence,

$$
(x, y)=\left(x, b_{0} x\right)+\left(0, m_{1}\right) \in b .
$$

Conversely, suppose that $(x, y) \in b$, then $x \in \mathcal{D}_{2}$ and

$$
(x, y)=\left(x, b_{0} x\right)+\left(0, m_{1}\right)=\left(x, a_{0}^{1 / 2} f d_{0}^{1 / 2} x\right)+\left(0, m_{1}\right)
$$

for some $m_{1} \in \mathcal{M}_{1}$ and so $y=a_{0}^{1 / 2} f d_{0}^{1 / 2} x+m_{1}$. Set $z:=d_{0}^{1 / 2} x \in \mathcal{N}_{2}$ then $(x, z)=\left.\left(x, d_{0}^{1 / 2} x\right) \in d^{1 / 2}\right|_{\mathcal{D}_{2}}$. Also,

$$
\begin{aligned}
(g z, y) & =\left(g z, a_{0}^{1 / 2} f d_{0}^{1 / 2} x\right)+\left(0, m_{1}\right)=\left(g z, a_{0}^{1 / 2} f z\right)+\left(0, m_{1}\right) \\
& =\left(g z, a_{0}^{1 / 2} g z\right)+\left(0, m_{1}\right) \in a^{1 / 2} .
\end{aligned}
$$

So that $(z, y) \in a^{1 / 2} g$ and then $\left.(x, y) \in a^{1 / 2} g d^{1 / 2}\right|_{\mathcal{D}_{2}}$.
Likewise, $c=\left.d^{1 / 2} g^{*} a^{1 / 2}\right|_{\mathcal{D}_{1}}$.

Corollary 3.12. Let $A \geq 0$ be a linear operator in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be the block matrix representation of A given in (3.8). Set $Z:=\left(\begin{array}{cc}\left.a^{1 / 2}\right|_{\mathcal{D}_{1}} & 0 \\ 0 & \left.d^{1 / 2}\right|_{\mathcal{D}_{2}}\end{array}\right)$ and $W:=\left(\begin{array}{cc}1 & f \\ 0 & \left(1-f^{*} f\right)^{1 / 2}\end{array}\right) \in L(\mathcal{H})$, where $f: \mathcal{S}^{\perp} \rightarrow \mathcal{S}$ is the contraction in the proof of Theorem 3.11 Then the operator WZ is closable and

$$
A=(W Z)^{*} W Z=(W Z)^{*} \overline{W Z} .
$$

Proof. Define $\Gamma:=W^{*} W=\left(\begin{array}{rr}1 & f \\ f^{*} & 1\end{array}\right)$. Then $\Gamma \in L(\mathcal{H})$ and $\Gamma \geq 0$, because f is a contraction, and Z is a densely defined operator with $\operatorname{dom}(Z)=\mathcal{D}_{1} \oplus \mathcal{D}_{2}$. Since \mathcal{D}_{1} is a core of $a^{1 / 2}$ and \mathcal{D}_{2} is a core of $d^{1 / 2}$,

$$
Z^{*}=\left(\begin{array}{cc}
a^{1 / 2} & 0 \\
0 & d^{1 / 2}
\end{array}\right)
$$

Consider the operator $Z^{*} \Gamma Z$. Then

$$
\operatorname{dom}\left(Z^{*} \Gamma Z\right)=\mathcal{D}_{1} \oplus \mathcal{D}_{2}
$$

Clearly, $\operatorname{dom}\left(Z^{*} \Gamma Z\right) \subseteq \operatorname{dom}(Z)=\mathcal{D}_{1} \oplus \mathcal{D}_{2}$. On the other hand, take $h=\binom{h_{1}}{h_{2}} \in$ $\mathcal{D}_{1} \oplus \mathcal{D}_{2}$, then

$$
\Gamma Z\binom{h_{1}}{h_{2}}=\left(\begin{array}{cc}
1 & f \\
f^{*} & 1
\end{array}\right)\binom{a^{1 / 2} h_{1}}{d^{1 / 2} h_{2}}=\binom{a^{1 / 2} h_{1}+f d^{1 / 2} h_{2}}{f^{*} a^{1 / 2} h_{1}+d^{1 / 2} h_{2}}
$$

Since $b=a^{1 / 2} f d^{1 / 2}$ on \mathcal{D}_{2} and $a^{1 / 2}\left(\mathcal{D}_{1}\right) \subseteq \operatorname{dom}\left(a^{1 / 2}\right)$, it follows that $a^{1 / 2} h_{1}+$ $f d^{1 / 2} h_{2} \in \operatorname{dom}\left(a^{1 / 2}\right)$. Likewise, since $c=d^{1 / 2} f^{*} a^{1 / 2}$ on \mathcal{D}_{1} and $d^{1 / 2}\left(\mathcal{D}_{2}\right) \subseteq$ $\operatorname{dom}\left(d^{1 / 2}\right)$, it follows that $f^{*} a^{1 / 2} h_{1}+d^{1 / 2} h_{2} \in \operatorname{dom}\left(d^{1 / 2}\right)$. Hence, $\Gamma Z h \in \operatorname{dom}\left(Z^{*}\right)$ and $h \in \operatorname{dom}\left(Z^{*} \Gamma Z\right)$. Then $Z^{*} \Gamma Z$ has matrix representation and, by [6, Theorem 2.1],

$$
\begin{aligned}
Z^{*} \Gamma Z & =\left(\begin{array}{cc}
a^{1 / 2} & 0 \\
0 & d^{1 / 2}
\end{array}\right)\left(\begin{array}{cc}
1 & f \\
f^{*} & 1
\end{array}\right)\left(\begin{array}{cc}
\left.a^{1 / 2}\right|_{\mathcal{D}_{1}} & 0 \\
0 & \left.d^{1 / 2}\right|_{\mathcal{D}_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left.a\right|_{\mathcal{D}_{1}} & b \\
c & \left.d\right|_{\mathcal{D}_{2}}
\end{array}\right) \subseteq A .
\end{aligned}
$$

But, since $\operatorname{dom}\left(Z^{*} \Gamma Z\right)=\operatorname{dom}(A)$ it follows that $A=Z^{*} \Gamma Z=Z^{*} W^{*} W Z=$ $(W Z)^{*} W Z$.

If $Y:=W Z$, then $\operatorname{dom}(Y)=\operatorname{dom}(Z)=\operatorname{dom}(A)$. Therefore, $\operatorname{dom}\left(Y^{*} Y\right)=$ $\operatorname{dom}(A)=\operatorname{dom}(Y)$. Then, by [17, Theorem 5.1], $Y=W Z$ is closable. Finally,

$$
A=Y^{*} Y=A^{*}=\left(Y^{*} Y\right)^{*} \supset Y^{*} \bar{Y} \supset Y^{*} Y=A .
$$

4. The Schur complement of nonnegative selfadjoint linear relations

Let $A \geq 0$ be a linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{S}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Let

$$
A=\left(\begin{array}{ll}
a & b \tag{4.1}\\
c & d
\end{array}\right)
$$

be the 2×2 block matrix representation of A with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ as in Theorem 3.11 That is, a and d are nonnegative selfadjoint linear relations with $\mathcal{D}_{1} \subseteq \operatorname{dom}(a)$,
$\mathcal{D}_{2} \subseteq \operatorname{dom}(d), \mathcal{D}_{2}=\operatorname{dom}(b), \mathcal{D}_{1}=\operatorname{dom}(c)$, and $c \subset b^{*}$. Also, \mathcal{D}_{1} is a core of $a^{1 / 2}, \mathcal{D}_{2}$ is a core of $d^{1 / 2}$ and there exists a contraction $g: \mathcal{S}^{\perp} \rightarrow \mathcal{S}$ such that

$$
b=\left.a^{1 / 2} g d^{1 / 2}\right|_{\mathcal{D}_{2}} \text { and } c=\left.d^{1 / 2} g^{*} a^{1 / 2}\right|_{\mathcal{D}_{1}} .
$$

Write $A=A_{0} \hat{\oplus} A_{\text {mul }}$ as in (3.6). Then, $a=a_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right), b=b_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right)$, $c=c_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$ and $d=d_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$, where

$$
A_{0}=\left(\begin{array}{ll}
a_{0} & b_{0} \tag{4.2}\\
c_{0} & d_{0}
\end{array}\right)
$$

is the 2×2 block matrix representation of A_{0} with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$ given in (3.9). By Theorem 3.11, there exists a contraction $f: \mathcal{N}_{2} \rightarrow \mathcal{N}_{1}$ such that

$$
b_{0}=\left.a_{0}^{1 / 2} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \text { and } c_{0}=\left.d_{0}^{1 / 2} f^{*} a_{0}^{1 / 2}\right|_{\mathcal{D}_{1}} .
$$

By Lemma3.4 $\mathcal{S}=\mathcal{N}_{1} \oplus \mathcal{M}_{1}$ and $\mathcal{S}^{\perp}=\mathcal{N}_{2} \oplus \mathcal{M}_{2}$. Then $g=\left(\begin{array}{ll}f & 0 \\ 0 & 0\end{array}\right)$ is the matrix decomposition of $g: \mathcal{N}_{2} \oplus \mathcal{M}_{2} \rightarrow \mathcal{N}_{1} \oplus \mathcal{M}_{1}$.

