
ar
X

iv
:2

10
8.

10
75

7v
1 

 [
m

at
h.

FA
] 

 2
4 

A
ug

 2
02

1

A matrix formula for Schur complements of

nonnegative selfadjoint linear relations
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Abstract. If a nonnegative selfadjoint linear relation � in a Hilbert space and a

closed subspace S are assumed to satisfy that the domain of � is invariant under

the orthogonal projector onto S, then � admits a particular matrix representation

with respect to the decomposition S ⊕ S⊥. This matrix representation of � is

used to give explicit formulae for the Schur complement of � on S as well as the

S−compression of �.
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1. Introduction

Given a nonnegative selfadjoint linear relation � in a Hilbert space H and a closed

subspace S of H , it is not always the case that � admits a 2 × 2 block matrix

representation with respect to the decomposition S ⊕ S⊥. On the other hand, if

it does, the matrix representation need not be unique. Results on this subject can

be found in [8, 14, 11, 6, 10]. Under the hypothesis that dom(�) (the domain

of �) is an invariant subspace for the orthogonal projection onto S, %S (that is

D1 := %S (dom(�)) ⊆ dom(�)), we show that � can be represented by a 2 × 2

block matrix ( 0 1
2 3 ) where 0, 1, 2 and 3 are linear relations. Furthermore, � admits

a specific representation ( 0 1
2 3 ) similar to the one for bounded operators (cf. [1],

[7, Lema A.1]), in the sense that 0 and 3 in this decomposition are nonnegative

selfadjoint linear relations and there exists a contraction 6 : S⊥ → S such that

1 = 01/2631/2 |%S⊥ (dom(�)) and 2 = 31/26∗01/2 |%S (dom(�)) .

In [3], Arlinskiı̆ proves that for ≤ the forms order [12, 4], the maximum of the

following set of nonnegative selfadjoint linear relations,

{- : 0 ≤ - ≤ �, ran(-) ⊆ S⊥}

http://arxiv.org/abs/2108.10757v1
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always exists and he defines the Schur complement of the relation � with respect to

S, �/S , as this maximum. Under the invariance condition mentioned above, we give

a matrix formula for �/S in terms of the matrix coefficients of �; namely,

�/S =

(

0 0

0 )∗)

)

with ) := �631/2 |%S⊥ (dom(�)) , where �6 := (1 − 6∗6)1/2 is the defect operator

associated to the matrix representation of �. We also give an alternate proof of the

existence of the Schur complement. This formula is an extension of the well known

formula by Anderson and Trapp for bounded operators [1]. We also define the S-

compression �S of �. If we assume further that dom(�1/2) is an invariant subspace

of the orthogonal projection %L , where L := �1/2(D1) ∩ dom (�), then we obtain

Pekarev-type formulae for �/S and �S [15], and we show that � = �S + �/S .

The paper is organized as follows. In Section 2 we outline some background

material, primarly on linear relations. Section 3 is devoted to the problem of repre-

senting a selfadjoint linear relation � as a 2× 2 relation matrix ( 0 1
2 3 ) with respect to

the decomposition S ⊕ S⊥. In Proposition 3.5, we prove that the relation � admits a

2×2 block matrix representation with respect toS⊕S⊥ if and only if its operator part

�0 admits a block matrix representation with respect to D1 plus the extra condition

S ⊖ D1 ⊆ mul(�) (the multivalued part of �). The main result of this section is

Theorem 3.11, where this matrix representation of � is fully described when � is

nonnegative. In Section 4, we again use the matrix representation of the nonnega-

tive selfadjoint linear relation � to derive formulae for the Schur complement and

compression of �.

2. Preliminaries

Throughout, all spaces are complex and separable Hilbert spaces. As usual, the direct

sum of two subspaces M and N of a Hilbert space H is indicated by M ∔ N and

the orthogonal direct sum by M ⊕ N . The orthogonal complement of a subspace

M ⊆ H is written as M⊥, or H ⊖M interchangeably. The symbol %M denotes the

orthogonal projection with range M.

The space of everywhere defined bounded linear operators from H to K is

written as !(H ,K), or !(H) when H = K . The identity operator on H is written

as 1, or 1H if it is necessary to disambiguate.

The notion of Schur complement (or shorted operator) of � to S for a nonneg-

ative selfadjoint operator � ∈ !(H) and S ⊆ H a closed subspace, was introduced

by M.G. Krein [13]. When ≤ is the usual order in !(H), he proved that the set

{- ∈ !(H) : 0 ≤ - ≤ � and ran(-) ⊆ S⊥} has a maximum element, which he

defined as the Schur complement �/S of � to S. This notion was later rediscovered

by Anderson and Trapp [1]. If � is represented as the 2× 2 block matrix ( 0 1
1∗ 3 ) with

respect to the decomposition of H = S ⊕ S⊥, they established the formula

�/S =

(

0 0

0 3 − H∗H

)
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where H is the unique solution of the equation 1 = 01/2G such that the range inclusion

ran(H) ⊆ ran (0) holds.

Although familiarity with the theory of linear relations is presumed, some

background material from [9] is summarized below.

A linear relation (l.r.) from a Hilbert space H to a Hilbert space K is a linear

subspace ) of the cartesian product H × K . The domain, range, null space or

kernel and multivalued part of ) is denoted by dom()), ran()), ker()) and mul()),

respectively. When mul()) = {0}, ) is an operator; in this case, the operator ) is

uniquely determinated by )G = H for (G, H) ∈ ).

The sum of two linear relations ) and ( from H to K is the linear relation

defined by

) + ( := {(G, H + I) : (G, H) ∈ ) and (G, I) ∈ (}.

The componentwise sum is the linear relation defined by

) +̂ ( := {(G1 + G2, H + I) : (G1, H) ∈ ) and (G2, I) ∈ (}.

The componentwise sum of ) and ( with ) ⊥ ( is denoted by ) ⊕̂ (. Let ) be a

linear relation from H to a Hilbert space E and let ( be a linear relation from E to

K then the product () is a linear relation from H to K defined by

() := {(G, H) : (G, I) ∈ ) and (I, H) ∈ ( for some I ∈ E}.

If ) ∈ !(H , E) then (G, H) ∈ () if and only if ()G, H) ∈ (.

The closure of a linear relation fromH toK is the closure of the linear subspace

in H ×K, when the product is provided with the product topology. The closure of

an operator need not be an operator; if it is then one speaks of a closable operator.

The relation) is called closed when it is closed as a subspace of H ×K . The adjoint

relation from K to H is defined by

)∗ := �)⊥
= (�))⊥,

where � (G, H) = (H,−G). The adjoint is automatically a closed linear relation and, if

) denotes the closure of ), then ) = )∗∗ := ()∗)∗. By definition, it is immediate that

)
∗
= )∗. Clearly,

)∗
= {(G, H) ∈ K × H : 〈 6, G 〉 = 〈 5 , H 〉 for all ( 5 , 6) ∈ )}.

Hence mul()∗) = dom())⊥ and ker()∗) = ran())⊥. Then, if ) is closed both ker())

and mul()) are closed subspaces.

Let ) be a linear relation from H to a Hilbert space E and let ( be a linear

relation from E to K then

)∗(∗ ⊂ (())∗ (2.1)

and there is equality in (2.1) if ( ∈ !(E,K). If ) and ( are linear relations from H

to K then

)∗ + (∗ ⊂ () + ()∗ (2.2)

and there is equality in (2.2) if ( ∈ !(H ,K).

Let ) be a (not necessarily closed) linear relation in H . Define )0 := ) ∩

(dom ()) ×dom ()∗)) and)mul := {0}×mul()). Then)0 is a closable operator from

dom ()) to dom ()∗) [11].
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Theorem 2.1 ([11, Theorem 3.9]). Let) be a (not necessarily closed) linear relation

in H . If there exists a linear relation � in H such that

) = � +̂ )mul, ran(�) ⊆ dom ()∗), (2.3)

then the sum in (2.3) is direct and � is a closable operator which coincides with )0.

In particular, the decomposition of ) in (2.3) is unique.

Hence if) admits a componentwise sum decomposition of the form (2.3) then,

since dom ()∗) = mul())⊥ ⊆ mul())⊥, it follows that

) = )0 ⊕̂ )mul. (2.4)

We say that ) is decomposable if ) admits the componentwise sum decomposition

(2.3), or equivalently, (2.4).

In particular, if ) is a closed linear relation in H then mul()) = dom()∗)⊥

and ) is decomposable and (2.4) is valid. In this case, )0 is a closed operator from

dom ()) to dom ()∗) and )mul is a closed linear relation. Also, dom()0) = dom())

and ran()0) ⊆ dom ()∗). The operator part )0 is densely defined in dom ()) and

maps into dom ()∗). The operator parts )0 and ()∗)0 are connected by

()0)
×
= ()∗)0, (2.5)

where ()0)
× denotes the adjoint of )0 when viewed as an operator from dom ()) to

dom ()∗).

A linear relation ) in H is symmetric if ) ⊂ )∗, selfadjoint if ) = )∗ and

nonnegative if 〈 H, G 〉 ≥ 0 for all (G, H) ∈ ). If ) is a nonnegative selfadjoint linear

relation we write ) ≥ 0.

Lemma 2.2. Let ) be a closed linear relation in H and suppose that ) = )0 ⊕̂ )mul

as in (2.4). Then ) is selfadjoint if and only if dom ()∗) = dom ()) and )0 is a

selfadjoint operator in dom ()).

Proof. If ) = )∗ then clearly dom ()∗) = dom ()) and, by (2.5), ()0)
×
= ()∗)0 = )0

[9]. Conversely, suppose that dom ()∗) = dom ()) and )0 is a selfadjoint operator

in dom ()). Then mul()) = dom()∗)⊥ = dom())⊥ = mul()∗) and, by (2.5),

()∗)0 = ()0)
×
= )0. So that

)∗
= ()∗)0 ⊕̂ ({0} × mul()∗)) = )0 ⊕̂ ({0} × mul())) = ).

