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Manufacturing processes and their economy are dramatically evolving due 
to machinery and digital control improvements. Artificial intelligence, big 
data analytics, and the Internet of Things are key tools for this new 
industrial revolution era based on Industry 4.0. Bioeconomy and circular 
economy concepts have appeared in the forest, agriculture, food, 
pharmaceutical, pulp and paper, chemical, biotechnological, and energy 
areas, etc., to achieve sustainable economic growth development via 
biomass valorization in a biorefinery platform. Biorefinery process 
development at an industrial scale requires the previous design and 
assessment of processes and technologies. Therefore, economic, 
environmental, and social factors should be evaluated to prevent the 
failure in one of these issues that could affect the performance of the 
others. With a growing interest in sustainable economic development, 
there is a need to incorporate new technologies early enough in the 
process design. This study aims to better understand how Industry 4.0 era 
tools can bring new solutions to the biorefinery process design, in terms 
of the technical, economic, environmental, and social factors. Thus, these 
tools could improve and revolutionize the process selection optimization, 
provide alternatives for biomass valorization, integration strategies, and 
the metrics selection for process evaluation, adding the approach toward 
sustainable economic development. 
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INTRODUCTION 
 

In the history of humanity, technology has evolved to satisfy the social-economic 

demand for materials, energy, food, and economic benefits, among others. The massive 

changes based on innovative industrial processes and production technology were 

considered Industrial Revolutions in contemporary history. These changes produced an 

unprecedented increase in prosperity, working ways, social-economic living, and 

significant societal transformation. During Industry 1.0 (1760 to 1840), the socio-economic 

changes were characterized by: (i) the conversion from human and animal labor into 

machinery technology; (ii) the development of new chemical processes and new material 

production (steel); (iii) the rise of new machines using water and steam power; (iv) 

transportation improvements; and (v) the use of coal as an energy resource. Industry 2.0 

(1870 to 1970) produced huge technological advancements based on electricity, gas, and 

oil. It was characterized by: (i) revolutionary inventions such as the internal combustion 

engine, the telegraph, the telephone, computers, automatic operations, plastics, electricity, 
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chemical synthesis, and the automobile, among others, and (ii) the design of automated 

assembly lines in industrial production, among others. Industry 3.0 (from 1970 to the 

present) was based on the revolutionary improvement and use of: (i) electronics, 

telecommunications, and computers; (ii) new research lines such as space expeditions, 

biotechnology, and nanotechnology, among others; (iii) new industrial technologies such 

as programmable logic controllers (PLCs) and robots to achieve high-level automation 

(Lee et al. 2018; Groumpos 2021; Javaid et al. 2022). 

 

 

ASPECTS OF INDUSTRY 4.0 FROM A BIOREFINER CONTEXT 
 
What is Industry 4.0?  

Nowadays, Industry 4.0 is a revolutionary change based on disruptive technologies 

and trends integration (Internet, robotics, virtual reality, and artificial intelligence), which 

are changing people's lives and work. It is characterized by (i) the massive Internet use, the 

development of cheaper, smaller, and stronger sensors, (ii) rapid spread of information 

technology (IT), (iii) the development of a Collaborative Common, (iii) the transition from 

conventional fossil fuel-based economy to the renewable energy economy as circular 

economy and bioeconomy concepts, the spread of the newest IT, such as the Internet of 

Things (IoT), cyber-physical systems (CPSs), artificial intelligence (AI), machine learning 

(ML), artificial neural networks (ANN), and (v) the 3-D printer (Lee et al. 2018; Groumpos 

2021; Javaid et al. 2022). The industrial revolutions and their main characteristics are 

illustrated in Fig. 1.  

 

 
Fig. 1. Industrial revolutions and their main characteristics 

 

Circular Economy 
The Circular Economy (CE) concept has arisen in the current global economic 

system to attain more sustainable development. This concept responds to the growing 
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social demand for renewable materials and energy, mainly by increasing resource 

efficiency and reducing generated waste, among other things. 

A CE envisions achieving a more resource-effective and efficient economic system 

optimizing the materials and energy flows (Pieroni et al. 2019). In the same way, the 

bioeconomy (BE) concept appears as a strategy to act toward a sustainable future; it seeks 

to mitigate the effects of climate change by exploiting renewable carbon sources (biomass), 

and generating business and employment opportunities, mainly in rural areas (D’Amato et 

al. 2017; Ubando et al. 2020). 