In order to define the Schur complement of A, consider $D_{g}:=\left(1-g^{*} g\right)^{1 / 2} \in$ $L\left(\mathcal{S}^{\perp}\right)$ and the closed linear relation

$$
T:=\overline{\left.D_{g} d^{1 / 2}\right|_{\mathcal{D}_{2}}} \subseteq \mathcal{S}^{\perp} \times \mathcal{S}^{\perp}
$$

Lemma 4.1. Under the above hypotheses,

$$
T^{*} T=d_{0}^{1 / 2} D_{f} \overline{\left.D_{f} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right),
$$

where $D_{f}:=\left(1-f^{*} f\right)^{1 / 2} \in L\left(\mathcal{N}_{2}\right)$.
Proof. The matrix decomposition of D_{g} with respect to $\mathcal{N}_{2} \oplus \mathcal{M}_{2}$ is $D_{g}=\left(\begin{array}{cc}D_{f} & 0 \\ 0 & 1\end{array}\right)$. Then $\left.D_{g} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.D_{f} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \subseteq \mathcal{N}_{2} \times \mathcal{N}_{2}$ and, since $\left.d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \hat{\oplus}(\{0\} \times$ \mathcal{M}_{2}),

$$
\begin{equation*}
\left.D_{g} d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.D_{f} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right) \tag{4.3}
\end{equation*}
$$

So that

$$
\begin{equation*}
T=\overline{\left.D_{f} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)}=\bar{t} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right) \tag{4.4}
\end{equation*}
$$

where $t:=\left.D_{f} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}$. Since $\mathcal{D}_{2} \subseteq \operatorname{dom}(T)=\operatorname{dom}(\bar{t}) \subseteq \mathcal{N}_{2}$, then

$$
\overline{\operatorname{dom}}(T)=\overline{\operatorname{dom}}(\bar{t})=\mathcal{N}_{2} .
$$

Also,

$$
T^{*}=\left(\left.D_{g} d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)^{*}=\left(\left.d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)^{*} D_{g}=d^{1 / 2} D_{g},
$$

where we used that $D_{g} \in L\left(\mathcal{S}^{\perp}\right)$ so there is equality in (2.1) and \mathcal{D}_{2} is a core of $d^{1 / 2}$. Then

$$
T^{*}=\left(d_{0}^{1 / 2} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)\right) D_{g}=d_{0}^{1 / 2} D_{f} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)=t^{\times} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right),
$$

where t^{\times}denotes the adjoint of t when viewed as an operator in \mathcal{N}_{2}. Finally, since t is a densely defined operator in $\mathcal{N}_{2}, t^{\times}$is an operator in \mathcal{N}_{2} and $\operatorname{mul}\left(t^{\times} \bar{t}\right)=\operatorname{mul}\left(t^{\times}\right)=\{0\}$. Therefore, by Theorem 2.3, $t^{\times} \bar{t}$ is a nonnegative selfadjoint linear operator in \mathcal{N}_{2} and

$$
\operatorname{mul}\left(T^{*} T\right)=\operatorname{mul}\left(T^{*}\right)=\operatorname{dom}(T)^{\perp}=\mathcal{S}^{\perp} \ominus \mathcal{N}_{2}=\mathcal{M}_{2} .
$$

Now, suppose that $(x, y) \in T^{*} T$. Then $(x, z) \in T$ and $(z, y) \in T^{*}$ for some $z \in \mathcal{S}^{\perp}$. Then

$$
\begin{aligned}
& (x, z)=\left(x, z^{\prime}\right)+(0, m) \text { for some } m \in \mathcal{M}_{2} \text { and } z^{\prime} \in \mathcal{N}_{2} \text { such that }\left(x, z^{\prime}\right) \in \bar{t} \\
& (z, y)=\left(z, t^{\times} z\right)+\left(0, m^{\prime}\right) \text { for some } m^{\prime} \in \mathcal{M}_{2}
\end{aligned}
$$

Since $z \in \operatorname{dom}\left(T^{*}\right) \subseteq \mathcal{N}_{2}, z^{\prime} \in \operatorname{ran}(\bar{t}) \subseteq \mathcal{N}_{2}$ and $z=z^{\prime}+m$, it holds that $m=0$ and $z=z^{\prime}$. Then, from the fact that $(x, z)=\left(x, z^{\prime}\right) \in \bar{t}$ and $\left(z, t^{\times} z\right) \in t^{\times}$it follows that $\left(x, t^{\times} z\right) \in t^{\times} \bar{t}$. Hence, since $y=t^{\times} z+m^{\prime}$,

$$
(x, y)=\left(x, t^{\times} z\right)+\left(0, m^{\prime}\right) \in t^{\times} \bar{t} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)
$$

Therefore

$$
\begin{equation*}
T^{*} T \subset t^{\times} \bar{t} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right) \tag{4.5}
\end{equation*}
$$

By Theorem 2.3, $T^{*} T$ is a nonnegative selfadjoint linear relation in \mathcal{S}^{\perp}. Then $T^{*} T$ admits a unique decomposition as in (2.4):

$$
T^{*} T=\left(T^{*} T\right)_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)
$$

where $\left(T^{*} T\right)_{0}$ is a selfadjoint operator in $\overline{\operatorname{dom}}\left(T^{*} T\right)=\mathcal{N}_{2}$. By (4.5), $\left(T^{*} T\right)_{0} \subset$ $t^{\times} \bar{t}$ and, since $\left(T^{*} T\right)_{0}$ and $t^{\times} \bar{t}$ are selfadjoint operators in \mathcal{N}_{2}, equality holds, i.e., $\left(T^{*} T\right)_{0}=t^{\times} \bar{t}$. Hence

$$
T^{*} T=\left(T^{*} T\right)_{0} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)=d_{0}^{1 / 2} D_{f} \overline{\left.D_{f} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)
$$

Consider the set

$$
\mathcal{M}\left(A, \mathcal{S}^{\perp}\right):=\left\{X \text { 1.r. in } \mathcal{H}: 0 \leq X \leq A, \operatorname{ran}(X) \subseteq \mathcal{S}^{\perp}\right\}
$$

In [3], Arlinskiĭ proved that the set $\mathcal{M}\left(A, \mathcal{S}^{\perp}\right)$ has a maximum element and defined the Schur complement of A to \mathcal{S} denoted by $A_{/ \mathcal{S}}$ as the maximum of $\mathcal{M}\left(A, \mathcal{S}^{\perp}\right)$. In what follows we give an alternate proof of the existence of the Schur complement as well as a formula for $A_{/ \mathcal{S}}$ using the matrix decomposition of A when $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq$ $\operatorname{dom}(A)$.

Theorem 4.2. Let A be a linear relation in \mathcal{H}, let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and consider the matrix representation of A with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ in 4.1). Then the set $\mathcal{M}\left(A, \mathcal{S}^{\perp}\right)$ has a maximum element $A_{/ \mathcal{S}}$. Moreover,

$$
A_{/ \mathcal{S}}=\left(\begin{array}{cc}
0 & 0 \\
0 & T^{*} T
\end{array}\right)
$$

where $T:=\overline{\left.D_{g} d^{1 / 2}\right|_{\mathcal{D}_{2}}}$.
Proof. Write $A=A_{0} \hat{\oplus} A_{\operatorname{mul}(A)}$ and set $C:=\left(\begin{array}{cc}0 & 0 \\ 0 & T^{*} T\end{array}\right)$. Then $\operatorname{ran}(C)=$ $\operatorname{ran}\left(T^{*} T\right)=\operatorname{ran}\left(\left(T^{*} T\right)_{0}\right) \oplus \mathcal{M}_{2} \subseteq \mathcal{N}_{2} \oplus \mathcal{M}_{2}=\mathcal{S}^{\perp}$ and $C^{*}=C \geq 0$. Suppose that T is written as $T=T_{0} \hat{\oplus}(\{0\} \times \operatorname{mul}(T))$ as in (2.4). Let C_{0} be the operator part of C then, by [9, Proposition 2.7],

$$
\left\langle C_{0}^{1 / 2} u, C_{0}^{1 / 2} v\right\rangle=\left\langle T_{0} u_{2}, T_{0} v_{2}\right\rangle
$$

for every $u=\binom{u_{1}}{u_{2}}, v=\binom{v_{1}}{v_{2}} \in \operatorname{dom}\left(C_{0}^{1 / 2}\right)=\mathcal{S} \oplus \operatorname{dom}\left(T_{0}\right)$.
Then, since $\mathcal{D}_{2} \subseteq \operatorname{dom}(T)=\operatorname{dom}\left(T_{0}\right)$

$$
\operatorname{dom}(A)=\mathcal{D}_{1} \oplus \mathcal{D}_{2} \subseteq \mathcal{S} \oplus \operatorname{dom}\left(T_{0}\right)=\operatorname{dom}\left(C_{0}^{1 / 2}\right)
$$