�

Next a well-known result due to von Neumann (see [16, Proposition 3.18]) is

extended to closed linear relations:

Theorem 2.3 ([9, Lemma 2.4]). Let ) be a closed linear relation in H . Then )∗)

is a nonnegative selfadjoint linear relation in H . Furthermore,

)∗) = )∗)0 = )0
∗)0, (2.6)

where )0 is the operator part of ). In particular

ker()∗)) = ker()) = ker()0) and mul()∗)) = mul()∗) = mul()0
∗). (2.7)
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Also, the operator part of )∗) is

()∗))0 = ()∗)0)0 = ()0)
×)0. (2.8)

Let ) ≥ 0 be a linear relation in H . Since ) is selfadjoint (and therefore

closed), mul()) = dom())⊥. Hence H = dom ()) ⊕ mul()). In this case ) can

be written as ) = )0 ⊕̂ )mul where, by Lemma 2.2, )0 is a nonnegative selfadjoint

operator in dom ()). For ) ≥ 0, the (unique) nonnegative selfadjoint square root of

) is defined by

)1/2 := )
1/2

0
⊕̂ ({0} × mul())),

where )
1/2

0
is the square root of )0 [5]. Then, mul()1/2) = mul()), )

1/2

0
= ()1/2)0

and dom ()) = dom ()1/2) [9, Lemma 2.5]. Also, by (2.7),

ker()) = ker()1/2) = ker()0). (2.9)

There is a natural ordering for nonnegative selfadjoint relations in H . For two

nonnegative selfadjoint relations � and �, we write � ≤ � if

dom(�
1/2

0
) ⊆ dom(�0)

1/2 and ‖�
1/2

0
D‖ ≤ ‖�

1/2

0
D‖, for all D ∈ dom(�

1/2

0
).

(2.10)

The following is a result given in [9, Theorem 3.4]; we include its proof for the

sake of completeness.

Lemma 2.4. Let �, � be nonnegative selfadjoint linear relations such that � ≤ �.

Then, there exists a contraction , ∈ !(dom (�), dom (�)) such that

,�
1/2

0
⊂ �

1/2

0
(2.11)

where �0 and �0 are the operator parts of � and �, respectively.

Proof. Since � ≤ �, dom(�
1/2

0
) ⊆ dom(�

1/2

0
) and

‖�
1/2

0
D‖ ≤ ‖�

1/2

0
D‖, (2.12)

for every D ∈ dom(�
1/2

0
). Define the linear relation

, := {(�
1/2

0
ℎ, �

1/2

0
ℎ) : ℎ ∈ dom(�

1/2

0
)}.

If (G, H) ∈ , then (G, H) = (�
1/2

0
ℎ, �

1/2

0
ℎ) for some ℎ ∈ dom(�

1/2

0
). Then, by (2.12),

‖H‖ = ‖�
1/2

0
ℎ‖ ≤ ‖�

1/2

0
ℎ‖ = ‖G‖.

So that , is a contraction from ran(�
1/2

0
) to ran(�

1/2

0
). Then , has a unique

extension named again , from ran (�
1/2

0
) ⊆ dom (�) to ran (�

1/2

0
) ⊆ dom (�).

Defining , as zero in dom (�) ⊖ ran(�
1/2

0
), the result follows. �

If ) is a linear relation in H ×K and S is a subspace of dom()) then

) |S := {(G, H) ∈ ) : G ∈ S} and ) (S) := {H : (G, H) ∈ ) for some G ∈ S}.

A linear subspace D of dom()) is a core of ) if the set ) |D is dense in ), in

which case ) (D) = ran). If ) admits the sum decomposition ) = )0 ⊕̂ )mul as in

(2.4) and D is a core of )0 then D is a core of ). If ) is a selfadjoint linear relation

in H and D is a core of ) then () |D)∗ = ).
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3. Matrix decomposition of nonnegative selfadjoint relations

Let S be a closed subspace of H and let 0 ⊆ S × S, 1 ⊆ S⊥ × S, 2 ⊆ S × S⊥ and

3 ⊆ S⊥×S⊥ be linear relations. In [10, Definition 5.1], the linear relation in H ×H

generated by the blocks 0, 1, 2 and 3 is defined as
(

0 1

2 3

)

:=

{( (

G1

G2

)

,

(

F1 + I1

F2 + I2

))

:
(G1, F1) ∈ 0, (G2, I1) ∈ 1

(G1, F2) ∈ 2, (G2, I2) ∈ 3

}

.

On the other hand, given a linear relation � in H and S a closed subspace of

H , we say that � admits a 2× 2 block matrix representation with respect to S ⊕ S⊥

if there exist blocks 0 ⊆ S × S, 1 ⊆ S⊥ × S, 2 ⊆ S × S⊥ and 3 ⊆ S⊥ × S⊥ such

that � =

(

0 1

2 3

)

. In this case, it is easy to check that:

1. dom(0) ∩ dom(2) = S ∩ dom(�) and dom(1) ∩ dom(3) = S⊥ ∩ dom(�).

2. mul(0) + mul(1) = S ∩ mul(�) and mul(2) + mul(3) = S⊥ ∩ mul(�).

Lemma 3.1. Let M and S be subspaces of H with S closed. Then the following

are equivalent:

(i) %S (M) ⊆ M;

(ii) M = S ∩M ⊕ S⊥ ∩M;

(iii) %S (M) = S ∩M .

Theorem 3.2 (cf. [10, Theorem 5.1]). Let � be a linear relation in H and let S be

a closed subspace of H . Then the following are equivalent:

(i) � admits a 2 × 2 block matrix representation with respect to S ⊕ S⊥;

(ii) %S (dom(�)) ⊆ dom(�) and %S (mul(�)) ⊆ mul(�);

(iii) � admits a representation as

� =

(

0 1

2 3

)

, (3.1)

where 0 := %S�|S , 1 := %S�|S⊥ , 2 := %S⊥ �|S and 3 := %S⊥�|S⊥ .

Lemma 3.3. Let � be a selfadjoint linear relation in H and let S be a closed

subspace of H . If %S (dom(�)) ⊆ dom(�) then %S (mul(�)) ⊆ mul(�).

Proof. Since � is selfadjoint, mul(�) = dom(�)⊥. Let H ∈ mul(�). Then, for all

ℎ ∈ dom(�)

〈 %SH, ℎ 〉 = 〈 H, %Sℎ 〉 = 0,

because %Sℎ ∈ dom(�). Therefore %SH ∈ dom(�)⊥ = mul(�).

�

Let � be a selfadjoint linear relation in H and let S be a closed subspace of

H . Define

D1 := S ∩ dom(�), D2 := S⊥ ∩ dom(�), (3.2)

M1 := S ∩ mul(�) and M2 := S⊥ ∩ mul(�). (3.3)

If %S (dom(�)) ⊆ dom(�) then, by Lemmas 3.1 and 3.3,

dom(�) = D1 ⊕ D2 and mul(�) = M1 ⊕ M2, (3.4)
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and � admits a 2 × 2 block matrix representation with respect to S ⊕ S⊥.

Define N8 := D8 , for 8 = 1, 2. Clearly, dom (�) = N1 ⊕ N2.

Lemma 3.4. Let � be a selfadjoint linear relation in H and let S be a closed

subspace of H . Then, the following are equivalent:

(i) %S (dom(�)) ⊆ dom(�);

(ii) %N1
(dom(�)) ⊆ dom(�) and S = N1 ⊕ M1;

(iii) %N2
(dom(�)) ⊆ dom(�) and S⊥

= N2 ⊕ M2.

In this case, N1 = S ∩ dom (�) and N2 = S⊥ ∩ dom (�).

Proof. (i) ⇔ (ii): If %S (dom(�)) ⊆ dom(�) then by (3.4), dom (�) = N1 ⊕ N2,

D1 = N1 ∩ dom(�) and D2 = N2 ∩ dom(�). Therefore

dom(�) = N1 ∩ dom(�) ⊕ N2 ∩ dom(�). (3.5)

Hence %N1
(dom(�)) = D1 ⊆ dom(�).

Also dom (�) ⊆ (S ⊖ N1)
⊥ or, equivalently, S ⊖ N1 ⊆ mul(�). In fact,

(S ⊖ N1)
⊥
= S⊥ ⊕ N1 ⊇ N2 ⊕ N1 = dom (�). Hence

S = N1 ⊕ (S ⊖ N1) ⊆ N1 ⊕ (S ∩ mul(�)) = N1 ⊕ M1 ⊆ S.

Conversely, suppose that %N1
(dom(�)) ⊆ dom(�) and S = N1 ⊕ M1. Then %S =

%N1
+ %M1

. Since dom(�) ⊆ mul(�)⊥ ⊆ M⊥
1
, it follows that

%S (dom(�)) = (%N1
+ %M1

) (dom(�)) = %N1
(dom(�)) ⊆ dom(�).

(i) ⇔ (iii): It follows as (i) ⇔ (ii) using that %S⊥ (dom(�)) ⊆ dom(�).

In this case, N1 = S ∩ dom (�). The inclusion N1 = S ∩ dom(�) ⊆ S ∩

dom (�) always holds. Conversely, if G ∈ S ∩ dom (�) write G = G1 + G2, with

G1 ∈ N1 and G2 ∈ N2. Then G2 = G − G1 ∈ S ∩ S⊥. So that G2 = 0. Likewise,

N2 = S⊥ ∩ dom (�). �

Now, suppose that the selfadjoint linear relation � is written as

� = �0 ⊕̂ �mul, (3.6)

where �0 is the selfadjoint operator part of � in dom (�).

Proposition 3.5. Let � be a selfadjoint linear relation in H , let S be a closed

subspace of H and suppose that � is written as in (3.6). Then � admits a 2×2 block

matrix representation with respect to S ⊕ S⊥ if and only if �0 admits a 2 × 2 block

matrix representation with respect to N1 ⊕ N2 and S = N1 ⊕ M1, where N1 = D1,

N2 = D2, and D1,D2 and M1 are defined as in (3.2) and (3.3).

Proof. If � admits a 2 × 2 block matrix representation with respect to S ⊕ S⊥, by

Theorem 3.2, %S (dom(�)) ⊆ dom(�). Then, by Lemma 3.4, equation (3.5) follows

and %N1//N2
(dom(�0)) ⊆ dom(�0), where %N1//N2

is the orthogonal projection

onto N1 in !(dom (�0)). Therefore, by Theorem 3.2 the linear operator �0 admits

a 2 × 2 block matrix representation (in dom (�0)) with respect to N1 ⊕ N2 and, by

Lemma 3.4, S = N1 ⊕M1. Conversely, if the linear operator �0 admits a 2×2 block

matrix representationwith respect toN1⊕N2, by Theorem 3.2, %N1//N2
(dom(�0)) ⊆

dom(�0). So that, by Lemma 3.1, equation (3.5) follows. Then, %N1
(dom(�)) ⊆
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dom(�) and, since S = N1 ⊕M1, by Lemma 3.4, %S (dom(�)) ⊆ dom(�). Hence,

by Theorem 3.2, � admits a 2 × 2 block matrix representation with respect to

S ⊕ S⊥. �

Corollary 3.6. Let � be a selfadjoint linear relation inH , letS be a closed subspace

of H such that %S (dom(�)) ⊆ dom(�) and suppose that � is written as in (3.6).