In this sense, a circular bioeconomy (CBE) has emerged based on CE and BE 

concepts, considering biomass an integral raw material to obtain a wide range of 

bioproducts, biochemicals, and bioenergy (Ubando et al. 2020). Furthermore, by closing 

the loop in the CBE framework, the sustainability and economic viability of bio-stream 

production processes are achieved (Carus and Dammer 2018). 

 

Sustainability Assessement 
Sustainability assessment allows the identification of which procedures are or are 

not feasible in terms of leading toward a sustainable process (Ruiz-Mercado et al. 2012). 

Knowing if a process could be sustainable is necessary to evaluate it in the process design 

step before implementation at a commercial scale.  

In process design, the adverse circumstances could be prevented and (or) 

minimized by incorporating the sustainability criteria instead of performing corrective and 

costly modifications. However, one of the problems in measuring the sustainability of an 

industrial process and optimizing its performance is setting the right path (Veleva and 

Ellenbecker 2001; Tanzil and Beloff 2006). Many publications agree that sustainability 

should satisfy the following global aspects: environment, economy, and society (Ruiz-

Mercado et al. 2012; Sadhukhan et al. 2014; Cardona et al. 2019). Therefore, sustainability 

indicators often are classified based on these aspects (Ruiz-Mercado et al. 2012). Several 

of these indicators could be used to measure the performance of developed processes. 

In the biorefinery field, for economic assessment, the usual economic indicators are 

the net present value (NPV), the return on investment (ROI), the payback period (PBP), 

etc., whereas the environmental indicators from a life cycle assessment (LCA) include 

emissions, resources consumption, and environmental pressures for products. Although 

social indicators have been studied in recent years, some methods seek to carry out studies 

in a comprehensive manner, e.g., multi-criteria decision analysis (MCDA) (Ubando et al. 

2020). In addition, other indicators based on a socio-economic framework have been 

proposed taking into account the territorial rooting of the regional economic activities; this 

method is called the social life cycle assessment (SLCA) (Rakotovao et al. 2018). 

However, economic, environmental, and social indicators are separately evaluated because 

it is difficult to quantify their relationships (Tuazon and Gnansounou 2017).  

In addition to the usual methods, several alternatives to evaluate sustainability try 

to merge more than one of its aspects (Tuazon et al. 2013; El-Halwagi 2017; Shemfe et al. 

2018; Meramo-Hurtado et al. 2020). A recent study showed that in a sustainability 

assessment, the process integration and environmental assessment are the greater assessed 

topics, followed by a techno-economic assessment. Finally, social assessment is an aspect 

that has undergone little analysis (Ubando et al. 2020).  

Social analysis has been a restraint for the researchers due to the lack of or poor 

availability of methodologies or tools that allow precise assessment. The social impact 

assessment should involve, e.g., job generation (at the land and process level), food supply, 
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health, contribution to community development, minority inclusion, transparency, and end 

of life responsibility (Aristizábal-Marulanda et al. 2020). Due to the increasing demands 

of the social sector to have an active and enjoyable life, the current society is moving to a 

stage called Society 5.0, in which the economy is organized in a sustainable system based 

on a human-centered society that balances economic progress and resolves the social 

problems via digital and physical integration (Cabinet Office 2021). In this way, emerging 

technologies such as the Internet of Things (IoT), big data, artificial intelligence (AI) and 

its subsets, i.e., machine learning (ML), and artificial neural networks (ANN), have great 

potential in terms of reducing energy consumption, environmental impacts, and several 

social concerns. Moreover, these technologies could be used to integrate the sustainability 

aspects and improve the global assessment of sustainability (Ghobakhloo 2020; Liao et al. 

2021; Zengin et al. 2021). Figure 2 represents the relationship between the new 

technologies and how they could improve global sustainability. Future technologies could 

help to bring improvements in the process design and assessment, focusing on sustainable 

development. 