Let (4.2) be the matrix decomposition of A_{0} (in $\overline{\operatorname{dom}}(A)$) with respect to $\mathcal{N}_{1} \oplus \mathcal{N}_{2}$. Let V_{1} and V_{2} be the partial isometries given in the proof of Theorem3.11 such that

$$
V_{1} a_{0}^{1 / 2}=A_{0}^{1 / 2} \text { on } \mathcal{D}_{1} \text { and } V_{2} d_{0}^{1 / 2}=A_{0}^{1 / 2} \text { on } \mathcal{D}_{2},
$$

and $f=V_{1}{ }^{*} V_{2}$. Then, by Corollary 3.12, $A_{0}=Z^{*} \Gamma Z$, where $\Gamma=\left(\begin{array}{cc}1 & f \\ f^{*} & 1\end{array}\right)$ and

$$
\begin{aligned}
& Z=\left(\begin{array}{cc}
\left.a_{0}^{1 / 2}\right|_{\mathcal{D}_{1}} & 0 \\
0 & \left.d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}
\end{array}\right) . \text { Let } h=\binom{h_{1}}{h_{2}} \in \mathcal{D}_{1} \oplus \mathcal{D}_{2} . \text { Then } \\
&\left\langle A_{0} h, h\right\rangle=\left\langle\left(\begin{array}{cc}
1 & f \\
f^{*} & 1
\end{array}\right)\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}},\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}}\right\rangle \\
& \geq\left\langle\left(\begin{array}{cc}
1 & f \\
f^{*} & 1
\end{array}\right)_{\mid \mathcal{N}_{1}}\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}},\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}}\right\rangle \\
&=\left\langle\left(\begin{array}{cc}
0 & 0 \\
0 & 1-f^{*} f
\end{array}\right)\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}},\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}}\right\rangle \\
&=\left\langle D_{f} d_{0}^{1 / 2} h_{2}, D_{f} d_{0}^{1 / 2} h_{2}\right\rangle=\left\|t h_{2}\right\|^{2} .
\end{aligned}
$$

Let us see that

$$
\left\|t h_{2}\right\|^{2} \geq\left\|T_{0} h_{2}\right\|^{2}
$$

In fact, $\left(h_{2}, t h_{2}\right) \in t \subseteq T$. Since $T=T_{0} \hat{\oplus}(\{0\} \times \operatorname{mul}(T))$,

$$
\left(h_{2}, t h_{2}\right)=\left(h_{2}, T_{0} h_{2}\right)+(0, z)
$$

for some $z \in \operatorname{mul}(T)$. Then $t h_{2}=T_{0} h_{2}+z$. Since $T_{0} h_{2} \in \operatorname{ran}\left(T_{0}\right) \subseteq \overline{\operatorname{dom}}\left(T^{*}\right) \subseteq$ $\operatorname{mul}(T)^{\perp}$ and $\mathcal{D}_{1} \subseteq \mathcal{S}$ it follows that

$$
\left\|t h_{2}\right\|^{2}=\left\|T_{0} h_{2}\right\|^{2}+\|z\|^{2} \geq\left\|T_{0} h_{2}\right\|^{2}=\left\|C_{0}^{1 / 2} h\right\|^{2} .
$$

Then

$$
\left\langle A_{0} h, h\right\rangle=\left\|A_{0}^{1 / 2} h\right\|^{2} \geq\left\|C_{0}^{1 / 2} h\right\|^{2} \text { for every } h \in \operatorname{dom}(A) .
$$

Since $\operatorname{dom}(A)$ is a core for $A_{0}^{1 / 2}$, by [16, Lemma 10.10], it follows that $\operatorname{dom}\left(A_{0}^{1 / 2}\right) \subseteq$ $\operatorname{dom}\left(C_{0}^{1 / 2}\right)$ and $\left\|A_{0}^{1 / 2} h\right\| \geq\left\|C_{0}^{1 / 2} h\right\|$ for every $h \in \operatorname{dom}\left(A_{0}^{1 / 2}\right)$. Hence, $A \geq C$. So that

$$
C \in \mathcal{M}\left(A, \mathcal{S}^{\perp}\right)
$$

Let $X \in \mathcal{M}\left(A, \mathcal{S}^{\perp}\right)$. Then, by Lemma 2.4, there exists a contraction $W \in L(\mathcal{H})$ such that

$$
X_{0}^{1 / 2} \supset W A_{0}^{1 / 2}
$$

where X_{0} is the operator part of X. Recall that X_{0} is a nonnegative selfadjoint linear operator in $\overline{\operatorname{dom}}(X)$. Also, if $h_{2} \in \mathcal{D}_{2} \subseteq \operatorname{dom}(A)=\operatorname{dom}\left(A_{0}\right) \subseteq \operatorname{dom}\left(A_{0}^{1 / 2}\right)$,

$$
X_{0}^{1 / 2} h_{2}=W A_{0}^{1 / 2} h_{2}=W V_{2} d_{0}^{1 / 2}=W^{\prime} d_{0}^{1 / 2} h_{2}
$$

with $W^{\prime}=W V_{2}$. Also, since $X \leq A$, we have that $\operatorname{dom}(A) \subseteq \operatorname{dom}\left(A_{0}^{1 / 2}\right) \subseteq$ $\operatorname{dom}\left(X_{0}^{1 / 2}\right)$ and

$$
\left\langle X_{0}^{1 / 2} h, X_{0}^{1 / 2} h\right\rangle \leq\left\langle A_{0}^{1 / 2} h, A_{0}^{1 / 2} h\right\rangle=\left\langle A_{0} h, h\right\rangle \text { for every } h \in \operatorname{dom}(A)
$$

Let $h=\binom{h_{1}}{h_{2}} \in \mathcal{D}_{1} \oplus \mathcal{D}_{2}$. Then, since $\mathcal{D}_{1} \subseteq \mathcal{S} \subseteq \operatorname{ker}(X)=\operatorname{ker}\left(X_{0}\right)$,

$$
\begin{aligned}
\left\langle X_{0}^{1 / 2} h, X_{0}^{1 / 2} h\right\rangle & =\left\langle X_{0}^{1 / 2} h_{2}, X_{0}^{1 / 2} h_{2}\right\rangle=\left\langle W^{\prime} d_{0}^{1 / 2} h_{2}, W^{\prime} d_{0}^{1 / 2} h_{2}\right\rangle \\
& =\left\langle\left(\begin{array}{cc}
0 & 0 \\
0 & W^{\prime *} W^{\prime}
\end{array}\right)\binom{0}{d_{0}^{1 / 2} h_{2}},\binom{0}{d_{0}^{1 / 2} h_{2}}\right\rangle \\
& =\left\langle\left(\begin{array}{cc}
0 & 0 \\
0 & W^{\prime *} W^{\prime}
\end{array}\right)\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}},\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}}\right\rangle \\
& \leq\left\langle A_{0} h, h\right\rangle=\left\langle\left(\begin{array}{cc}
1 & f \\
f^{*} & 1
\end{array}\right)\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}},\binom{a_{0}^{1 / 2} h_{1}}{d_{0}^{1 / 2} h_{2}}\right\rangle .
\end{aligned}
$$

Since \mathcal{D}_{1} is a core of $a_{0}^{1 / 2}$ and \mathcal{D}_{2} is a core of $d_{0}^{1 / 2}$, we have that $\overline{a_{0}^{1 / 2}\left(\mathcal{D}_{1}\right)}=$ $\overline{\operatorname{ran}}\left(a_{0}^{1 / 2}\right)$ and $\overline{d_{0}^{1 / 2}\left(\mathcal{D}_{2}\right)}=\overline{\operatorname{ran}}\left(d_{0}^{1 / 2}\right)$. Also, $\operatorname{ker}\left(d_{0}^{1 / 2}\right)=\operatorname{ker}\left(V_{2}\right) \subseteq \operatorname{ker}\left(W^{\prime}\right) \cap \operatorname{ker}(f)$ and $\operatorname{ker}\left(a_{0}^{1 / 2}\right) \subseteq \operatorname{ker}\left(f^{*}\right)$. Hence, by the last inequality, it follows that

$$
0 \leq\left(\begin{array}{cc}
0 & 0 \\
0 & W^{\prime *} W^{\prime}
\end{array}\right) \leq\left(\begin{array}{cc}
1 & f \\
f^{*} & 1
\end{array}\right)
$$

where the inequality holds in the Hilbert space $\overline{\operatorname{dom}}(A)=\mathcal{N}_{1} \oplus \mathcal{N}_{2}$. Therefore