If �0 admits the representation with respect to N1 ⊕ N2, �0 =

(

00 10

20 30

)

,

then � admits the representation with respect to S ⊕ S⊥,

� =

(

00 ⊕̂ ({0} ×M ′
1
) 10 ⊕̂ ({0} ×M ′′

1
)

20 ⊕̂ ({0} ×M ′
2
) 30 ⊕̂ ({0} ×M ′′

2
)

)

,

where M ′
1
,M ′′

1
are subspaces of S and M ′

2
,M ′′

2
are subspaces of S⊥ such that

M ′
1
+M ′′

1
= M1 and M ′

2
+M ′′

2
= M2.

Conversely, if � admits the representation with respect to S ⊕ S⊥, � =
(

0 1

2 3

)

, then �0 admits the representation with respect to N1 ⊕ N2,

�0 =

(

%N1
0 %N1

1

%N2
2 %N2

3

)

.

Proof. Suppose that �0 admits the representation with respect to N1 ⊕ N2

�0 =

(

00 10

20 30

)

.

Set 0 := 00 ⊕̂ {{0} × M ′
1
}, 1 := 10 ⊕̂ ({0} × M ′′

1
), 2 := 20 ⊕̂ ({0} × M ′

2
),

3 := 30 ⊕̂ ({0} × M ′′
2
). Since M ′

1
,M ′′

1
⊆ M1, M

′
2
,M ′′

2
⊆ M2, S = N1 ⊕ M1

and S⊥
= N2 ⊕ M2, it is clear that 0 ⊆ S × S, 1 ⊆ S⊥ × S, 2 ⊆ S × S⊥ and

3 ⊆ S⊥ × S⊥. Also,

dom

(

0 1

2 3

)

= dom(0) ∩ dom(2) ⊕ dom(1) ∩ dom(3)

= dom(00) ∩ dom(20) ⊕ dom(10) ∩ dom(30)

= N1 ∩ dom(�) ⊕ N2 ∩ dom(�)

= D1 ⊕ D2 = dom(�),

and

mul

(

0 1

2 3

)

= mul(0) + mul(1) ⊕ mul(2) + mul(3)

= M ′
1 +M ′′

1 ⊕ M ′
2 +M ′′

2 = M1 ⊕ M2 = mul(�).

Let (G, H) ∈ � = �0 ⊕̂ ({0} × mul(�)). Then there exists < ∈ mul(�) such

that (G, H) = (G, �0G) + (0, <). Then G = G1 + G2 for some G1 ∈ D1 and G2 ∈ D2 and

< = <1 + <2 for some <1 ∈ M1 and <2 ∈ M2. Since <1 ∈ M1 and <2 ∈ M2,

there exist <′
1
∈ M ′

1
, <′′

1
∈ M ′′

1
, <′

2
∈ M ′

2
and <′′

2
∈ M ′′

2
such that <1 = <′

1
+ <′′

1
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and <2 = <′
2
+ <′′

2
. Then

(G, H) = (G, �0G) + (0, <) =

( (

G1

G2

)

,

(

00 10

20 30

) (

G1

G2

))

+

(

0,

(

<1

<2

))

=

( (

G1

G2

)

,

(

00G1 + 10G2 + <1

20G1 + 30G2 + <2

))

=

( (

G1

G2

)

,

(

00G1 + 10G2 + <′
1
+ <′′

1

20G1 + 30G2 + <′
2
+ <′′

2

))

.

Now, since (G1, 00G1+<
′
1
) = (G1, 00G1) + (0, <

′
1
) ∈ 0, (G2, 10G2+<

′′
1
) = (G2, 10G2) +

(0, <′′
1
) ∈ 1, (G1, 20G1 + <′

2
) = (G1, 20G1) + (0, <′

2
) ∈ 2 and (G2, 30G2 + <′′

2
) =

(G2, 30G2) + (0, <′′
2
) ∈ 3, it follows that (G, H) ∈

(

0 1

2 3

)

. Hence, � ⊂

(

0 1

2 3

)

and, since dom(�) = dom

(

0 1

2 3

)

and mul(�) = mul

(

0 1

2 3

)

, by [9, Corol-

lary 2.2], � =

(

0 1

2 3

)

.

Conversely, suppose that � is represented as � =

(

0 1

2 3

)

. Set 00 := %N1
0,

10 := %N1
1, 20 := %N2

2 and 30 := %N2
3. Then 00 is an operator in N1. In fact, if

(0, H) ∈ 00, then there exists I ∈ S such that (0, I) ∈ 0 and H = %N1
I. Therefore,

I ∈ mul(0) ⊆ M1 ⊥ N1 and then H = 0. Analogously, 10, 20 and 30 are operators.

Also,

dom

(

00 10

20 30

)

= dom(00) ∩ dom(20) ⊕ dom(10) ∩ dom(30)

= dom(0) ∩ dom(2) ⊕ dom(1) ∩ dom(3)

= D1 ⊕ D2 = dom(�0).

Let (G, H) ∈

(

00 10

20 30

)

. Then G = G1 + G2 ∈ D1 ⊕ D2 ⊆ dom (�) and

H =

(

00G1 + 10G2

20G1 + 30G2

)

∈ N1 ⊕ N2 = dom (�).

Set F1 := 00G1 and I1 := 10G2. Then (G1, F1) ∈ 00 = %N1
0 and (G2, I1) ∈

10 = %N1
1. Then, there exists B1 ∈ S such that (G1, B1) ∈ 0 and F1 = %N1

B1, and

there exists C1 ∈ S such that (G2, C1) ∈ 1 and I1 = %N1
C1. Recall that S = N1 ⊕ M1

then %N1
+ %M1

= %S so that

F1 = %N1
B1 = B1 − %M1

B1 and I1 = %N1
C1 = C1 − %M1

C1.

Hence, since %M1
B1+%M1

C1 ∈ M1 = mul(0) +mul(1), there exist<1 ∈ mul(0) and

=1 ∈ mul(1) such that %M1
B1 +%M1

C1 = <1 + =1. Then (0, <1) ∈ 0 and (0, =1) ∈ 1.

Therefore F1 + I1 = (B1 − <1) + (C1 − =1) and

(G1, B1 − <1) = (G1, B1) − (0, <1) ∈ 0 and (G2, C1 − =1) = (G2, C1) − (0, =1) ∈ 1.

Similarly, set F2 := 20G1 and I2 := 30G2. Then, there exist B2, C2 ∈ S⊥, <2 ∈ mul(2)

and =2 ∈ mul(3) such that F2 + I2 = (B2 − <2) + (C2 − =2), (G1, B2 − <2) ∈ 2 and
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(G2, C2 − =2) ∈ 3. Therefore,

(G, H) =

( (

G1

G2

)

,

(

F1 + I1

F2 + I2

))

=

( (

G1

G2

)

,

(

(B1 − <1) + (C1 − =1)

(B2 − <2) + (C2 − =2)

))

∈ �.

Hence, (G, H) ∈ � ∩ (dom (�) × dom (�)) = �0. Then,

(

00 10

20 30

)

⊂ �0 and,

since dom

(

00 10

20 30

)

= dom(�0), it follows that �0 =

(

00 10

20 30

)

. �

Corollary 3.7. Let � be a selfadjoint linear relation in H , let S be a closed

subspace of H such that %S (dom(�)) ⊆ dom(�) and suppose that � admits the

representation with respect to S ⊕ S⊥, � =

(

0 1

2 3

)

. If dom(0) ⊆ dom(2) and

mul(1) ⊆ mul(0) then

0 = %N1
0 ⊕̂ ({0} × mul(0)).

Similar results can be stated for 1, 2 and 3.

Proof. By Corollary 3.6, � admits the representation with respect to S ⊕ S⊥,

� =

(

%N1
0 ⊕̂ ({0} × mul(0)) %N1

1 ⊕̂ ({0} × mul(1))

%N2
2 ⊕̂ ({0} × mul(2)) %N2

3 ⊕̂ ({0} × mul(3))

)

.

Set 0̃ := %N1
0 ⊕̂ ({0} ×mul(0)), 1̃ := %N1

1 ⊕̂ ({0} ×mul(1)), 2̃ := %N2
2 ⊕̂ ({0} ×

mul(2)) and 3̃ := %N2
3 ⊕̂ ({0} × mul(3)).

Clearly, dom(0) = dom(0̃) and mul(0) = mul(0̃). Let (G, H) ∈ 0 then there

exists H′ ∈ S⊥ such that (G, H′) ∈ 2 because dom(0) ⊆ dom(2). So that

(G, H) =

( (

G

0

)

,

(

H + 0

H′ + 0

))

∈ � =

(

0̃ 1̃

2̃ 3̃

)

.

Then (G, H) =

( (

G

0

)

,

(

H

H′

))

=

( (

G

0

)

,

(

F + I

F′ + I′

))

with (G, F) ∈ 0̃, (G, F′) ∈

2̃, (0, I) ∈ 1̃ and (0, I′) ∈ 3̃.

Then (0, I) ∈ mul(1̃) = mul(1) ⊆ mul(0) = mul(0̃) so that, (0, I) ∈ 0̃. Hence

(G, H) = (G, F + I) = (G, F) + (0, I) ∈ 0̃.

Then 0 ⊆ 0̃ and since dom(0) = dom(0̃) and mul(0) = mul(0̃), by [9, Corollary

2.2], 0 = 0̃ = %N1
0 ⊕̂ ({0} × mul(0)). The analogous results for 1, 2 and 3 follow

in a similar way. �

Next we focus on describing the matrix decompositions of nonnegative selfad-

joint linear relations (operators).

The following lemmas are needed for the proof of Proposition 3.10.

Lemma 3.8. Let � be a selfadjoint linear relation in H and let S be a closed

subspace of H such that %S (dom(�)) ⊆ dom(�). Consider the matrix repre-

sentation of � as in (3.1). Then 0 and 3 are symmetric linear relations, 2 ⊂ 1∗

and 0, 1, 2 and 3 are decomposable linear relations with (unique) decompositions:

0 = %N1
0 ⊕̂ ({0} × M1), 1 = %N1

1 ⊕̂ ({0} × M1), 2 = %N2
2 ⊕̂ ({0} × M2) and

3 = %N2
3 ⊕̂ ({0} ×M2).
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Proof. Let

� =

(

0 1

2 3

)

be the matrix representation of � with respect to S ⊕ S⊥ given by Theorem 3.2.