 

 
 

Fig. 2. New technologies improving global sustainability 
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Promising Technologies for Sustainability 
The digital change in industries and companies is moving to the global systems 

toward the “Industry 4.0” level, which is generating a new innovative age (IoT, big data, 

and AI) (Dalenogare et al. 2018; Frank et al. 2019; Meindl et al. 2021). Recent tools 

support it (IoT, big data, and AI). These tools apply to several technologies, including 

product and process design systems, process and manufacture simulation, innovative 

robotics, etc. (Dalenogare et al. 2018; Meindl et al. 2021).  

Industry 4.0 allows the construction of cyber-physical structures to interconnect all 

fields of the industry with more profoundly integrated processes (Benitez et al. 2020). The 

main goals for the application of Industry 4.0 associated technologies could be (i) 

increasing production efficiency, productivity, and quality; (ii) enhancing operational 

flexibility; (iii) integrating the production system with customers and the supply chain; or 

(iv) contributing to the safety of the workers and operational sustainability (Dalenogare et 

al. 2018; Meindl et al. 2021). In addition, it was estimated that Industry 4.0 technologies 

could reduce production, logistic, and management costs by up to 30% (Nahavandi 2019). 

The smart manufacturing concept is gaining attention from both researchers and 

industries because it is a new tool that aims to connect unit operations and advanced 

computational intelligence by wireless networks using sensors to improve productivity and 

sustainability performance (Wang et al. 2018). 

Digitalization provides unprecedented industry opportunities. Digital technologies, 

e.g., AI, IoT, etc., allow radical innovation strategies. Moreover, developing innovative 

technologies could make the industry more sustainable (Oztemel and Gursev 2018; Breque 

et al. 2021).  

Implementing these technologies in today’s industries requires economic resources, 

infrastructure, and labor, among others. Regarding this last one, industries in developing 

countries face problems mainly due to a lack of technical skills and poor financial 

conditions. In this sense, in developing countries, Industry 4.0 technologies 

implementation could be a challenge due to the high cost of sustainable practices, lack of 

skills and training, lack of standardized metrics and the lack of adoption of emerging 

technologies (Kumar et al. 2020). However, these technologies implementation can help 

the organization by reducing capital and operational cost, improving flexibility, and 

increasing revenue, especially among small and medium enterprises (SMEs) (Lim et al. 

2021).  

Industry 4.0 has shown remarkable potential for sustainable industrial value 

creation by improving resource efficiency (Khan et al. 2021). In addition, the common 

environmental goals can be achieved by incorporating new technologies and rethinking the 

production processes by considering their impacts (Sharma et al. 2020; Breque et al. 2021).  

Due to the novelty of the applications of these technologies in biorefineries process 

assessment, a network map was generated using the papers published since 2016 to 

evaluate them. Approximately 40 articles were analyzed using the binary-counting method 

of the VOSViewer software (version 1.6.17, CWTS, The Netherlands) (as shown in Fig. 

3). Regarding Industry 4.0 technologies, AI and its subsets (ML and ANN) were the most 

assessed topics. Other relevant terms in the network were related to biorefinery processes, 

economics, and the environment. 
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Fig. 3. Data collected from the Scopus database by consulting original articles, using the 
following search terms: Biorefinery AND Artificial Intelligence OR Artificial Neural Network OR 
Machine Learning OR Internet of Things OR Big Data Analytics 

 

Artificial Intelligence (AI), Machine Learning (ML), and Artificial Neural 
Networks (ANN) in a Biorefinery Context 

Artificial intelligence and its subsets (ML and ANN) could bring new solutions to 

biorefinery processes, from the first steps of process design, e.g., literature review, to 

strategic steps, e.g., allocation (as shown in Fig. 4). However, the application of these 

technologies requires necessary data collection (images, parameters, yields, etc.) and 

algorithm development. Potential applications of these technologies include data 

classification, optimization, pattern recognition, and prediction (Culaba et al. 2022). 

 

 
 

Fig. 4. Artificial intelligence, ML and ANN are becoming key players in biorefinery process design 
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Literature review 
Usually, literature reviews consist of an overview of current knowledge, dates, and 

methods in the existing research. The operating conditions are commonly selected from 

updated bibliographies, patents, and experimental results based on the design, 

modelization, and optimization of biorefinery processes. In this step, it is possible to 

determine which process conditions fit better for the designed process in this study and 

whether it is possible to replicate them in this case study (Moncada et al. 2016; Clauser et 

al. 2021). 