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & W^{\prime *} W^{\prime}
\end{array}\right) \leq\left(\begin{array}{cc}
1 & f \\
f^{*} & 1
\end{array}\right)_{/ \mathcal{N}_{1}}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1-f^{*} f
\end{array}\right)
$$

So that $W^{\prime *} W^{\prime} \leq 1-f^{*} f$. Then

$$
\begin{aligned}
\left\langle X_{0}^{1 / 2} h, X_{0}^{1 / 2} h\right\rangle & =\left\langle W^{\prime} d_{0}^{1 / 2} h_{2}, W^{\prime} d_{0}^{1 / 2} h_{2}\right\rangle \\
& \leq\left\langle\left(1-f^{*} f\right)^{1 / 2} d_{0}^{1 / 2} h_{2},\left(1-f^{*} f\right)^{1 / 2} d_{0}^{1 / 2} h_{2}\right\rangle \\
& =\left\langle D_{f} d_{0}^{1 / 2} h_{2}, D_{f} d_{0}^{1 / 2} h_{2}\right\rangle=\left\|D_{f} d_{0}^{1 / 2} h_{2}\right\|^{2}=\left\|t h_{2}\right\|^{2}
\end{aligned}
$$

Next we show that $C \geq X$. Let $h=\binom{h_{1}}{h_{2}} \in \operatorname{dom}\left(C_{0}^{1 / 2}\right)=\mathcal{S} \oplus \operatorname{dom}\left(T_{0}\right)$. Then $h_{2} \in \operatorname{dom}\left(T_{0}\right)$. So that there exists $k \in \mathcal{N}_{2}$ such that $\left(h_{2}, k\right) \in T_{0} \subset T$. Since T_{0} is an operator, it follows that $k=T_{0} h_{2}$. Also, since $\left(h_{2}, k\right) \in T=\overline{\left.D_{g} d^{1 / 2}\right|_{\mathcal{D}_{2}}}$, there exists a sequence $\left.\left(h_{n}, y_{n}\right)_{n \geq 1} \in D_{g} d^{1 / 2}\right|_{\mathcal{D}_{2}}$ such that $\lim _{n \rightarrow \infty}\left(h_{n}, y_{n}\right)=\left(h_{2}, k\right)$.

Since $\left.\left(h_{n}, y_{n}\right) \in D_{g} d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.D_{f} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$ for every $n \in \mathbb{N}$, then $h_{n} \in \mathcal{D}_{2}$ and, for every $n \in \mathbb{N}$, there exits $m_{n} \in \mathcal{M}_{2}$ such that

$$
\left(h_{n}, y_{n}\right)=\left(h_{n}, D_{f} d_{0}^{1 / 2} h_{n}\right)+\left(0, m_{n}\right) .
$$

Then, $\lim _{n \rightarrow \infty} h_{n}=h_{2}$ and $\lim _{n \rightarrow \infty} D_{f} d_{0}^{1 / 2} h_{n}+m_{n}=k$. But, since $D_{f} d_{0}^{1 / 2} h_{n} \in \mathcal{N}_{2}$ for every $n \in \mathbb{N}$ and $k \in \mathcal{N}_{2} \perp \mathcal{M}_{2}$, it follows that $\lim _{n \rightarrow \infty} m_{n}=0$ and then $\lim _{n \rightarrow \infty} D_{f} d_{0}^{1 / 2} h_{n}=$ $\lim _{n \rightarrow \infty} t h_{n}=k$. From

$$
\left\|X_{0}^{1 / 2} h_{n}\right\|^{2} \leq\left\|t h_{n}\right\|^{2} \text { for every } n \in \mathbb{N}
$$

it follows that $\left(X_{0}^{1 / 2} h_{n}\right)_{n \geq 1}$ is a Cauchy sequence (so it converges). From the fact that $X_{0}^{1 / 2}$ is a closed operator, $h_{2} \in \operatorname{dom}\left(X_{0}^{1 / 2}\right)$ and $\lim _{n \rightarrow \infty} X_{0}^{1 / 2} h_{n}=X_{0}^{1 / 2} h_{2}$. Then, since $\mathcal{S} \subseteq \operatorname{ker}\left(X_{0}\right)=\operatorname{ker}\left(X_{0}^{1 / 2}\right) \subseteq \operatorname{dom}\left(X_{0}^{1 / 2}\right)$,

$$
\operatorname{dom}\left(C_{0}^{1 / 2}\right)=\mathcal{S} \oplus \operatorname{dom}\left(T_{0}\right) \subseteq \operatorname{dom}\left(X_{0}^{1 / 2}\right)
$$

Therefore, since $h_{1} \in \operatorname{ker}\left(X_{0}^{1 / 2}\right)$,

$$
\begin{aligned}
\left\|X_{0}^{1 / 2} h\right\| & =\left\|X_{0}^{1 / 2} h_{2}\right\|=\lim _{n \rightarrow \infty}\left\|X_{0}^{1 / 2} h_{n}\right\| \\
& \leq \lim _{n \rightarrow \infty}\left\|t h_{n}\right\|=\|k\|=\left\|T_{0} h_{2}\right\|=\left\|C_{0}^{1 / 2} h\right\|
\end{aligned}
$$

Remark. Suppose that $A \geq 0$ is (a densely defined) operator in \mathcal{H}. If $X \in \mathcal{M}\left(A, \mathcal{S}^{\perp}\right)$ then X is an operator in \mathcal{H}. In fact, if $X \in \mathcal{M}\left(A, \mathcal{S}^{\perp}\right)$ then $\operatorname{dom}\left(A^{1 / 2}\right) \subseteq \operatorname{dom}\left(X^{1 / 2}\right)$ and then

$$
\operatorname{mul}(X)=\operatorname{mul}\left(X^{1 / 2}\right)=\operatorname{dom}\left(X^{1 / 2}\right)^{\perp} \subseteq \operatorname{dom}\left(A^{1 / 2}\right)^{\perp}=\operatorname{mul}(A)=\{0\}
$$

In this case, $\mathcal{N}_{1}=\overline{\mathcal{D}_{1}}=\mathcal{S}$ and $\mathcal{M}_{1}=\mathcal{M}_{2}=\{0\}$. So that $f=g, d=d_{0}, T^{*} T=t^{\times} \bar{t}$ and,

$$
A_{/ \mathcal{S}}=\left(\begin{array}{cc}
0 & 0 \\
0 & T^{*} T
\end{array}\right)=\max \left\{X \text { 1.o. in } \mathcal{H}: 0 \leq X \leq A, \operatorname{ran}(X) \subseteq \mathcal{S}^{\perp}\right\}
$$

In a similar way, we now define $A_{\mathcal{S}}$ the compression of A. For this, consider the row linear relation

$$
S:=\left(\left.\left.a^{1 / 2}\right|_{\mathcal{D}_{1}} \quad g d^{1 / 2}\right|_{\mathcal{D}_{2}}\right) \subseteq \mathcal{H} \times \mathcal{S}
$$

with $\operatorname{dom}(S)=\mathcal{D}_{1} \oplus \mathcal{D}_{2}=\operatorname{dom}(A)$. Define $A_{\mathcal{S}}$ by

$$
A_{\mathcal{S}}:=S^{*} \bar{S}
$$

Then, by Theorem 2.3, $A_{\mathcal{S}}$ is a nonnegative selfadjoint linear relation \mathcal{H}.
Lemma 4.3. Under the above hypotheses, \bar{S} is decomposable and

$$
A_{\mathcal{S}}=s^{\times} \bar{s} \hat{\oplus}(\{0\} \times \operatorname{mul}(A)),
$$

where $s: \mathcal{D} \rightarrow \mathcal{N}_{1}$ is the closable linear operator defined by

$$
s:=\left(\begin{array}{cc}
\left.a_{0}^{1 / 2}\right|_{\mathcal{D}_{1}} & \left.f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \tag{4.6}
\end{array}\right)
$$

and s^{\times}is the adjoint of s when viewed as an operator from $\overline{\operatorname{dom}}(S)$ to $\overline{\operatorname{dom}}\left(S^{*}\right)$.
Proof. Since $\left.a^{1 / 2}\right|_{\mathcal{D}_{1}}=\left.a_{0}^{1 / 2}\right|_{\mathcal{D}_{1}} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right)$ and $\left.g d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}$, it follows that

$$
S=s \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right)
$$

In fact, it is clear that $\operatorname{ran}(s) \subseteq \mathcal{N}_{1}$ and, since $\operatorname{mul}\left(\left.g d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\{0\}, \operatorname{mul}(S)=$ $\operatorname{mul}\left(\left.a^{1 / 2}\right|_{\mathcal{D}_{1}}\right)+\operatorname{mul}\left(\left.g d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{M}_{1}$ and $\operatorname{dom}(S)=\operatorname{dom}(A)=\operatorname{dom}(s)$. Also, if $(h, y) \in S$ then $(h, y)=\left(\binom{h_{1}}{h_{2}}, y_{1}+y_{2}\right)$ where $h_{1} \in \mathcal{D}_{1}, h_{2} \in \mathcal{D}_{2}$ and $\left(h_{1}, y_{1}\right) \in$ $\left.a^{1 / 2}\right|_{\mathcal{D}_{1}}$ and $\left.\left(h_{2}, y_{2}\right) \in g d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}$. So that $\left(h_{1}, y_{1}\right)=\left(h_{1}, a_{0}^{1 / 2} h_{1}\right)+$ $\left(0, m_{1}\right)$ for some $m_{1} \in \mathcal{M}_{1}$ and $y_{2}=f d_{0}^{1 / 2} h_{2}$. Hence

$$
\begin{aligned}
(h, y) & =\left(\binom{h_{1}}{h_{2}}, y_{1}+y_{2}\right) \\
& =\left(\binom{h_{1}}{h_{2}}, a_{0}^{1 / 2} h_{1}+f d_{0}^{1 / 2} h_{2}\right)+\left(0, m_{1}\right) \in s \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right)
\end{aligned}
$$