From Lemma 3.4, S = N1 ⊕ M1 and S⊥
= N2 ⊕ M2. Write � = �0 ⊕̂ �mul as in

(3.6). Then, by Corollary 3.6, �0 admits the matrix representation with respect to

N1 ⊕ N2

�0 =

(

00 10

20 30

)

, (3.7)

where 00 := %N1
0, 10 := %N1

1, 20 := %N2
2 and 30 := %N2

3. Since dom(0) =

dom(2) = D1 and mul(0) = mul(1) = M1, by Corollary 3.7, 0 = 00 ⊕̂ ({0} ×M1).

Likewise, 1 = 10 ⊕̂ ({0} ×M1), 2 = 20 ⊕̂ ({0} ×M2) and 3 = 30 ⊕̂ ({0} ×M2).

Define

�̂0 :=

(

0×
0

2×
0

1×
0

3×
0

)

with dom( �̂0) = dom(0×
0
) ∩ dom(1×

0
) ⊕ dom(2×

0
) ∩ dom(3×

0
), where 0×

0
denotes the

adjoint of 00 when viewed as an operator from N1 to N1, likewise 1×
0
, 2×

0
and 3×

0
.

Since � is selfadjoint, �0 = �×
0
, where �×

0
denotes the adjoint of �0 when

viewed as an operator from dom (�) to dom (�). Then �×
0

admits a matrix decom-

position with respect to N1 ⊕ N2. Then, by [6, Theorem 2.2], �0 = �×
0
= �̂0. So

that

�0 =

(

00 10

20 30

)

=

(

0×
0

2×
0

1×
0

3×
0

)

= �̂0.

Then

00 ⊂ 0×0 , 30 ⊂ 3×0 , 10 ⊂ 2×0 and 20 ⊂ 1×0 .

So that 00 and 30 are symmetric operators on N1 and N2, respectively, and

10 and 20 are closable operators. Also, since 00, 10, 20, 30 are closable operators,

by Theorem 2.1, 0, 1, 2 and 3 are decomposable with (unique) decompositions:

0 = %N1
0 ⊕̂ ({0} × M1), 1 = %N1

1 ⊕̂ ({0} × M1), 2 = %N2
2 ⊕̂ ({0} × M2) and

3 = %N2
3 ⊕̂ ({0} ×M2).

Let us see that 0 ⊂ 0∗. Let (G1, F1) ∈ 0, then G1 ∈ D1 and there exists

<1 ∈ M1 such that

(G1, F1) = (G1, 00G1) + (0, <1).

Also, let ( 5 , 6) ∈ 0, then 5 ∈ D1 and there exists < ∈ M1 such that

( 5 , 6) = ( 5 , 00 5 ) + (0, <).

Hence

〈 6, G1 〉H = 〈 00 5 + <, G1 〉H = 〈 00 5 , G1 〉H = 〈 00 5 , G1 〉N1

=
〈

0×0 5 , G1

〉

N1
= 〈 5 , 00G1 〉N1

= 〈 5 , 00G1 + <1 〉H = 〈 5 , F1 〉H .

Then (G1, F1) ∈ 0∗. Likewise, 3 ⊂ 3∗ and 2 ⊂ 1∗. �
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By the proof of the last lemma, � ⊂

(

0∗ 2∗

1∗ 3∗

)

and, by [10, Proposition

6.1], the other inclusion always holds. So that � admits the matrix representation

� =

(

0∗ 2∗

1∗ 3∗

)

.

Lemma 3.9 (cf. [12, Chapter VI], [4, Lemma 5.3.1]). Let � be a nonnegative

symmetric linear relation in H . If �� is the Friedrichs extension of �, then dom(�)

is a core of �
1/2

�
and mul(�� ) = mul(�∗).

Proposition 3.10. Let � ≥ 0 be a linear relation in H and let S be a closed

subspace of H such that %S (dom(�)) ⊆ dom(�). Then � admits the 2 × 2 block

matrix representation with respect to S ⊕ S⊥

(

0� 1

2 3�

)

(3.8)

where 0� and 3� are the Friedrichs extensions of 0 := %S�|S and 3 := %S⊥�|S⊥ ,

respectively, 1 := %S�|S⊥ , 2 := %S⊥ �|S are decomposable linear relations and

2 ⊂ 1∗.

Moreover, if � is written as in (3.6) then �0 admits the matrix representation

with respect to N1 ⊕ N2 :

�0 =

(

(0� )0 10

20 (3� )0

)

(3.9)

where (0� )0 and (3� )0 are the nonnegative selfadjoint operator parts of 0� and

3� , respectively and 0� = (0� )0 ⊕̂ ({0} × M1), 1 = 10 ⊕̂ ({0} × M1), 2 =

20 ⊕̂ ({0} × M2) and 3 = (3� )0 ⊕̂ ({0} × M2), where 10 = %N1
1, 20 = %N2

2

and (0� )0 and (3� )0 are the Friedrichs extensions of 00 = %N1
0 and 30 = %N2

3,

respectively.

Proof. Let

� =

(

0 1

2 3

)

be the matrix representation of � with respect to S ⊕ S⊥ as in Lemma 3.8. Since

� ≥ 0, it follows that 0 and 3 are nonnegative symmetric linear relations.

Also, by Corollaries 3.6 and 3.7, if � is written as in (3.6) then �0 admits

the matrix representation with respect to N1 ⊕ N2 : �0 =

(

00 10

20 30

)

, where

0 = 00 ⊕̂ ({0} × M1), 1 = 10 ⊕̂ ({0} × M1), 2 = 20 ⊕̂ ({0} × M2) and 3 =

30 ⊕̂ ({0} ×M2).

Let 0� and 3� be the Friedrichs extensions of 0 and 3, respectively. By Lemma

3.9, dom(0) = D1 is a core of 0
1/2

�
and dom(3) = D2 is a core of 3

1/2

�
.

Set

�′ :=

(

0� 1

2 3�

)

.

Then dom(�′) = dom(0� ) ∩ dom(2) ⊕ dom(1) ∩ dom(3� ) = D1 ⊕ D2 = dom(�),

because dom(2) = D1 and dom(1) = D2. Also, mul(�′) = mul(0� ) + mul(1) ⊕
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mul(2)+mul(3� ) = M1⊕M2 = mul(�), because mul(0� ) = mul(0∗) = dom(0)⊥ =

M1, mul(1) = M1, mul(3� ) = mul(3∗) = dom(3)⊥ = M2 and mul(2) = M2. But,

since � ⊂ �′, it follows that

� = �′
=

(

0� 1

2 3�

)

.

Since 0� and 3� are selfadjoint, 0� and 3� are decomposable and 0� = (0� )0 ⊕̂ ({0}×

M1) and 3� = (3� )0 ⊕̂ ({0} × M2) where (0� )0 and (3� )0 are the nonnegative

selfadjoint operator parts of 0� and 3� , respectively.

Let us see that (0� )0 is the Friedrichs extension of 00 and (3� )0 is the Friedrichs

extension of 30, cf. [4, Theorem 5.3.3]. Since 0 is a nonnegative symmetric linear

relation in S, the form t0 given by t0 [D, E] := 〈 D′, E 〉 for (D, D′), (E, E′) ∈ 0

with dom(t0) = dom(0), is nonnegative and closable, [4, Lemma 5.1.17]. Also,

by the proof of Lemma 3.8, 00 is a nonnegative symmetric linear operator on

N1, then the form t00
given by t00

[D, E] := 〈 00D, E 〉 for D, E ∈ dom(00), with

dom(t00
) = dom(00), is nonnegative and closable. But

t0 = t00
.

In fact, it is clear that dom(t00
) = dom(t0). Let D, E ∈ dom(t0) = dom(0) then

there exist D′, E′ ∈ H such that (D, D′), (E, E′) ∈ 0. Then D′ = 00D + < for some

< ∈ M1 ⊥ N1. Then

t0 [D, E] = 〈 00D + <, E 〉 = 〈 00D, E 〉 = t00
[D, E],

because E ∈ D1. Hence, the closures of the forms coincide, i.e., t0 = t00
. Then, by

the Second Representation Theorem [4, Theorem 5.1.23],

t0 [D, E] =
〈

(0� )
1/2

0
D, (0� )

1/2

0
E
〉

for every D, E ∈ dom((0� )
1/2

0
) = dom(t0) and

t00
[D, E] =

〈

(00)
1/2

�
D, (00)

1/2

�
E
〉

for every D, E ∈ dom((00)
1/2

�
) = dom(t00

), where (00)� is the Friedrichs extension

of 00. So that (0� )0 = (00)� . Likewise, (3� )0 = (30)� . Then, 00 ⊂ (0� )0, 30 ⊂

(3� )0 and, by Lemma 3.9, dom(00) = D1 is a core of (0� )
1/2

0
and dom(30) = D2

is a core of (3� )
1/2

0
. Then

�0 ⊂ �′′ :=

(

(0� )0 10

20 (3� )0

)

.

But, dom(�′′) = dom((0� )0) ∩ dom(20) ⊕ dom(10) ∩ dom((3� )0) = D1 ⊕ D2 =

dom(�0), because dom(20) = D1 and dom(10) = D2. Then �0 = �′′. �

Theorem 3.11. Let � ≥ 0 be a linear relation in H and let S be a closed subspace

of H such that %S (dom(�)) ⊆ dom(�). Then � admits a matrix decomposition in

H with respect to S ⊕ S⊥,

� =

(

0 1

2 3

)

, (3.10)

such that:
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1. 0 and 3 are nonnegative selfadjoint linear relations with D1 ⊆ dom(0),

D2 ⊆ dom(3), D2 = dom(1), D1 = dom(2), and 2 ⊂ 1∗;

2. D1 is a core of 01/2 and D2 is a core of 31/2;

3. there exists a contraction 6 : S⊥ → S such that

1 = 01/2631/2 |D2
and 2 = 31/26∗01/2 |D1

.

Proof. Items 1 and 2 are proved in Proposition 3.10.

3 : Let � =

(

0 1

2 3

)

be the block matrix representation of � given in (3.8).

From Lemma 3.4, S = N1 ⊕ M1 and S⊥
= N2 ⊕ M2. Write � = �0 ⊕̂ �mul as in

(3.6). Then, by Proposition 3.10, �0 admits the matrix representation with respect

to N1 ⊕ N2 :

�0 =

(

00 10

20 00

)

,

where 00 and 30 are the nonnegative selfadjoint operator parts of 0 and 3, re-

spectively, D1 is a core of 0
1/2

0
, D2 is a core of 3

1/2

0
, 0 = 00 ⊕̂ ({0} × M1),

1 = 10 ⊕̂ ({0} ×M1), 2 = 20 ⊕̂ ({0} ×M2) and 3 = 30 ⊕̂ ({0} ×M2).