The usual review method is to screen thousands of studies by hand and determine 

which studies are feasible to include in the design. However, this process is inefficient and 

costly due to only a fraction of the screened studies being relevant. In this sense, it is 

possible to review the available literature using an ML-based method that would allow the 

filtering of the studies that could be adjusted to the studied process and the potential gaps 

to be evaluated and determined (Schoot et al. 2021). 

Schoot et al. (2021) developed an ML framework to accelerate screening (titles and 

abstracts). It could help researchers realize a systematic review or meta-analysis. They 

demonstrate that systematic review could yield far high quality, more efficient, and 

transparent reviewing than manual reviewing. Regarding the Industry 4.0 field, ML-based 

systematic literature review methods have been recently developed, where approximately 

5000 papers were evaluated and classified (Meindl et al. 2021). 

Regarding biorefineries, its design starts with the available information about the 

processes, raw materials, products, etc. (Clauser et al. 2021). In these steps, the literature 

review is a crucial task for gathering knowledge about the topic, and the use of ML methods 

could bring a substantial improvement in this step. 

 

Biomass characterization 

Analysis and characterization of the lignocellulosic biomass are necessary to ensure 

consistent and uniform feedstocks for the subsequent conversion into several products and 

subproducts (Nag et al. 2021). Therefore, the critical parameters from the physicochemical 

characterization should be determined and assessed before designing any biorefinery 

conversion process, since these allow for evaluating possible treatments (thermochemical 

or biochemical processes). In addition, it allows for the evaluation of the initial chemical 

composition of the lignocellulosic biomass. Some of the parameters that should be 

considered in the design are as follows: the particle size, bulk density, moisture, ash, 

volatile, higher or lower heating values, the elemental composition, and chemical 

compositions (cellulose, hemicelluloses, and lignin contents) (Cai et al. 2017). However, 

the determination and quantification of these parameters consume resources and time. In 

addition, several types of analytical equipment are needed. 

In this way, in addition to laboratory characterization, AI could be an alternative to 

minimize the cost and time of biomass characterization and offer a quick screening and 

selection of biomass species based on their properties (Liao and Yao 2021). Besides, 

studies on predicting higher heating values (HHV) compared AI-based models with 

empirical correlation, showing a higher fit (R2) for AI models compared to the traditional 

approaches (Dashti et al. 2019; Xing et al. 2019b; Liao and Yao 2021). Another study 

developed a model to classify biomass for a pyrolysis plant, in which approximately 10 

biomass types were selected using various raw materials, e.g., pine, eucalyptus, sugarcane 

bagasse, etc. (Nag et al. 2021). In addition, the prediction of the chemical composition of 

biomass, i.e., cellulose, hemicelluloses, and lignin contents with a random forest model 
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and the trained model showed high accuracy in one study using ultimate analysis data (144 

samples) (Xing et al. 2019a). As shown, there are studies carried out to characterize 

different types of biomasses with good correlation results compared to experimental 

methods, showing that AI is a powerful tool for accelerating the characterization of raw 

materials. However, more research is needed for its application on a commercial scale. 

 

Processes of the biochemical biorefinery 

Biorefinery processes involve several steps, ranging from biomass fractionation to 

product recovery. A general scheme of a biorefinery process is presented in Fig. 5. 

 

 
Fig. 5. Common steps involved in a biorefinery process 

 

There are studies in which AI, ML, and ANN were used in biorefinery processes. 

Regarding biomass fractionation, Löfgren et al. (2021) developed a model-based ML 

framework to optimize lignin biorefinery based on hydrothermal pretreatment and solvent 

extraction. However, these predictive models fitted with data points within a margin of 

error similar to the experimental error, which could be used to determine optimal extraction 

conditions for applications in lignin valorization. 