Then $S \subset s \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right)$ and, by [9, Corollary 2.2], $S=s \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right)$.
The row operator s is closable, in fact, $s^{\times}=\binom{a_{0}^{1 / 2}}{d_{0}^{1 / 2} f^{*}}$ and, as $a_{0}^{1 / 2}\left(\mathcal{D}_{1}\right) \subseteq$ $\operatorname{dom}\left(a_{0}^{1 / 2}\right) \cap \operatorname{dom}\left(d_{0}^{1 / 2} f^{*}\right)$ and $\operatorname{ker}\left(a_{0}^{1 / 2}\right) \subseteq \operatorname{dom}\left(a_{0}^{1 / 2}\right) \cap \operatorname{ker}\left(f^{*}\right)$,

$$
\operatorname{dom}\left(s^{\times}\right) \supseteq a_{0}^{1 / 2}\left(\mathcal{D}_{1}\right) \oplus \operatorname{ker}\left(a_{0}^{1 / 2}\right)
$$

which is dense in \mathcal{N}_{1}. Then \bar{s} is an operator. Moreover, by Theorem 2.1, \bar{S} is decomposable and

$$
\bar{S}=\bar{s} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{1}\right) .
$$

Also, since \mathcal{D}_{1} is a core of $a^{1 / 2}$ and \mathcal{D}_{2} is a core of $d^{1 / 2}$, it follows that

$$
S^{*}=\binom{a^{1 / 2}}{d^{1 / 2} g^{*}}
$$

$\operatorname{mul}\left(A_{\mathcal{S}}\right)=\operatorname{mul}\left(S^{*}\right)=\operatorname{mul}\left(a^{1 / 2}\right) \oplus \operatorname{mul}\left(d^{1 / 2} g^{*}\right)=\mathcal{M}_{1} \oplus \mathcal{M}_{2}=\operatorname{mul}(A)$ and, by Theorem 2.3, the operator part of $S^{*} \bar{S}$ is $\left(S^{*} \bar{S}\right)_{0}=\left((\bar{S})_{0}\right)^{\times}(\bar{S})_{0}=s^{\times} \bar{s}$. Then

$$
A_{\mathcal{S}}=s^{\times} \bar{s} \hat{\oplus}(\{0\} \times \operatorname{mul}(A)) .
$$

Let V_{1} be the partial isometry given in the proof of Theorem 3.11 Then

$$
\begin{equation*}
s=V_{1}{ }^{*} A_{0}^{1 / 2} \text { on } \operatorname{dom}(A) \tag{4.7}
\end{equation*}
$$

Proposition 4.4. Let $A \geq 0$ be a linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Then

$$
A \geq A_{\mathcal{S}}
$$

Proof. Suppose that $\left(A_{\mathcal{S}}\right)_{0}$ is the operator part of $A_{\mathcal{S}}$ then, by [9, Proposition 2.7],

$$
\left\langle\left(A_{\mathcal{S}}\right)_{0}^{1 / 2} u,\left(A_{\mathcal{S}}\right)_{0}^{1 / 2} v\right\rangle=\left\langle(\bar{S})_{0} u,(\bar{S})_{0} v\right\rangle=\langle\bar{s} u, \bar{s} v\rangle
$$

for every $u, v \in \operatorname{dom}\left(\left(A_{\mathcal{S}}\right)_{0}^{1 / 2}\right)=\operatorname{dom}\left((\bar{S})_{0}\right)=\operatorname{dom}(\bar{s})$. Then

$$
\operatorname{dom}(A)=\operatorname{dom}(s) \subseteq \operatorname{dom}\left(\left(A_{\mathcal{S}}\right)_{0}^{1 / 2}\right)
$$

Let $h=\binom{h_{1}}{h_{2}} \in \mathcal{D}_{1} \oplus \mathcal{D}_{2}=\operatorname{dom}(s)$. Then, by (4.7),

$$
\left\|\left(A_{\mathcal{S}}\right)_{0}^{1 / 2} h\right\|=\|\bar{s} h\|=\|s h\|=\left\|V_{1}^{*} A_{0}^{1 / 2} h\right\| \leq\left\|A_{0}^{1 / 2} h\right\|=\left\|A_{0}^{1 / 2} h\right\| .
$$

Hence, since $\operatorname{dom}(A)$ is a core of $A^{1 / 2}$, by [16, Lemma 10.10], $A \geq A_{\mathcal{S}}$.
Define

$$
\mathcal{L}:=\overline{A^{1 / 2}\left(\mathcal{D}_{1}\right)} \cap \overline{\operatorname{dom}}(A) .
$$

In the following we show that if the positive relations A and $A^{1 / 2}$ admit a matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ and $\mathcal{L} \oplus \mathcal{L}^{\perp}$, respectively, then

$$
A=A_{\mathcal{S}}+A_{/ \mathcal{S}}
$$

Lemma 4.5. Let $A \geq 0$ be a linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Consider the matrix representation of A with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ in (4.1). Then the following are equivalent:
(i) $P_{\mathcal{L}}\left(A^{1 / 2}(\operatorname{dom}(A)) \subseteq \operatorname{dom}\left(A^{1 / 2}\right)\right.$;
(ii) $\operatorname{dom}\left(\left.d^{1 / 2} g^{*} g d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{D}_{2}$;
(iii) $\operatorname{dom}\left(\left.d^{1 / 2} D_{g}^{2} d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{D}_{2}$.

In this case, the linear relation $D_{g} d^{1 / 2}$ is decomposable.
Proof. Since $A^{1 / 2}(\operatorname{dom}(A))=A_{0}^{1 / 2}(\operatorname{dom}(A)) \oplus \operatorname{mul}(A)$ and $\operatorname{mul}(A) \subseteq \mathcal{L}^{\perp}$, it follows that

$$
\begin{equation*}
P_{\mathcal{L}}\left(A^{1 / 2}(\operatorname{dom}(A))\right)=P_{\mathcal{L}}\left(A_{0}^{1 / 2}(\operatorname{dom}(A)) \oplus \operatorname{mul}(A)\right)=P_{\mathcal{L}}\left(A_{0}^{1 / 2}(\operatorname{dom}(A))\right) \tag{4.8}
\end{equation*}
$$

Let V_{1} and V_{2} be the partial isometries given in the proof of Theorem 3.11. Then $f=V_{1}{ }^{*} V_{2}$ and, since $\mathcal{L}=\overline{A_{0}^{1 / 2}\left(\mathcal{D}_{1}\right)}, P_{\mathcal{L}}=V_{1} V_{1}{ }^{*}$. Also,

$$
\left.A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}=\left(\begin{array}{cc}
\left.V_{1} a_{0}^{1 / 2}\right|_{\mathcal{D}_{1}} & \left.V_{2} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}
\end{array}\right)
$$

and $A_{0}^{1 / 2}=\binom{a_{0}^{1 / 2} V_{1}{ }^{*}}{d_{0}^{1 / 2} V_{2}^{*}}$, so that $\operatorname{dom}\left(A_{0}^{1 / 2}\right)=\operatorname{dom}\left(a_{0}^{1 / 2} V_{1}{ }^{*}\right) \cap \operatorname{dom}\left(d_{0}^{1 / 2} V_{2}^{*}\right)$. Then

$$
\begin{equation*}
P_{\mathcal{L}}\left(A_{0}^{1 / 2}\left(\mathcal{D}_{2}\right)\right) \subseteq \operatorname{dom}\left(A_{0}^{1 / 2}\right) \Leftrightarrow \operatorname{dom}\left(\left.d_{0}^{1 / 2} f^{*} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{D}_{2} \tag{4.9}
\end{equation*}
$$

In fact, by Theorem 3.11 ,

$$
V_{1}^{*} P_{\mathcal{L}}\left(A_{0}^{1 / 2}\left(\mathcal{D}_{2}\right)\right)=f d_{0}^{1 / 2}\left(\mathcal{D}_{2}\right) \subseteq \operatorname{dom}\left(a_{0}^{1 / 2}\right)
$$

and

$$
V_{2}^{*} P_{\mathcal{L}}\left(A_{0}^{1 / 2}\left(\mathcal{D}_{2}\right)\right)=f^{*} f d_{0}^{1 / 2}\left(\mathcal{D}_{2}\right)
$$

Then (4.9) follows.