Since � ≥ 0, then �0 is a nonnegative selfadjoint operator on dom (�). Then
〈

�
1/2

0
ℎ, �

1/2

0
:
〉

= 〈 �0ℎ, : 〉 for every ℎ, : ∈ dom(�),

because �0 = �
1/2

0
�

1/2

0
. In particular, for every ℎ1 ∈ D1

〈

�
1/2

0
ℎ1, �

1/2

0
ℎ1

〉

= 〈 �0ℎ1, ℎ1 〉 = 〈 00ℎ1, ℎ1 〉 =
〈

0
1/2

0
ℎ1, 0

1/2

0
ℎ1

〉

.

Then the map 0
1/2

0
(D1) → �

1/2

0
(D1),

0
1/2

0
ℎ1 ↦→ �

1/2

0
ℎ1

can be extended to a partial isometry +1 on all of N1, with initial space 0
1/2

0
(D1) =

ran (0
1/2

0
) (where we used that D1 is a core of 0

1/2

0
), so that ker(+1) = ker(0

1/2

0
),

and final space �
1/2

0
(D1). Therefore

+10
1/2

0
= �

1/2

0
on D1. (3.11)

So, for every ℎ2 ∈ D2 and :1 ∈ D1,

〈 10ℎ2, :1 〉 = 〈 �0ℎ2, :1 〉 =
〈

�
1/2

0
ℎ2, �

1/2

0
:1

〉

=

〈

�
1/2

0
ℎ2, +10

1/2

0
:1

〉

=

〈

+1
∗�

1/2

0
ℎ2, 0

1/2

0
:1

〉

.

Therefore, +1
∗�

1/2

0
ℎ2 ∈ dom((0

1/2

0
)×) and (0

1/2

0
)×+1

∗�
1/2

0
ℎ2 = 10ℎ2. Since 0

1/2

0
is

selfadjoint and the above holds for any ℎ2 ∈ D2, it follows that

10 = 0
1/2

0
+∗

1 �
1/2

0
on D2.
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Likewise, there exists a partial isometry +2 in N2 with initial space 3
1/2

0
(D2) and

final space �
1/2

0
(D2), such that

+23
1/2

0
= �

1/2

0
on D2 and 20 = 3

1/2

0
+∗

2 �
1/2

0
on D1.

Then

10ℎ2 = 0
1/2

0
+1

∗�
1/2

0
ℎ2 = 0

1/2

0
+1

∗+23
1/2

0
ℎ2 for every ℎ2 ∈ D2.

Set 5 := +1
∗+2. Then 5 is a contraction from N1 to N2 such that 10 = 0

1/2

0
5 3

1/2

0
on

D2. Likewise, 20 = 3
1/2

0
5 ∗0

1/2

0
on D1.

Using that S⊥
= N2 ⊕ M2, 5 has an extension, again a contraction from S⊥

to S, named 6 such that 6G = 0 for every G ∈ M2. Let (G, H) ∈ 01/2631/2 |D2
. Then

there exists I ∈ S⊥ such that (G, I) ∈ 31/2 |D2
and (I, H) ∈ 01/26. Then

(G, I) = (G, 3
1/2

0
G) + (0, <2)

for some <2 ∈ M2 and so I = 3
1/2

0
G + <2. Also, since (I, H) ∈ 01/26, it follows

that (6I, H) ∈ 01/2. Then (6I, H) = (6I, 0
1/2

0
6I) + (0, <1) for some <1 ∈ M1. Then,

since <2 ∈ ker(6) and 3
1/2

0
G ∈ N2,

H = 0
1/2

0
6I + <1 = 0

1/2

0
6(3

1/2

0
G + <2) + <1 = 0

1/2

0
5 3

1/2

0
G + <1 = 10G + <1.

Hence,

(G, H) = (G, 10G) + (0, <1) ∈ 1.

Conversely, suppose that (G, H) ∈ 1, then G ∈ D2 and

(G, H) = (G, 10G) + (0, <1) = (G, 0
1/2

0
5 3

1/2

0
G) + (0, <1)

for some <1 ∈ M1 and so H = 0
1/2

0
5 3

1/2

0
G + <1. Set I := 3

1/2

0
G ∈ N2 then

(G, I) = (G, 3
1/2

0
G) ∈ 31/2 |D2

. Also,

(6I, H) = (6I, 0
1/2

0
5 3

1/2

0
G) + (0, <1) = (6I, 0

1/2

0
5 I) + (0, <1)

= (6I, 0
1/2

0
6I) + (0, <1) ∈ 01/2.

So that (I, H) ∈ 01/26 and then (G, H) ∈ 01/2631/2 |D2
.

Likewise, 2 = 31/26∗01/2 |D1
. �

Corollary 3.12. Let � ≥ 0 be a linear operator in H and let S be a closed

subspace of H such that %S (dom(�)) ⊆ dom(�). Let � =

(

0 1

2 3

)

be the

block matrix representation of � given in (3.8). Set / :=

(

01/2 |D1
0

0 31/2 |D2

)

and

, :=

(

1 5

0 (1 − 5 ∗ 5 )1/2

)

∈ !(H), where 5 : S⊥ → S is the contraction in the

proof of Theorem 3.11. Then the operator ,/ is closable and

� = (,/)∗,/ = (,/)∗,/.
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Proof. Define Γ := ,∗, =

(

1 5

5 ∗ 1

)

. Then Γ ∈ !(H) and Γ ≥ 0, because 5 is

a contraction, and / is a densely defined operator with dom(/) = D1 ⊕ D2. Since

D1 is a core of 01/2 and D2 is a core of 31/2,

/∗
=

(

01/2 0

0 31/2

)

.

Consider the operator /∗
Γ/. Then

dom(/∗
Γ/) = D1 ⊕ D2.

Clearly, dom(/∗
Γ/) ⊆ dom(/) = D1 ⊕ D2. On the other hand, take ℎ =

(

ℎ1

ℎ2

)

∈

D1 ⊕ D2, then

Γ/

(

ℎ1

ℎ2

)

=

(

1 5

5 ∗ 1

) (

01/2ℎ1

31/2ℎ2

)

=

(

01/2ℎ1 + 5 31/2ℎ2

5 ∗01/2ℎ1 + 31/2ℎ2

)

.

Since 1 = 01/2 5 31/2 on D2 and 01/2 (D1) ⊆ dom(01/2), it follows that 01/2ℎ1 +

5 31/2ℎ2 ∈ dom(01/2). Likewise, since 2 = 31/2 5 ∗01/2 on D1 and 31/2 (D2) ⊆

dom(31/2), it follows that 5 ∗01/2ℎ1 + 31/2ℎ2 ∈ dom(31/2). Hence, Γ/ℎ ∈ dom(/∗)

and ℎ ∈ dom(/∗
Γ/). Then /∗

Γ/ has matrix representation and, by [6, Theorem

2.1],

/∗
Γ/ =

(

01/2 0

0 31/2

) (

1 5

5 ∗ 1

) (

01/2 |D1
0

0 31/2 |D2

)

=

(

0 |D1
1

2 3 |D2

)

⊆ �.

But, since dom(/∗
Γ/) = dom(�) it follows that � = /∗

Γ/ = /∗,∗,/ =

(,/)∗,/.

If . := ,/, then dom(. ) = dom(/) = dom(�). Therefore, dom(. ∗. ) =

dom(�) = dom(. ). Then, by [17, Theorem 5.1], . = ,/ is closable. Finally,

� = . ∗. = �∗
= (. ∗. )∗ ⊃ . ∗. ⊃ . ∗. = �.

�

4. The Schur complement of nonnegative selfadjoint linear

relations

Let � ≥ 0 be a linear relation in H and let S be a closed subspace of H such that

%S (dom(�)) ⊆ dom(�). Let

� =

(

0 1

2 3

)

(4.1)

be the 2 × 2 block matrix representation of � with respect to S ⊕ S⊥ as in Theorem

3.11. That is, 0 and 3 are nonnegative selfadjoint linear relations with D1 ⊆ dom(0),
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D2 ⊆ dom(3), D2 = dom(1), D1 = dom(2), and 2 ⊂ 1∗. Also, D1 is a core of

01/2, D2 is a core of 31/2 and there exists a contraction 6 : S⊥ → S such that

1 = 01/2631/2 |D2
and 2 = 31/26∗01/2 |D1

.

Write � = �0 ⊕̂ �mul as in (3.6). Then, 0 = 00 ⊕̂ ({0} ×M1), 1 = 10 ⊕̂ ({0} ×M1),

2 = 20 ⊕̂ ({0} ×M2) and 3 = 30 ⊕̂ ({0} ×M2), where

�0 =

(

00 10

20 30

)

(4.2)

is the 2× 2 block matrix representation of �0 with respect to N1 ⊕N2 given in (3.9).

By Theorem 3.11, there exists a contraction 5 : N2 → N1 such that

10 = 0
1/2

0
5 3

1/2

0
|D2

and 20 = 3
1/2

0
5 ∗0

1/2

0
|D1

.

By Lemma 3.4, S = N1 ⊕ M1 and S⊥
= N2 ⊕ M2. Then 6 =

(

5 0

0 0

)

is

the matrix decomposition of 6 : N2 ⊕ M2 → N1 ⊕ M1.

In order to define the Schur complement of �, consider �6 := (1 − 6∗6)1/2 ∈

!(S⊥) and the closed linear relation

) := �631/2 |D2
⊆ S⊥ × S⊥.

Lemma 4.1. Under the above hypotheses,

)∗) = 3
1/2

0
� 5 � 5 3

1/2

0
|D2

⊕̂ ({0} ×M2),

where � 5 := (1 − 5 ∗ 5 )1/2 ∈ !(N2).

Proof. The matrix decomposition of�6with respect toN2⊕M2 is�6 =

(

� 5 0

0 1

)

.

Then �63
1/2

0
|D2

= � 5 3
1/2

0
|D2

⊆ N2 × N2 and, since 31/2 |D2
= 3

1/2

0
|D2

⊕̂ ({0} ×

M2),

�63
1/2 |D2

= � 5 3
1/2

0
|D2

⊕̂ ({0} ×M2). (4.3)

So that

) = � 5 3
1/2

0
|D2

⊕̂ ({0} ×M2) = C ⊕̂ ({0} ×M2), (4.4)

where C := � 5 3
1/2

0
|D2

. Since D2 ⊆ dom()) = dom(C) ⊆ N2, then

dom ()) = dom (C) = N2.