Vani et al. (2015) developed an ANN to predict the sugar yield of rice straw from 

enzymatic hydrolysis by utilizing biomass loading, substrate particle size, and hydrolysis 

time as the inputs. They carried out experiments for training (84), validation (18), and 

testing (18). The model presented excellent regression for glucose and xylose (R2 of 0.97 

and 0.96, respectively). Vani et al. (2015) concluded that sugar yields were significantly 

dependent on biomass loading. An optimized ANN model was developed based on 

hydrolysis conditions to maximize sugar yields. Gama et al. (2017) established an ANN 

applied to predict the best conditions to maximize glucose and reduce sugar yields from 

enzymatic hydrolysis of apple pomace using as inputs: temperature, pH, enzyme, and 

substrate loadings (Gama et al. 2017). In this case, the training and testing data set 

contained minimal fluctuations, which showed that enzymatic hydrolysis could benefit 

significantly from ANN technologies because it does not require specific feedstock 

composition details as input (Pomeroy et al. 2022). 

Pappu and Gummadi (2016) examined the use of an ANN and a kinetic model as 

predictive tools for the xylitol production of a bioreactor. The influence of the pH, 

temperature, and volumetric oxygen transfer on the growth and xylitol production were 

evaluated. In addition, an ANN was developed to analyze the effect of the process 

conditions on the xylitol production process. It was determined that ANN is an efficient 

technology to predict the optimal time for microbial production of xylitol. 

Meena et al. (2021) evaluated the potential of AI technologies with a focus on 

biofuel production. This study determined that it is possible to predict the energy from 
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biomass and, with respect to the supply chain. AI could find the optimal available raw 

materials for a running system and sustainably utilize them. 

Finally, in addition to production processes, there are studies developed using AI 

as a tool for wastewater treatment. Kamali et al. (2021) evaluated AI models used to treat 

different wastewater streams and showed that AI is useful for predicting the performance 

of technologies to treat polluted sources and recover clean water. Antwi et al. (2017) 

estimated the methane yields in an anaerobic reactor, and the results showed that ML is a 

promising technology for simulating wastewater treatment systems; the performance of the 

developed model (R2 = 0.979) was better than the linear regression model (R2 = 0.926). In 

the same way, Dach et al. (2016) developed a model that measured the level of methane 

emission during a fermentation process; the correlation of the ANN models was up to 0.99 

for the methane emissions and methane produced. This study demonstrated that the ANN 

predictor served as an efficient tool for estimating the methane production during the 

fermentation processes. 

For agro-industrial wastewater, another study evaluated the hydrogen production 

from the volatile fatty acids generated after the anaerobic acid phase in a biorefinery 

platform. With the proposed structure, the experiments showed that it is effectively 

possible to manage 10 years of data (Rodríguez et al. 2019). 

As previously mentioned, AI tools could be used in several processes to improve 

process design and assessment. 

 

Processes in thermochemical biorefineries 

Seo et al. (2022) evaluated several studies developed for thermochemical processes 

to assess the use of AI, ML, and ANN in biorefinery platforms. Artificial neural networking 

modeling was used as an emerging tool to predict stability and conversion rates based on 

biodiesel properties and biodiesel blends in thermal conversion processes (De et al. 2007). 

ANNs tool can acquire mathematical models through experiences without determining the 

mathematical relationships that tie together interrelated solutions (Uzun et al. 2017). 

Machine learning is based on numerous techniques, e.g., multilinear regression (MLR), 

random forest (RF), and support vector machine (SVM), among others, which can be 

successfully implemented in processes of biomass pyrolysis and gasification (Ullah et al. 

2021). As a result, ML could reduce the time spent and experimental work needed for bio-

oil and syngas production processes. In addition, it allows for the estimation of pyrolysis 

and gasification processes for various biomasses and improves bio-oil yields. Regarding 

environmental concerns, Olafasakin et al. (2021) evaluated the use of ML to analyze the 

emissions and costs of a pyrolysis biorefinery. They found the emissions ranged from 13.62 

to 145 kg of CO2 per MJ and the biofuel minimum selling prices ranged between $2.62 to 

$5.43 per gallon. 

With the help of numerous experimental datasets, ML and AI could provide new 

insights into pyrolysis, hydrothermal treatment, gasification, and combustion (Seo et al. 

2022). As such, AI and its subsets could considerably reduce the work needed for 

experiments. 

 

Biorefinery allocation 

Biorefinery operations are susceptible to several factors, e.g., the changing nature 

of biomass properties, biomass feedstock supply, product demands, etc. (Clauser et al. 