Since $\left.g d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}$ we have that

$$
\begin{equation*}
\left.d^{1 / 2} g^{*} g d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.d_{0}^{1 / 2} f^{*} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right) \tag{4.10}
\end{equation*}
$$

Then $(i) \Leftrightarrow$ (ii) follows from (4.8) and (4.9).
Applying (4.3), it can be seen that

$$
\begin{equation*}
\left.d^{1 / 2} D_{g}^{2} d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.d_{0}^{1 / 2} D_{f}^{2} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right) \tag{4.11}
\end{equation*}
$$

By (4.10), $\operatorname{dom}\left(\left.d^{1 / 2} g^{*} g d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{D}_{2}$ if and only if $\operatorname{dom}\left(\left.d_{0}^{1 / 2} f^{*} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=$ \mathcal{D}_{2}. Then (ii) \Leftrightarrow (iii) follows from (4.11) and from the fact that $\left.f^{*} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}+$ $\left.D_{f}^{2} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}$.

Since equation (4.3) holds and $\operatorname{mul}\left(\left.D_{g} d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{M}_{2}$ to see that $D_{g} d^{1 / 2}$ is decomposable it is sufficient to prove that the operator $D_{f} d_{0}^{1 / 2}$ is closable [11, Theorem 3.10]. In fact, let $\left(y_{n}\right)_{n \geq 1} \subseteq \mathcal{D}_{2}$ be such that $y_{n} \rightarrow 0$ and $D_{f} d_{0}^{1 / 2} y_{n} \rightarrow h$. Then, for every $h_{2} \in \mathcal{D}_{2}$,

$$
\begin{aligned}
\left\langle h, D_{f} d_{0}^{1 / 2} h_{2}\right\rangle & =\lim _{n \rightarrow \infty}\left\langle D_{f} d_{0}^{1 / 2} y_{n}, D_{f} d_{0}^{1 / 2} h_{2}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle y_{n}, d_{0}^{1 / 2} D_{f}^{2} d_{0}^{1 / 2} h_{2}\right\rangle=0
\end{aligned}
$$

where we used that, by (4.9), $\operatorname{dom}\left(\left.d_{0}^{1 / 2} D_{f}^{2} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{D}_{2}$. Then $h \in \overline{\operatorname{ran}}\left(D_{f} d_{0}^{1 / 2}\right) \cap$ $\operatorname{ran}\left(D_{f} d_{0}^{1 / 2}\right)^{\perp}$ and $h=0$.

Theorem 4.6. Let $A \geq 0$ be a linear relation in \mathcal{H}, let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$. Then the following are equivalent:
(i) $\operatorname{dom}(A) \subseteq \operatorname{dom}\left(A_{\mathcal{S}}\right)$;
(ii) $P_{\mathcal{L}}\left(A^{1 / 2}(\operatorname{dom}(A))\right) \subseteq \operatorname{dom}\left(A^{1 / 2}\right)$;
(iii) $A=A_{\mathcal{S}}+A_{/ \mathcal{S}}$.

Proof. (i) \Rightarrow (ii): Let us see that $\operatorname{dom}\left(\left.d_{0}^{1 / 2} f^{*} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{D}_{2}$. In fact, let $h_{2} \in \mathcal{D}_{2}$ then $h_{2} \in \operatorname{dom}\left(A_{\mathcal{S}}\right)=\operatorname{dom}\left(s^{\times} \bar{s}\right)$, where s is as in 4.6), and $s^{\times} \bar{s}$ is the operator part of $A_{\mathcal{S}}$. Since $h_{2} \in \mathcal{D}_{2} \subseteq \operatorname{dom}(s)$ and s is closable, it follows that

$$
\bar{s} h_{2}=s h_{2}=f d_{0}^{1 / 2} h_{2} \in \operatorname{dom}\left(s^{\times}\right)=\operatorname{dom}\left(a_{0}^{1 / 2}\right) \cap \operatorname{dom}\left(d_{0}^{1 / 2} f^{*}\right)
$$

Hence $h_{2} \in \operatorname{dom}\left(\left.d_{0}^{1 / 2} f^{*} f d_{0}^{1 / 2}\right|_{D_{2}}\right)$. Then, by (4.8) and (4.9), $P_{\mathcal{L}}\left(A^{1 / 2}(\operatorname{dom}(A))\right) \subseteq$ $\operatorname{dom}\left(A^{1 / 2}\right)$.
(ii) \Rightarrow (iii): By the proof of Lemma 4.5 ,

$$
\operatorname{dom}\left(\left.d_{0}^{1 / 2} f^{*} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\operatorname{dom}\left(\left.d_{0}^{1 / 2} D_{f}^{2} d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{D}_{2}
$$

Also, since

$$
\left.g^{*} g d^{1 / 2}\right|_{\mathcal{D}_{2}}+\left.D_{g}^{2} d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.d^{1 / 2}\right|_{\mathcal{D}_{2}}
$$

and $\operatorname{dom}\left(\left.d^{1 / 2} g^{*} g d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\operatorname{dom}\left(\left.d^{1 / 2} D_{g}^{2} d^{1 / 2}\right|_{\mathcal{D}_{2}}\right)=\mathcal{D}_{2} \subseteq \operatorname{dom}\left(d^{1 / 2}\right)$ (see Lemma 4.5), it follows that

$$
\begin{equation*}
\left.d^{1 / 2} g^{*} g d^{1 / 2}\right|_{\mathcal{D}_{2}}+\left.d^{1 / 2} D_{g}^{2} d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.d\right|_{\mathcal{D}_{2}} \tag{4.12}
\end{equation*}
$$

Next we show that

$$
s^{\times} s=\left(\begin{array}{cc}
a_{0} & b_{0} \\
c_{0} & \left.d_{0}^{1 / 2} f^{*} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}
\end{array}\right) .
$$

Let $h=\binom{h_{1}}{h_{2}} \in \mathcal{D}_{1} \oplus \mathcal{D}_{2}$. Then

$$
s^{\times} s h=\binom{a_{0}^{1 / 2}\left(a_{0}^{1 / 2} h_{1}+f d_{0}^{1 / 2} h_{2}\right)}{d_{0}^{1 / 2} f^{*}\left(a_{0}^{1 / 2} h_{1}+f d_{0}^{1 / 2} h_{2}\right)}=\left(\begin{array}{cc}
a_{0} & b_{0} \\
c_{0} & \left.d_{0}^{1 / 2} f^{*} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}}
\end{array}\right) h
$$

where the last equality follows from the fact that, since $f d_{0}^{1 / 2} h_{2} \in \operatorname{dom}\left(d_{0}^{1 / 2} f^{*}\right)$, it is possible to distribute. Then, since $\left.d^{1 / 2} g^{*} g d^{1 / 2}\right|_{\mathcal{D}_{2}}=\left.d_{0}^{1 / 2} f^{*} f d_{0}^{1 / 2}\right|_{\mathcal{D}_{2}} \hat{\oplus}\left(\{0\} \times \mathcal{M}_{2}\right)$, it follows that

$$
A_{\mathcal{S}} \supset s^{\times} s \hat{\oplus}(\{0\} \times \operatorname{mul}(A))=\left(\begin{array}{cc}
a & b \tag{4.13}\\
c & \left.d^{1 / 2} g^{*} g d^{1 / 2}\right|_{\mathcal{D}_{2}}
\end{array}\right)
$$

Clearly,

$$
A_{/ \mathcal{S}} \supset\left(\begin{array}{cc}
0 & 0 \\
0 & \left.d^{1 / 2} D_{g}^{2} d^{1 / 2}\right|_{\mathcal{D}_{2}}
\end{array}\right)
$$

Then, by [10, Lemma 5.5] and (4.12),

$$
\left(\begin{array}{cc}
a & b \tag{4.14}\\
c & \left.d^{1 / 2} g^{*} g d^{1 / 2}\right|_{\mathcal{D}_{2}}
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & \left.d^{1 / 2} D_{g}^{2} d^{1 / 2}\right|_{\mathcal{D}_{2}}
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
c & \left.d\right|_{\mathcal{D}_{2}}
\end{array}\right)=A
$$

Hence $A_{\mathcal{S}}+A_{/ \mathcal{S}} \supset A$ and, by (2.2),

$$
A=A^{*} \supset\left(A_{\mathcal{S}}+A_{/ \mathcal{S}}\right)^{*} \supset\left(A_{\mathcal{S}}\right)^{*}+\left(A_{/ \mathcal{S}}\right)^{*}=A_{\mathcal{S}}+A_{/ \mathcal{S}} \supset A
$$

So that $A=A_{\mathcal{S}}+A_{/ \mathcal{S}}$.
$($ iii $) \Rightarrow(i)$: It is straightforward.