Also,

)∗
= (�63

1/2 |D2
)∗ = (31/2 |D2

)∗�6 = 31/2�6,

where we used that �6 ∈ !(S⊥) so there is equality in (2.1) and D2 is a core of

31/2. Then

)∗
= (3

1/2

0
⊕̂ ({0} ×M2))�6 = 3

1/2

0
� 5 ⊕̂ ({0} ×M2) = C× ⊕̂ ({0} ×M2),

where C× denotes the adjoint of Cwhen viewed as an operator inN2. Finally, since C is a

densely defined operator inN2, C
× is an operator inN2 and mul(C×C) = mul(C×) = {0}.

Therefore, by Theorem 2.3, C×C is a nonnegative selfadjoint linear operator in N2 and

mul()∗)) = mul()∗) = dom())⊥ = S⊥ ⊖ N2 = M2.
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Now, suppose that (G, H) ∈ )∗). Then (G, I) ∈ ) and (I, H) ∈ )∗ for some I ∈ S⊥.

Then

(G, I) = (G, I′) + (0, <) for some < ∈ M2 and I′ ∈ N2 such that (G, I′) ∈ C,

(I, H) = (I, C×I) + (0, <′) for some <′ ∈ M2.

Since I ∈ dom()∗) ⊆ N2, I
′ ∈ ran(C) ⊆ N2 and I = I′ + <, it holds that < = 0 and

I = I′. Then, from the fact that (G, I) = (G, I′) ∈ C and (I, C×I) ∈ C× it follows that

(G, C×I) ∈ C×C. Hence, since H = C×I + <′,

(G, H) = (G, C×I) + (0, <′) ∈ C×C ⊕̂({0} ×M2).

Therefore

)∗) ⊂ C×C ⊕̂ ({0} ×M2). (4.5)

By Theorem 2.3, )∗) is a nonnegative selfadjoint linear relation in S⊥. Then )∗)

admits a unique decomposition as in (2.4):

)∗) = ()∗))0 ⊕̂ ({0} ×M2),

where ()∗))0 is a selfadjoint operator in dom ()∗)) = N2. By (4.5), ()∗))0 ⊂

C×C and, since ()∗))0 and C×C are selfadjoint operators in N2, equality holds, i.e.,

()∗))0 = C×C. Hence

)∗) = ()∗))0 ⊕̂ ({0} ×M2) = 3
1/2

0
� 5 � 5 3

1/2

0
|D2

⊕̂ ({0} ×M2).

�

Consider the set

M(�,S⊥) := {- l.r. in H : 0 ≤ - ≤ �, ran(-) ⊆ S⊥}.

In [3], Arlinskiı̆ proved that the set M(�,S⊥) has a maximum element and defined

the Schur complement of � to S denoted by �/S as the maximum of M(�,S⊥). In

what follows we give an alternate proof of the existence of the Schur complement as

well as a formula for �/S using the matrix decomposition of � when %S (dom(�)) ⊆

dom(�).

Theorem 4.2. Let � be a linear relation in H , let S be a closed subspace of H

such that %S (dom(�)) ⊆ dom(�) and consider the matrix representation of � with

respect to S ⊕ S⊥ in (4.1). Then the set M(�,S⊥) has a maximum element �/S .

Moreover,

�/S =

(

0 0

0 )∗)

)

,

where ) := �631/2 |D2
.

Proof. Write � = �0 ⊕̂ �mul (�) and set � :=

(

0 0

0 )∗)

)

. Then ran(�) =

ran()∗)) = ran(()∗))0) ⊕ M2 ⊆ N2 ⊕ M2 = S⊥ and �∗
= � ≥ 0. Suppose that )

is written as ) = )0 ⊕̂ ({0} × mul())) as in (2.4). Let �0 be the operator part of �

then, by [9, Proposition 2.7],
〈

�
1/2

0
D,�

1/2

0
E
〉

= 〈)0D2, )0E2 〉 ,
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for every D =

(

D1

D2

)

, E =

(

E1

E2

)

∈ dom(�
1/2

0
) = S ⊕ dom()0).

Then, since D2 ⊆ dom()) = dom()0)

dom(�) = D1 ⊕ D2 ⊆ S ⊕ dom()0) = dom(�
1/2

0
).

Let (4.2) be the matrix decomposition of �0 (in dom (�)) with respect to

N1 ⊕N2. Let +1 and +2 be the partial isometries given in the proof of Theorem 3.11

such that

+10
1/2

0
= �

1/2

0
on D1 and +23

1/2

0
= �

1/2

0
on D2,

and 5 = +1
∗+2. Then, by Corollary 3.12, �0 = /∗

Γ/, where Γ =

(

1 5

5 ∗ 1

)

and

/ =

(

0
1/2

0
|D1

0

0 3
1/2

0
|D2

)

. Let ℎ =

(

ℎ1

ℎ2

)

∈ D1 ⊕ D2. Then

〈 �0ℎ, ℎ 〉 =

〈

(

1 5

5 ∗ 1

)

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

)

,

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

) 〉

≥

〈

(

1 5

5 ∗ 1

)

/N1

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

)

,

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

) 〉

=

〈

(

0 0

0 1 − 5 ∗ 5

)

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

)

,

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

) 〉

=

〈

� 5 3
1/2

0
ℎ2, � 5 3

1/2

0
ℎ2

〉

= ‖Cℎ2‖
2.

Let us see that

‖Cℎ2‖
2 ≥ ‖)0ℎ2‖

2.

In fact, (ℎ2, Cℎ2) ∈ C ⊆ ). Since ) = )0 ⊕̂ ({0} × mul())),

(ℎ2, Cℎ2) = (ℎ2, )0ℎ2) + (0, I)

for some I ∈ mul()). Then Cℎ2 = )0ℎ2 + I. Since )0ℎ2 ∈ ran()0) ⊆ dom ()∗) ⊆

mul())⊥ and D1 ⊆ S it follows that

‖Cℎ2‖
2
= ‖)0ℎ2‖

2 + ‖I‖2 ≥ ‖)0ℎ2‖
2
= ‖�

1/2

0
ℎ‖2.

Then

〈 �0ℎ, ℎ 〉 = ‖�
1/2

0
ℎ‖2 ≥ ‖�

1/2

0
ℎ‖2 for every ℎ ∈ dom(�).

Since dom(�) is a core for �
1/2

0
, by [16, Lemma 10.10], it follows that dom(�

1/2

0
) ⊆

dom(�
1/2

0
) and ‖�

1/2

0
ℎ‖ ≥ ‖�

1/2

0
ℎ‖ for every ℎ ∈ dom(�

1/2

0
). Hence, � ≥ �. So

that

� ∈ M(�,S⊥).

Let - ∈ M(�,S⊥). Then, by Lemma 2.4, there exists a contraction, ∈ !(H)

such that

-
1/2

0
⊃ ,�

1/2

0
,
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where -0 is the operator part of -. Recall that -0 is a nonnegative selfadjoint linear

operator in dom (-). Also, if ℎ2 ∈ D2 ⊆ dom(�) = dom(�0) ⊆ dom(�
1/2

0
),

-
1/2

0
ℎ2 = ,�

1/2

0
ℎ2 = ,+23

1/2

0
= , ′3

1/2

0
ℎ2,

with , ′
= ,+2. Also, since - ≤ �, we have that dom(�) ⊆ dom(�

1/2

0
) ⊆

dom(-
1/2

0
) and

〈

-
1/2

0
ℎ, -

1/2

0
ℎ
〉

≤
〈

�
1/2

0
ℎ, �

1/2

0
ℎ
〉

= 〈 �0ℎ, ℎ 〉 for every ℎ ∈ dom(�).

Let ℎ =

(

ℎ1

ℎ2

)

∈ D1 ⊕ D2. Then, since D1 ⊆ S ⊆ ker(-) = ker(-0),

〈

-
1/2

0
ℎ, -

1/2

0
ℎ
〉

=

〈

-
1/2

0
ℎ2, -

1/2

0
ℎ2

〉

=

〈

, ′3
1/2

0
ℎ2,,

′3
1/2

0
ℎ2

〉

=

〈 (

0 0

0 , ′∗, ′

) (

0

3
1/2

0
ℎ2

)

,

(

0

3
1/2

0
ℎ2

) 〉

=

〈

(

0 0

0 , ′∗, ′

)

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

)

,

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

) 〉

≤ 〈 �0ℎ, ℎ 〉 =

〈

(

1 5

5 ∗ 1

)

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

)

,

(

0
1/2

0
ℎ1

3
1/2

0
ℎ2

) 〉

.

Since D1 is a core of 0
1/2

0
and D2 is a core of 3

1/2

0
, we have that 0

1/2

0
(D1) =

ran (0
1/2

0
) and 3

1/2

0
(D2) = ran (3

1/2

0
). Also, ker(3

1/2

0
) = ker(+2) ⊆ ker(, ′)∩ker( 5 )

and ker(0
1/2

0
) ⊆ ker( 5 ∗). Hence, by the last inequality, it follows that

0 ≤

(

0 0

0 , ′∗, ′

)

≤

(

1 5

5 ∗ 1

)

,

where the inequality holds in the Hilbert space dom (�) = N1 ⊕ N2. Therefore
(

0 0

0 , ′∗, ′

)

≤

(

1 5

5 ∗ 1

)

/N1

=

(

0 0

0 1 − 5 ∗ 5

)

.

So that , ′∗, ′ ≤ 1 − 5 ∗ 5 . Then
〈

-
1/2

0
ℎ, -

1/2

0
ℎ
〉

=

〈

, ′3
1/2

0
ℎ2,,

′3
1/2

0
ℎ2

〉

≤
〈

(1 − 5 ∗ 5 )1/23
1/2

0
ℎ2, (1 − 5 ∗ 5 )1/23

1/2

0
ℎ2

〉

=

〈

� 5 3
1/2

0
ℎ2, � 5 3

1/2

0
ℎ2

〉

= ‖� 5 3
1/2

0
ℎ2‖

2
= ‖Cℎ2‖

2.

Next we show that � ≥ -. Let ℎ =

(

ℎ1

ℎ2

)

∈ dom(�
1/2

0
) = S ⊕ dom()0).

Then ℎ2 ∈ dom()0). So that there exists : ∈ N2 such that (ℎ2, :) ∈ )0 ⊂ ). Since )0

is an operator, it follows that : = )0ℎ2. Also, since (ℎ2, :) ∈ ) = �631/2 |D2
, there

exists a sequence (ℎ=, H=)=≥1 ∈ �63
1/2 |D2

such that lim
=→∞

(ℎ=, H=) = (ℎ2, :).
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Since (ℎ=, H=) ∈ �63
1/2 |D2

= � 5 3
1/2

0
|D2

⊕̂ ({0} × M2) for every = ∈ N,

then ℎ= ∈ D2 and, for every = ∈ N, there exits <= ∈ M2 such that

(ℎ=, H=) = (ℎ=, � 5 3
1/2

0
ℎ=) + (0, <=).