2021). In addition, allocation is a critical factor due to transportation costs and available 

raw materials being crucial factors for the success of the plant. In this sense, ML, AI, and 
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ANN could be regarded as novel and efficient tools (Ekşioǧlu et al. 2009; Pournader et al. 

2021). 

Resource allocation optimization could contribute to an intelligent production 

process that responds swiftly to perturbations in raw material supply and product demand 

(Yuan et al. 2017). 

One of the first steps of biorefinery process design is allocation and supply chain 

management. Chan et al. (2021) evaluated a resource allocation system based on a deep 

neural network (DNN) proposed for the biorefinery. The connection weights and topology 

of the DNN were optimized using the neuro-differential evolution (NDE) algorithm. It 

resulted in the DNN yield optimality (97.7%) and reduced the response time (99.5%) 

compared to the conventional nonlinear solver. During a smart resource allocation system 

synthesis, the proposed DNN-NDE framework accounts for both responsiveness and cost 

performance. 

Sahoo et al. (2016) developed an integrated geographical information system (GIS) 

and ANN prediction model at a high spatial resolution to estimate sustainable raw material 

availability. This tool identified suitable biorefinery sites and selected optimal sites 

minimizing total transport distance. This study also determined that it is possible to develop 

7 plants for cotton stalk valorization. 

Supply chain assessments are commonly developed for specific regions and/or 

single and multiple biorefineries. They use different production scales and different 

temporal scales analyses, among other methods. These factors are complex to collect, 

determine, and evaluate; in this sense, various tools, e.g., AI, ML, and ANN, could quickly 

solve the supply chain assessment and integrate several factors (Liao and Yao 2021). 

Besides allocation, recent advances in computer vision, pattern recognition, and AI 

technologies have resulted in the development of new ML techniques, allowing the 

monitoring of forest ecosystems with higher accuracy. For example, recent studies reported 

that satellite data and machine-learning techniques were used for forest classification, 

obtaining higher accuracy (90% to 91%) (Lim et al. 2020). Another study used ANN to 

predict growing stock volume in forested areas (Astola et al. 2021). In addition, a recent 

study developed a method to prepare forest fire susceptibility mapping, considering 

numerous factors, e.g., altitude, rainfall, wind effect, temperature, slope aspect, distances 

to roads and settlements, land use, and soil type, among others. The results showed an 

accuracy of up to 0.903 (Razavi-Termeh et al. 2020).  

 

Product development 

Finally, one crucial step for commercial process development is product selection. 

Specifically, no product design studies were found using AI strategies in the biorefinery 

field. Nevertheless, AI was used in other sectors, e.g., the pharmaceutical industry, 

including for drug discovery and development (Paul et al. 2021). Artificial intelligence is 

being widely used to improve the time needed for drugs design and to develop new 

techniques that could be used in the design (Sahu et al. 2021). Each step of drug design 

could be improved using AI technologies. Besides, the integration of AI methods could 

mean a high success rate in the development of new compounds. In addition, AI is a 

powerful tool for developing clinical trial output prediction; this further decreases the 

clinical trials cost by improving the success rate (Sahu et al. 2021; Selvaraj et al. 2021). 

From the above, AI technologies could be used in product design and development, 

which would decrease costs, decrease the number of product trials, and improve the amount 

of required development time. 
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From the above, these technologies appear to be promising implementation 

opportunities and can be used to improve the design and assessment of processes. However, 

these technologies should be carefully used. There is a need to consider the processes 

mechanisms and the factors that affect the operations. 

 

Big Data Analytics and the Internet of Things (IoT) in a Biorefinery Context 
4.1 Internet of Things (IoT) 

The IoT is a technology that implies the sensing, transfer, and processing of 

information collected. This technology could be used to make decisions and process 

changes in real-time due to the inclusion of automation, ML, and sensors (Fabris et al. 

2020). Devices and sensors are connected to an IoT platform. This platform integrates data 

from several devices and applies analytics to evaluate and share valuable information with 

applications developed to address specific tasks, reaching intelligent identification and 

management. 