For a nonnegative operator $A \in L(\mathcal{H})$ and a closed subspace $\mathcal{S} \subseteq \mathcal{H}$, Pekarev [15] showed that the Schur complement $A_{/ \mathcal{S}}$ can be expressed as $A_{/ \mathcal{S}}=A^{1 / 2} P_{\mathcal{L}^{\perp}} A^{1 / 2}$ where $\mathcal{L}=\overline{A^{1 / 2}(\mathcal{S})}$. In what follows, we extend this formula for a linear relation $A \geq$ 0 in \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and $P_{\mathcal{L}}\left(A^{1 / 2}(\operatorname{dom}(A))\right) \subseteq \operatorname{dom}\left(A^{1 / 2}\right)$.

Corollary 4.7. Let $A \geq 0$ be a linear relation in \mathcal{H}, let \mathcal{S} be a closed subspace of \mathcal{H} such that $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and $P_{\mathcal{L}}\left(A^{1 / 2}(\operatorname{dom}(A))\right) \subseteq \operatorname{dom}\left(A^{1 / 2}\right)$. Then

$$
A_{/ \mathcal{S}}=A^{1 / 2} \overline{\left.P_{\mathcal{L}^{\perp}} A^{1 / 2}\right|_{\operatorname{dom}(A)}}, \quad A_{\mathcal{S}}=A^{1 / 2} \overline{\left.P_{\mathcal{L}} A^{1 / 2}\right|_{\operatorname{dom}(A)}}
$$

Proof. Let $h=h_{1}+h_{2} \in \mathcal{D}_{1} \oplus \mathcal{D}_{2}$. Then

$$
\begin{aligned}
\left\|t h_{2}\right\|^{2} & =\left\langle D_{f} d_{0}^{1 / 2} h_{2}, D_{f} d_{0}^{1 / 2} h_{2}\right\rangle=\left\langle\left(1-f^{*} f\right) d_{0}^{1 / 2} h_{2}, d_{0}^{1 / 2} h_{2}\right\rangle \\
& =\left\langle V_{2}^{*}\left(1-V_{1} V_{1}^{*}\right) V_{2} d_{0}^{1 / 2} h_{2}, d_{0}^{1 / 2} h_{2}\right\rangle=\left\langle\left(1-P_{\mathcal{L}}\right) A_{0}^{1 / 2} h_{2}, A_{0}^{1 / 2} h_{2}\right\rangle \\
& =\left\langle P_{\mathcal{L}^{\perp}} A_{0}^{1 / 2} h_{2}, A_{0}^{1 / 2} h_{2}\right\rangle=\left\|P_{\mathcal{L}^{\perp}} A_{0}^{1 / 2} h\right\|^{2},
\end{aligned}
$$

where we used that $P_{\mathcal{L}^{\perp}} A_{0}^{1 / 2} h=P_{\mathcal{L}^{\perp}} A_{0}^{1 / 2} h_{2}$, because $A_{0}^{1 / 2} h_{1} \in \mathcal{L}$. Then, since t is closable (see Lemma4.5), $\left.P_{\mathcal{L}^{\perp}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}$ is also closable. Set $W:=\overline{P_{\left.\mathcal{L}^{\perp} A^{1 / 2}\right|_{\operatorname{dom}(A)}}}$. Then, since $\left.P_{\mathcal{L}^{\perp}} A^{1 / 2}\right|_{\operatorname{dom}(A)}=\left.P_{\mathcal{L}^{\perp}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)} \hat{\oplus}(\{0\} \times \operatorname{mul}(A))$, it follows that

$$
\begin{equation*}
W=\overline{\left.P_{\mathcal{L}^{\perp}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}} \hat{\oplus}(\{0\} \times \operatorname{mul}(A)) \tag{4.15}
\end{equation*}
$$

Moreover, since t and $\left.P_{\mathcal{L}^{\perp}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}$ are closable operators, by (4.4) and (4.15), it follows that the operator part of T is $T_{0}=\bar{t}$ and the operator part of W is $W_{0}=\overline{\left.P_{\mathcal{L}^{\perp}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}}$. Also,

$$
\mathcal{L}^{\perp} \cap \operatorname{dom}\left(A_{0}^{1 / 2}\right) \subseteq A_{0}^{-1 / 2}\left(\mathcal{S}^{\perp}\right):=\left\{y \in \operatorname{dom}\left(A_{0}^{1 / 2}\right): A_{0}^{1 / 2} y \in \mathcal{S}^{\perp}\right\}
$$

In fact, let $y \in \mathcal{L}^{\perp} \cap \operatorname{dom}\left(A_{0}^{1 / 2}\right)$. Then, for every $h_{1} \in \mathcal{D}_{1}$,

$$
0=\left\langle y, A_{0}^{1 / 2} h_{1}\right\rangle=\left\langle A_{0}^{1 / 2} y, h_{1}\right\rangle
$$

So that

$$
A_{0}^{1 / 2} y \in \mathcal{D}_{1}^{\perp}=\left(\mathcal{S}^{\perp} \oplus \mathcal{M}_{1}\right) \cap \overline{\operatorname{dom}}(A) \subseteq \mathcal{S}^{\perp}
$$

because $\mathcal{M}_{1}=\mathcal{S} \cap \operatorname{mul}(A)$. Then

$$
\begin{equation*}
\operatorname{ran}\left(W_{0}{ }^{*} W_{0}\right) \subseteq \mathcal{S}^{\perp} \tag{4.16}
\end{equation*}
$$

In fact, let $y \in \operatorname{ran}\left(W_{0}{ }^{*} W_{0}\right)$. Then, since $\operatorname{ran}\left(W_{0}\right) \subseteq \mathcal{L}^{\perp}$, it follows that

$$
y=W_{0}^{*} W_{0} x=A_{0}^{1 / 2} W_{0} x
$$

for some $x \in \operatorname{dom}\left(W_{0}{ }^{*} W_{0}\right)$. Then $W_{0} x \in \mathcal{L}^{\perp} \cap \operatorname{dom}\left(A_{0}^{1 / 2}\right) \subseteq A_{0}^{-1 / 2}\left(\mathcal{S}^{\perp}\right)$ and $y=A_{0}^{1 / 2} W_{0} x \in \mathcal{S}^{\perp}$. So that, by (4.16), $\mathcal{S} \subseteq \operatorname{ker}\left(W_{0}^{*} W_{0}\right)=\operatorname{ker}\left(W_{0}\right) \subseteq \operatorname{dom}\left(W_{0}\right)$, where we used Theorem 2.3. Hence

$$
\begin{equation*}
h \in \operatorname{dom}\left(W_{0}\right) \Leftrightarrow P_{\mathcal{S}^{\perp}} h \in \operatorname{dom}\left(T_{0}\right) \text { and }\left\|W_{0} h\right\|=\left\|T_{0} P_{\mathcal{S}^{\perp}} h\right\| . \tag{4.17}
\end{equation*}
$$

Now we show that

$$
A_{/ \mathcal{S}}=\left(\begin{array}{cc}
0 & 0 \\
0 & T^{*} T
\end{array}\right)=W^{*} W=A^{1 / 2} \overline{\left.P_{\mathcal{L}^{\perp}} A^{1 / 2}\right|_{\operatorname{dom}(A)}}
$$

where for the last equality we used that $\operatorname{ran}\left(\overline{\left.P_{\mathcal{L}^{\perp} A^{1 / 2}}\right|_{\operatorname{dom}(A)}}\right) \subseteq \mathcal{L}^{\perp}$.
Suppose that $\left(W^{*} W\right)_{0}$ is the operator part of $W^{*} W$ then, by [9, Proposition 2.7],

$$
\left\langle\left(W^{*} W\right)_{0}^{1 / 2} u,\left(W^{*} W\right)_{0}^{1 / 2} v\right\rangle=\left\langle W_{0} u, W_{0} v\right\rangle
$$

for every $u, v \in \operatorname{dom}\left(\left(W^{*} W\right)_{0}^{1 / 2}\right)=\operatorname{dom}\left(W_{0}\right)$.
Suppose that $\left(A_{/ \mathcal{S}}\right)_{0}$ is the operator part of $A_{/ \mathcal{S}}$. Let $h \in \operatorname{dom}\left(\left(A_{/ \mathcal{S}}\right)_{0}^{1 / 2}\right)=$ $\mathcal{S} \oplus \operatorname{dom}\left(T_{0}\right)$ then $h=h_{1}+h_{2}$ with $h_{1} \in \mathcal{S}$ and $h_{2} \in \operatorname{dom}\left(T_{0}\right)$. Then, by (4.17), $h \in \operatorname{dom}\left(W_{0}\right)$. Conversely, if $h \in \operatorname{dom}\left(W_{0}\right)$, by 4.17), $P_{\mathcal{S}^{\perp}} h \in \operatorname{dom}\left(T_{0}\right)$. Then $h=P_{\mathcal{S}} h+P_{\mathcal{S}^{\perp}} h \in \mathcal{S} \oplus \operatorname{dom}\left(T_{0}\right)=\operatorname{dom}\left(\left(A_{/ \mathcal{S}}\right)_{0}^{1 / 2}\right)$.