Then, lim
=→∞

ℎ= = ℎ2 and lim
=→∞

� 5 3
1/2

0
ℎ= + <= = :. But, since � 5 3

1/2

0
ℎ= ∈ N2 for

every = ∈ N and : ∈ N2 ⊥ M2, it follows that lim
=→∞

<= = 0 and then lim
=→∞

� 5 3
1/2

0
ℎ= =

lim
=→∞

Cℎ= = :. From

‖-
1/2

0
ℎ=‖

2 ≤ ‖Cℎ=‖
2 for every = ∈ N,

it follows that (-
1/2

0
ℎ=)=≥1 is a Cauchy sequence (so it converges). From the fact

that -
1/2

0
is a closed operator, ℎ2 ∈ dom(-

1/2

0
) and lim

=→∞
-

1/2

0
ℎ= = -

1/2

0
ℎ2. Then,

since S ⊆ ker(-0) = ker(-
1/2

0
) ⊆ dom(-

1/2

0
),

dom(�
1/2

0
) = S ⊕ dom()0) ⊆ dom(-

1/2

0
).

Therefore, since ℎ1 ∈ ker(-
1/2

0
),

‖-
1/2

0
ℎ‖ = ‖-

1/2

0
ℎ2‖ = lim

=→∞
‖-

1/2

0
ℎ=‖

≤ lim
=→∞

‖Cℎ=‖ = ‖: ‖ = ‖)0ℎ2‖ = ‖�
1/2

0
ℎ‖.

�

Remark. Suppose that � ≥ 0 is (a densely defined) operator inH . If - ∈ M(�,S⊥)

then - is an operator in H . In fact, if - ∈ M(�,S⊥) then dom(�1/2) ⊆ dom(-1/2)

and then

mul(-) = mul(-1/2) = dom(-1/2)⊥ ⊆ dom(�1/2)⊥ = mul(�) = {0}.

In this case, N1 = D1 = S and M1 = M2 = {0}. So that 5 = 6, 3 = 30, )
∗) = C×C

and,

�/S =

(

0 0

0 )∗)

)

= max {- l.o. in H : 0 ≤ - ≤ �, ran(-) ⊆ S⊥}.

In a similar way, we now define �S the compression of �. For this, consider

the row linear relation

( :=
(

01/2 |D1
631/2 |D2

)

⊆ H × S

with dom(() = D1 ⊕ D2 = dom(�). Define �S by

�S := (∗(.

Then, by Theorem 2.3, �S is a nonnegative selfadjoint linear relation H .

Lemma 4.3. Under the above hypotheses, ( is decomposable and

�S = B×B ⊕̂ ({0} × mul(�)),
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where B : D → N1 is the closable linear operator defined by

B :=
(

0
1/2

0
|D1

5 3
1/2

0
|D2

)

(4.6)

and B× is the adjoint of B when viewed as an operator from dom (() to dom ((∗).

Proof. Since 01/2 |D1
= 0

1/2

0
|D1

⊕̂ ({0} ×M1) and 631/2 |D2
= 5 3

1/2

0
|D2

, it follows

that

( = B ⊕̂ ({0} ×M1).

In fact, it is clear that ran(B) ⊆ N1 and, since mul(631/2 |D2
) = {0}, mul(() =

mul(01/2 |D1
) + mul(631/2 |D2

) = M1 and dom(() = dom(�) = dom(B). Also, if

(ℎ, H) ∈ ( then (ℎ, H) =

( (

ℎ1

ℎ2

)

, H1 + H2

)

where ℎ1 ∈ D1, ℎ2 ∈ D2 and (ℎ1, H1) ∈

01/2 |D1
and (ℎ2, H2) ∈ 631/2 |D2

= 5 3
1/2

0
|D2

. So that (ℎ1, H1) = (ℎ1, 0
1/2

0
ℎ1) +

(0, <1) for some <1 ∈ M1 and H2 = 5 3
1/2

0
ℎ2. Hence

(ℎ, H) =

( (

ℎ1

ℎ2

)

, H1 + H2

)

=

( (

ℎ1

ℎ2

)

, 0
1/2

0
ℎ1 + 5 3

1/2

0
ℎ2

)

+ (0, <1) ∈ B ⊕̂ ({0} ×M1).

Then ( ⊂ B ⊕̂ ({0} ×M1) and, by [9, Corollary 2.2], ( = B ⊕̂ ({0} ×M1).

The row operator B is closable, in fact, B× =

(

0
1/2

0

3
1/2

0
5 ∗

)

and, as 0
1/2

0
(D1) ⊆

dom(0
1/2

0
) ∩ dom(3

1/2

0
5 ∗) and ker(0

1/2

0
) ⊆ dom(0

1/2

0
) ∩ ker( 5 ∗),

dom(B×) ⊇ 0
1/2

0
(D1) ⊕ ker(0

1/2

0
)

which is dense in N1. Then B is an operator. Moreover, by Theorem 2.1, ( is

decomposable and

( = B ⊕̂ ({0} ×M1).

Also, since D1 is a core of 01/2 and D2 is a core of 31/2, it follows that

(∗ =

(

01/2

31/26∗

)

,

mul(�S) = mul((∗) = mul(01/2) ⊕ mul(31/26∗) = M1 ⊕ M2 = mul(�) and, by

Theorem 2.3, the operator part of (∗( is ((∗()0 = ((()0)
× (()0 = B×B. Then

�S = B×B ⊕̂ ({0} × mul(�)).

�

Let +1 be the partial isometry given in the proof of Theorem 3.11. Then

B = +1
∗�

1/2

0
on dom(�). (4.7)

Proposition 4.4. Let � ≥ 0 be a linear relation in H and let S be a closed subspace

of H such that %S (dom(�)) ⊆ dom(�). Then

� ≥ �S .
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Proof. Suppose that (�S)0 is the operator part of �S then, by [9, Proposition 2.7],
〈

(�S)
1/2

0
D, (�S)

1/2

0
E
〉

=

〈

(()0D, (()0E
〉

= 〈 BD, BE 〉 ,

for every D, E ∈ dom((�S)
1/2

0
) = dom((()0) = dom(B). Then

dom(�) = dom(B) ⊆ dom((�S)
1/2

0
).

Let ℎ =

(

ℎ1

ℎ2

)

∈ D1 ⊕ D2 = dom(B). Then, by (4.7),

‖(�S)
1/2

0
ℎ‖ = ‖Bℎ‖ = ‖Bℎ‖ = ‖+∗

1 �
1/2

0
ℎ‖ ≤ ‖�

1/2

0
ℎ‖ = ‖�

1/2

0
ℎ‖.

Hence, since dom(�) is a core of �1/2, by [16, Lemma 10.10], � ≥ �S . �

Define

L := �1/2(D1) ∩ dom (�).

In the following we show that if the positive relations � and �1/2 admit a matrix

representation with respect to S ⊕ S⊥ and L ⊕ L⊥, respectively, then

� = �S + �/S .

Lemma 4.5. Let � ≥ 0 be a linear relation in H and let S be a closed subspace of

H such that %S (dom(�)) ⊆ dom(�). Consider the matrix representation of � with

respect to S ⊕ S⊥ in (4.1). Then the following are equivalent:

(i) %L (�
1/2 (dom(�)) ⊆ dom(�1/2);

(ii) dom(31/26∗631/2 |D2
) = D2;

(iii) dom(31/2�2
63

1/2 |D2
) = D2.

In this case, the linear relation �63
1/2 is decomposable.

Proof. Since �1/2(dom(�)) = �
1/2

0
(dom(�)) ⊕ mul(�) and mul(�) ⊆ L⊥, it

follows that

%L (�
1/2 (dom(�))) = %L (�

1/2

0
(dom(�)) ⊕ mul(�)) = %L (�

1/2

0
(dom(�))).

(4.8)

Let +1 and +2 be the partial isometries given in the proof of Theorem 3.11.

Then 5 = +1
∗+2 and, since L = �

1/2

0
(D1), %L = +1+1

∗. Also,

�
1/2

0
|dom(�) =

(

+10
1/2

0
|D1

+23
1/2

0
|D2

)

,

and �
1/2

0
=

(

0
1/2

0
+1

∗

3
1/2

0
+∗

2

)

, so that dom(�
1/2

0
) = dom(0

1/2

0
+1

∗) ∩ dom(3
1/2

0
+∗

2
). Then

%L (�
1/2

0
(D2)) ⊆ dom(�

1/2

0
) ⇔ dom(3

1/2

0
5 ∗ 5 3

1/2

0
|D2

) = D2. (4.9)

In fact, by Theorem 3.11,

+∗
1%L (�

1/2

0
(D2)) = 5 3

1/2

0
(D2) ⊆ dom(0

1/2

0
)

and

+∗
2%L (�

1/2

0
(D2)) = 5 ∗ 5 3

1/2

0
(D2).

Then (4.9) follows.
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Since 631/2 |D2
= 5 3

1/2

0
|D2

we have that

31/26∗631/2 |D2
= 3

1/2

0
5 ∗ 5 3

1/2

0
|D2

⊕̂ ({0} ×M2). (4.10)

Then (i) ⇔ (ii) follows from (4.8) and (4.9).

Applying (4.3), it can be seen that

31/2�2
63

1/2 |D2
= 3

1/2

0
�2

5 3
1/2

0
|D2

⊕̂ ({0} ×M2). (4.11)

By (4.10), dom(31/26∗631/2 |D2
) = D2 if and only if dom(3

1/2

0
5 ∗ 5 3

1/2

0
|D2

) =

D2. Then (ii) ⇔ (iii) follows from (4.11) and from the fact that 5 ∗ 5 3
1/2

0
|D2

+

�2
5
3

1/2

0
|D2

= 3
1/2

0
|D2

.

Since equation (4.3) holds and mul(�63
1/2 |D2

) = M2 to see that �63
1/2

is decomposable it is sufficient to prove that the operator � 5 3
1/2

0
is closable [11,

Theorem 3.10]. In fact, let (H=)=≥1 ⊆ D2 be such that H= → 0 and � 5 3
1/2

0
H= → ℎ.

Then, for every ℎ2 ∈ D2,
〈

ℎ, � 5 3
1/2

0
ℎ2

〉

= lim
=→∞

〈

� 5 3
1/2

0
H=, � 5 3

1/2

0
ℎ2

〉

= lim
=→∞

〈

H=, 3
1/2

0
�2

5 3
1/2

0
ℎ2

〉

= 0,

where we used that, by (4.9), dom(3
1/2

0
�2

5
3

1/2

0
|D2

) = D2. Then ℎ ∈ ran (� 5 3
1/2

0
) ∩

ran(� 5 3
1/2

0
)⊥ and ℎ = 0. �

Theorem 4.6. Let � ≥ 0 be a linear relation in H , let S be a closed subspace of

H such that %S (dom(�)) ⊆ dom(�). Then the following are equivalent:

(i) dom(�) ⊆ dom(�S);

(ii) %L (�
1/2 (dom(�))) ⊆ dom(�1/2);

(iii) � = �S + �/S .