The IoT was also evaluated in agriculture in a biorefinery context for data collection 

and analysis to improve crop productivity and soil fertility (Patil et al. 2017). The IoT could 

improve several aspects, e.g., land conditions, water utilization, pesticides, ecological 

condition, etc. Another recent study developed an IoT platform for microalgae biorefinery. 

Microalgae cultivation at competitive costs at a commercial scale is a challenge. In 

microalgae biorefinery, some drawbacks including cultivation strategies, extraction 

processes, efficient and effective monitoring, among others, require new developments. Its 

potential applications are in pharmacy, food, chemicals, composites, cosmetics, and 

bioenergy sectors (Khoo et al. 2020). 

The new applications and possibilities of IoT technologies in biorefinery processes 

have promoted great efforts in research and development. The use of IoT for automatic 

processes control, monitoring, and evaluating process parameters for their optimization, 

and determining new factors for their evaluation, among others, make it a powerful 

technology to include in biorefinery processes (Wang et al. 2021).  

From the reviewed literature, no studies have been found specifically in biorefinery 

processes applying IoT, which could be due to the novelty of this technology, thus 

becoming an interesting gap to fill up. 

 

Big data analytics 

Another relevant component of the new era of Industry 4.0 is Big Data Analytics 

(BDA), characterized by volume (referred to the enormous magnitude of data), velocity 

(related to the data generated and collected), and variety (referred to the formats of data) 

(Klein 2017). These concepts, combined with analytics, can create, analyze, and evaluate 

valuable knowledge. BDA could generate comprehensive knowledge for new biorefinery 

processes development as the connection of interdisciplinary and intersectoral datasets 

improves the decision-making process in each biorefinery process step (Dragone et al. 

2020).  

Regarding farming, the use of drones was recently evaluated to capture plant 

growth data to optimize the amount of nitrogen used for the fertilization of crops. As such, 

robots have considerably increased the ability of farmers to manage vast expanses of crops 

(Ciruela-Lorenzo et al. 2020). 

In addition, big data and ML technologies facilitate collecting, analyzing, and 

generating data related to soil conditions. With big data implementation, it would be 

possible to find hidden characteristics from soil datasets and obtain information that allows 
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identifying soil conditions, e.g., pH levels, nutrients, and soil moisture (Hou et al. 2020; 

Rejeb et al. 2021).  

Regarding biorefinery process design, a recent sustainability study analyzed big 

data used in pretreatment selection for agricultural waste valorization. This study shows 

that it is possible to use big data in process selection. The inclusion of new decision-making 

tools could improve the process design by producing a substantial time reduction (Belaud 

et al. 2019). 

Besides, another valuable contribution is that BDA could significantly improve the 

product development process due to the use of simulation methods for lab tests (Dragone 

et al. 2020).  

 

Application of Industry 4.0 in a Biorefinery Context 
Regarding the biorefinery context, some industries have initiated projects to 

incorporate information technologies in their value chains, such as monitoring crops, 

increasing the efficiency in the fertilization process, designing fire prevention plans, and 

developing predictive maintenance plans (Teixeira et al. 2018). Also, it was determined 

that the use of BDA to improve crop harvesting could considerably increase industrial 

incomes (Dragone et al. 2020). 

In farming, BDA could be used to analyze and evaluate characteristics of the soil 

conditions, weather, seeds, among others, bringing new solutions to the farmers to increase 

crop yields. BDA allows better decision-making regarding fertilizing, harvesting, and 

irrigation, among others, increasing the crops’ yields (Chandran and Kasat 2019).  

Regarding AI, researchers at the bioenergy program in Idaho National Laboratory 

have successfully tested an intelligence-based control system that could increase the 

reliability of the preprocessing equipment used in preprocessing feedstock by more than 

50%. Combining automatic sensing with making manual adjustments ability allows a 

highly efficient process. The system maintained 97% reliability at 90% capability during 

this operation. It is an excellent advance in biorefinery processes since this parameter 

difficultly exceeds 20% operating capacity during the start-up (U.S. Department of Energy 

2017). Various projects in the context of the biorefinery are presented in Table 1. 

 

Table 1. Projects with Industry 4.0 Technology Applications in Biorefinery 
Context  

Primary 
Technology 

Description Reference 

BDA 

Remote predictive maintenance. 
Improvement in fertilization efficiency.  
Upgrading in fire prevention action plans. 
Estimated cost reduction: 18 million dollars per year. 