Also, if $h \in \operatorname{dom}\left(\left(W^{*} W\right)_{0}^{1 / 2}\right)=\operatorname{dom}\left(W_{0}\right)=\operatorname{dom}\left(\left(A_{/ S}\right)_{0}^{1 / 2}\right)$, it follows that $h=h_{1}+h_{2} \in \mathcal{S} \oplus \mathcal{S}^{\perp}$ and, by (4.17),

$$
\left\|\left(A_{/ \mathcal{S}}\right)_{0}^{1 / 2} h\right\|=\left\|T_{0} h_{2}\right\|=\left\|W_{0} h\right\|=\left\|\left(W^{*} W\right)_{0}^{1 / 2} h\right\|
$$

Then $A_{/ \mathcal{S}}=W^{*} W$.
Finally, by 4.7),

$$
V_{1} s=\left.P_{\mathcal{L}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}
$$

Then, since s is closable and V_{1} is a partial isometry, the operator $\left.P_{\mathcal{L}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}$ is closable and

$$
\bar{s}=\overline{\left.V_{1}^{*} P_{\mathcal{L}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}}=V_{1}{ }^{*} \overline{\left.P_{\mathcal{L}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}} .
$$

So that

$$
s^{\times} \bar{s}=A_{0}^{1 / 2} P_{\mathcal{L}} V_{1} V_{1}{ }^{*} \overline{\left.P_{\mathcal{L}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}}=A_{0}^{1 / 2} P_{\mathcal{L}} \overline{\left.P_{\mathcal{L}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}}
$$

and, since $\operatorname{ran}\left(\overline{\left.P_{\mathcal{L}} A^{1 / 2}\right|_{\operatorname{dom}(A)}}\right) \subseteq \mathcal{L}$,

$$
\begin{aligned}
A^{1 / 2} P_{\mathcal{L}} \overline{\left.P_{\mathcal{L}} A^{1 / 2}\right|_{\operatorname{dom}(A)}} & =A^{1 / 2} \overline{\left.P_{\mathcal{L}} A^{1 / 2}\right|_{\operatorname{dom}(A)}}=A_{0}^{1 / 2} \overline{\left.P_{\mathcal{L}} A_{0}^{1 / 2}\right|_{\operatorname{dom}(A)}} \hat{\oplus}(\{0\} \times \operatorname{mul}(A)) \\
& =s^{\times} \bar{s} \hat{\oplus}(\{0\} \times \operatorname{mul}(A))=A_{\mathcal{S}} .
\end{aligned}
$$

Corollary 4.8. Let $A \geq 0$ be a linear relation in \mathcal{H} and let \mathcal{S} be a closed subspace of \mathcal{H}. If A and $A^{1 / 2}$ admit a matrix representation with respect to $\mathcal{S} \oplus \mathcal{S}^{\perp}$ and $\mathcal{L} \oplus \mathcal{L}^{\perp}$, respectively, then

$$
A_{/ \mathcal{S}}=A^{1 / 2} \overline{\left.P_{\mathcal{L}^{\perp}} A^{1 / 2}\right|_{\operatorname{dom}(A)}}, \quad A_{\mathcal{S}}=A^{1 / 2} \overline{\left.P_{\mathcal{L}} A^{1 / 2}\right|_{\operatorname{dom}(A)}}, \text { and } A=A_{\mathcal{S}}+A_{/ \mathcal{S}}
$$

Proof. By Theorem 3.2 $P_{\mathcal{S}}(\operatorname{dom}(A)) \subseteq \operatorname{dom}(A)$ and $P_{\mathcal{L}}\left(\operatorname{dom}\left(A^{1 / 2}\right)\right) \subseteq \operatorname{dom}\left(A^{1 / 2}\right)$. Then, since $A^{1 / 2}(\operatorname{dom}(A)) \subseteq \operatorname{dom}\left(A^{1 / 2}\right) \oplus \operatorname{mul}(A)$, it follows that

$$
P_{\mathcal{L}}\left(A^{1 / 2}(\operatorname{dom}(A))\right) \subseteq P_{\mathcal{L}}\left(\operatorname{dom}\left(A^{1 / 2}\right)\right) \subseteq \operatorname{dom}\left(A^{1 / 2}\right)
$$

Then, the result follows from Corollary 4.7 and Theorem4.6

Acknowledgments

Maximiliano Contino and Alejandra Maestripieri were supported by CONICET PIP 0168. The work of Stefania Marcantognini was done during her stay at the Instituto Argentino de Matemática with an appointment funded by the CONICET. She is grateful to the institute for its hospitality and to the CONICET for financing her post.

References

[1] Anderson W.N., Trapp G.E., Shorted Operators II, SIAM J. Appl. Math., 28 (1975), 60-71.
[2] Ando T., Katsuyoshi N., Positive selfadjoint extensions of positive symmetric operators, Tohoku Math. J., 22 (1970), 65-75.
[3] Arlinskiĭ Y., Shorting, parallel addition and form sums of nonnegative selfadjoint linear relations, Linear Algebra App., 559 (2020), 156-200.
[4] Behrndt J., Hassi S., de Snoo H.S.V., Boundary value problems, Weyl functions, and differential operators, Monographs in Mathematics, Vol. 108, Birkhäuser, 2020.
[5] Bernau S.J., The square root of a positive self-adjoint operator, J. Aust. Math. Soc., 8 (1968), 17-36.
[6] Chen A., Guohai J., Some basic properties of block operator matrices, arXiv preprint arXiv:1403.7732, (2014).
[7] Dritschel M.A., Rovnyak J., The operator Fejér-Riesz theorem, A glimpse at Hilbert space operators, Springer, Basel, 2010, 223-254.
[8] Engel K.J., Matrix representation of linear operators on product spaces, Rend. Circ. Mat. Palermo (2) Suppl., 56 (1998), 219-224.
[9] Hassi S., de Snoo H.S.V., Factorization, majorization, and domination for linear relations, In Anniversary Volume in Honour of Professor Sebestyén, Annales Univ. Sci. Budapest, 2015, 55-72.
[10] Hassi S., Labrousse J.P., de Snoo H.S.V., Operational calculus for rows, columns, and blocks of linear relations, Advances in Operator Theory, 5 (2020), 1193-1228.
[11] Hassi S., de Snoo H.S.V., Szafraniec F.H., Componentwise and Cartesian decompositions of linear relations, Dissertationes Mathematicae, 465, 2009.
[12] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1995.
[13] Krein M.G., The theory of selfadjoint extensions of semibounded Hermitian operators and its applications, Mat. Sb. (N.S.), 20 (62) (1947), 431-495.
[14] Möller M., Szafraniec F.H., Adjoints and formal adjoints of matrices of unbounded operators, Proc. Amer. Math. Soc., 136 (2008), 2165-2176.
[15] Pekarev E.L., Shorts of operators and some extremal problems, Acta Sci. Math.(Szeged), 56 (1992), 147-163.
[16] Schmüdgen K., Unbounded self-adjoint operators on Hilbert space Vol. 265, Springer Science \& Business Media, 2012.
[17] Sebestyén Z., Tarcsay Z., $T^{*} T$ always has a positive selfadjoint extension, Acta Math. Hungar., 135 (2012), 116-129.

Maximiliano Contino
Instituto Argentino de Matemática "Alberto P. Calderón"
CONICET
Saavedra 15, Piso 3
(1083) Buenos Aires, Argentina

Facultad de Ingeniería, Universidad de Buenos Aires
Paseo Colón 850
(1063) Buenos Aires, Argentina
e-mail: mcontino@fi.uba.ar
Alejandra Maestripieri
Instituto Argentino de Matemática "Alberto P. Calderón"
CONICET
Saavedra 15, Piso 3
(1083) Buenos Aires, Argentina

Facultad de Ingeniería, Universidad de Buenos Aires
Paseo Colón 850
(1063) Buenos Aires, Argentina
e-mail: amaestri@fi.uba.ar

Stefania Marcantognini
Instituto Argentino de Matemática "Alberto P. Calderón" CONICET
Saavedra 15, Piso 3
(1083) Buenos Aires, Argentina
Universidad Nacional de General Sarmiento - Instituto de Ciencias Juan María Gutierrez
(1613) Los Polvorines, Pcia. de Buenos Aires, Argentina
e-mail: smarcantognini@ungs.edu.ar