Proof. (i) ⇒ (ii): Let us see that dom(3
1/2

0
5 ∗ 5 3

1/2

0
|D2

) = D2. In fact, let ℎ2 ∈ D2

then ℎ2 ∈ dom(�S) = dom(B×B), where B is as in (4.6), and B×B is the operator part

of �S . Since ℎ2 ∈ D2 ⊆ dom(B) and B is closable, it follows that

Bℎ2 = Bℎ2 = 5 3
1/2

0
ℎ2 ∈ dom(B×) = dom(0

1/2

0
) ∩ dom(3

1/2

0
5 ∗).

Hence ℎ2 ∈ dom(3
1/2

0
5 ∗ 5 3

1/2

0
|D2

). Then, by (4.8) and (4.9), %L (�
1/2(dom(�))) ⊆

dom(�1/2).

(ii) ⇒ (iii): By the proof of Lemma 4.5,

dom(3
1/2

0
5 ∗ 5 3

1/2

0
|D2

) = dom(3
1/2

0
�2

5 3
1/2

0
|D2

) = D2.

Also, since

6∗631/2 |D2
+ �2

63
1/2 |D2

= 31/2 |D2

and dom(31/26∗631/2 |D2
) = dom(31/2�2

63
1/2 |D2

) = D2 ⊆ dom(31/2) (see Lemma

4.5), it follows that

31/26∗631/2 |D2
+ 31/2�2

63
1/2 |D2

= 3 |D2
. (4.12)
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Next we show that

B×B =

(

00 10

20 3
1/2

0
5 ∗ 5 3

1/2

0
|D2

)

.

Let ℎ =

(

ℎ1

ℎ2

)

∈ D1 ⊕ D2. Then

B×Bℎ =

(

0
1/2

0
(0

1/2

0
ℎ1 + 5 3

1/2

0
ℎ2)

3
1/2

0
5 ∗(0

1/2

0
ℎ1 + 5 3

1/2

0
ℎ2)

)

=

(

00 10

20 3
1/2

0
5 ∗ 5 3

1/2

0
|D2

)

ℎ,

where the last equality follows from the fact that, since 5 3
1/2

0
ℎ2 ∈ dom(3

1/2

0
5 ∗), it is

possible to distribute. Then, since 31/26∗631/2 |D2
= 3

1/2

0
5 ∗ 5 3

1/2

0
|D2

⊕̂ ({0} ×M2),

it follows that

�S ⊃ B×B ⊕̂ ({0} × mul(�)) =

(

0 1

2 31/26∗631/2 |D2

)

. (4.13)

Clearly,

�/S ⊃

(

0 0

0 31/2�2
63

1/2 |D2

)

.

Then, by [10, Lemma 5.5] and (4.12),
(

0 1

2 31/26∗631/2 |D2

)

+

(

0 0

0 31/2�2
63

1/2 |D2

)

=

(

0 1

2 3 |D2

)

= �. (4.14)

Hence �S + �/S ⊃ � and, by (2.2),

� = �∗ ⊃ (�S + �/S)
∗ ⊃ (�S)

∗ + (�/S)
∗
= �S + �/S ⊃ �.

So that � = �S + �/S .

(iii) ⇒ (i): It is straightforward.

�

For a nonnegative operator � ∈ !(H) and a closed subspace S ⊆ H , Pekarev

[15] showed that the Schur complement �/S can be expressed as �/S = �1/2%L⊥�1/2

whereL = �1/2 (S). In what follows, we extend this formula for a linear relation � ≥

0 in H such that %S (dom(�)) ⊆ dom(�) and %L (�
1/2 (dom(�))) ⊆ dom(�1/2).

Corollary 4.7. Let � ≥ 0 be a linear relation in H , let S be a closed subspace of

H such that %S (dom(�)) ⊆ dom(�) and %L (�
1/2 (dom(�))) ⊆ dom(�1/2). Then

�/S = �1/2%L⊥�1/2 |dom(�) , �S = �1/2%L�1/2 |dom(�) .

Proof. Let ℎ = ℎ1 + ℎ2 ∈ D1 ⊕ D2. Then

‖Cℎ2‖
2
=

〈

� 5 3
1/2

0
ℎ2, � 5 3

1/2

0
ℎ2

〉

=

〈

(1 − 5 ∗ 5 )3
1/2

0
ℎ2, 3

1/2

0
ℎ2

〉

=

〈

+∗
2 (1 −+1+1

∗)+23
1/2

0
ℎ2, 3

1/2

0
ℎ2

〉

=

〈

(1 − %L)�
1/2

0
ℎ2, �

1/2

0
ℎ2

〉

=

〈

%L⊥�
1/2

0
ℎ2, �

1/2

0
ℎ2

〉

= ‖%L⊥ �
1/2

0
ℎ‖2,
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where we used that %L⊥�
1/2

0
ℎ = %L⊥�

1/2

0
ℎ2, because �

1/2

0
ℎ1 ∈ L. Then, since C is

closable (see Lemma 4.5),%L⊥�
1/2

0
|dom(�) is also closable. Set, := %L⊥�1/2 |dom(�) .

Then, since %L⊥�1/2 |dom(�) = %L⊥�
1/2

0
|dom(�) ⊕̂ ({0} × mul(�)), it follows that

, = %L⊥�
1/2

0
|dom(�) ⊕̂ ({0} × mul(�)). (4.15)

Moreover, since C and %L⊥�
1/2

0
|dom(�) are closable operators, by (4.4) and (4.15),

it follows that the operator part of ) is )0 = C and the operator part of , is

,0 = %L⊥�
1/2

0
|dom(�) . Also,

L⊥ ∩ dom(�
1/2

0
) ⊆ �

−1/2

0
(S⊥) := {H ∈ dom(�

1/2

0
) : �

1/2

0
H ∈ S⊥}.

In fact, let H ∈ L⊥ ∩ dom(�
1/2

0
). Then, for every ℎ1 ∈ D1,

0 =

〈

H, �
1/2

0
ℎ1

〉

=

〈

�
1/2

0
H, ℎ1

〉

.

So that

�
1/2

0
H ∈ D⊥

1 = (S⊥ ⊕ M1) ∩ dom (�) ⊆ S⊥

because M1 = S ∩ mul(�). Then

ran(,0
∗,0) ⊆ S⊥. (4.16)

In fact, let H ∈ ran(,0
∗,0). Then, since ran(,0) ⊆ L⊥, it follows that

H = ,0
∗,0G = �

1/2

0
,0G,

for some G ∈ dom(,0
∗,0). Then ,0G ∈ L⊥ ∩ dom(�

1/2

0
) ⊆ �

−1/2

0
(S⊥) and

H = �
1/2

0
,0G ∈ S⊥. So that, by (4.16), S ⊆ ker(,∗

0
,0) = ker(,0) ⊆ dom(,0),

where we used Theorem 2.3. Hence

ℎ ∈ dom(,0) ⇔ %S⊥ℎ ∈ dom()0) and ‖,0ℎ‖ = ‖)0%S⊥ℎ‖. (4.17)

Now we show that

�/S =

(

0 0

0 )∗)

)

= ,∗, = �1/2%L⊥�1/2 |dom(�) ,

where for the last equality we used that ran(%L⊥ �1/2 |dom(�) ) ⊆ L⊥.

Suppose that (,∗,)0 is the operator part of ,∗, then, by [9, Proposition

2.7],
〈

(,∗,)
1/2

0
D, (,∗,)

1/2

0
E
〉

= 〈,0D,,0E 〉 ,

for every D, E ∈ dom((,∗,)
1/2

0
) = dom(,0).

Suppose that (�/S)0 is the operator part of �/S . Let ℎ ∈ dom((�/S)
1/2

0
) =

S ⊕ dom()0) then ℎ = ℎ1 + ℎ2 with ℎ1 ∈ S and ℎ2 ∈ dom()0). Then, by (4.17),

ℎ ∈ dom(,0). Conversely, if ℎ ∈ dom(,0), by (4.17), %S⊥ℎ ∈ dom()0). Then

ℎ = %Sℎ + %S⊥ℎ ∈ S ⊕ dom()0) = dom((�/S)
1/2

0
).

Also, if ℎ ∈ dom((,∗,)
1/2

0
) = dom(,0) = dom((�/S)

1/2

0
), it follows that

ℎ = ℎ1 + ℎ2 ∈ S ⊕ S⊥ and, by (4.17),

‖(�/S)
1/2

0
ℎ‖ = ‖)0ℎ2‖ = ‖,0ℎ‖ = ‖(,∗,)

1/2

0
ℎ‖.
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Then �/S = ,∗,.

Finally, by (4.7),

+1B = %L�
1/2

0
|dom(�) .

Then, since B is closable and +1 is a partial isometry, the operator %L�
1/2

0
|dom(�) is

closable and

B = +∗
1
%L�

1/2

0
|dom(�) = +1

∗%L�
1/2

0
|dom(�) .

So that

B×B = �
1/2

0
%L+1+1

∗%L�
1/2

0
|dom(�) = �

1/2

0
%L%L�

1/2

0
|dom(�) ,

and, since ran(%L�1/2 |dom(�) ) ⊆ L,

�1/2%L%L�1/2 |dom(�) = �1/2%L�1/2 |dom(�) = �
1/2

0
%L�

1/2

0
|dom(�) ⊕̂ ({0} × mul(�))

= B×B ⊕̂ ({0} × mul(�)) = �S .

�

Corollary 4.8. Let � ≥ 0 be a linear relation in H and letS be a closed subspace of

H . If � and �1/2 admit a matrix representation with respect to S ⊕S⊥ and L⊕L⊥,

respectively, then

�/S = �1/2%L⊥�1/2 |dom(�) , �S = �1/2%L�1/2 |dom(�) , and � = �S + �/S .

Proof. By Theorem 3.2,%S (dom(�)) ⊆ dom(�) and%L (dom(�1/2)) ⊆ dom(�1/2).

Then, since �1/2 (dom(�)) ⊆ dom(�1/2) ⊕ mul(�), it follows that

%L (�
1/2 (dom(�))) ⊆ %L (dom(�1/2)) ⊆ dom(�1/2).

Then, the result follows from Corollary 4.7 and Theorem 4.6. �
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