(Teixeira et al. 
2018) 

BDA 
Increase of yields, producing less nitrogen, in precision 
farming. Increase incomes, providing the average farmer a 
$22 per acre return. 

(Chandran and 
Kasat 2019) 

AI 
Increase of the reliability of the feedstock preprocessing 
equipment by more than 50%. 

(U.S. Department 
of Energy 2017) 

AI 
Project to use AI for retrieval of forest biomass and 
structure. 

(Aalto University 
2018) 
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Large companies that are aiming to stay current with emerging opporunities are 

more prepared to implement Industry 4.0 technologies. Investing in process and product 

innovation may require a high level of investments. For this reason, several sectors are 

investing in Industry 4.0 technologies, including the pulp and paper industry, food 

products, pharmaceutical, energy, and chemical, among others (Dalenogare et al. 2018, 

Frank et al. 2019). Moreover, industries with an advanced implementation level of Industry 

4.0 tend to adopt most of the technologies, whereas those with a low level tend to adopt 

specific technologies, such as AI, ML, ANN, and IoT, among others (Frank et al. 2019).  

In this way, the new technologies in biorefineries could be through integrated 

processes in consolidated industries like pulp and paper, food (like sugar), and energy, 

among others, which could be a promising alternative to take advantage of the synergy 

between consolidated industries and the new technologies. 

 

Improving Social Assessment Through Industry 4.0 Technologies 
Finally, one of the sustainability factors that digitalization tools could revolutionize 

is the assessment of social impacts.  

As previously shown, Industry 4.0 technologies could bring several solutions to 

biorefineries concerning sustainable development, e.g., promoting sustainable farming, 

improving soil conditions, water utilization, pesticides, high growth yields, etc., improving 

the economy in rural areas. Figure 6 shows several improvement opportunities using 

Industry 4.0 technologies. 

 

 
 
Fig. 6. Sustainability opportunities in a biorefinery context 
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An increase in the efficiency of bioenergy systems increases the quality and 

decreases the cost of the energy produced, which could reduce the CO2 emissions, 

increasing the efficiency of several processes. In addition, improving the production 

processes systems by implementing autonomous systems means better safety conditions 

for employees. 

In addition, concerning social sustainability dimensions, smart and autonomous 

production systems can promote healthy and safe employment by taking over monotonous 

and repetitive tasks, improving employee satisfaction and motivation. However, Industry 

4.0 technologies also bring many challenges and limitations; one of the primary concerns 

is employment reduction (Bai et al. 2020). In this sense, the concept of Industry 5.0 has 

recently emerged, and literature shows a lot of uncertainty about what it could bring as well 

as details of how it could disrupt business and its potential to break down barriers. Three 

core elements could define this new concept: human-centricity, sustainability, and 

resilience (Nahavandi 2019; Breque et al. 2021). 

 

Promising Advances 
Several efforts are developing in the biobased industry field to include new 

technologies. The Royal DSM and TU Delft have recently established the first AI Lab for 

Biosciences in Europe regarding academia. This laboratory could look to apply artificial 

intelligence (AI) to full-scale biomanufacturing (TUDelft 2021). In addition, the Bioenergy 

Technologies Office (EEUU) carried out the first workshop on “Predictive Models and 

High-Performance Computing as Tools to Accelerate the Scaling-Up of New Bio-Based 

Fuels,” in 2020, where diverse sectors and technology areas, including industry, academia, 

and government, attended the virtual meeting. More than one hundred participants 

provided inputs regarding AI and ML use and modeling tools across multiple scales to 

reduce technology uncertainty and accelerate the scaling-up of equipment used in 

biorefinery and chemical processes, optimizing its operation (Bioenergy Technologies 

Office 2020). In Europe, the Alan Turing Institute was awarded £38.8 million for 5 years 

since 2018 to develop research with a focus on AI in science and the government (The 

Alan Turing Institute 2018). The research has focused on several topics related to 

biorefineries. 

Regarding industrial biorefineries, some promising start-ups offering biorefinery 

solutions with technologies related to BDA and AI have been recently reported. These 

start-ups focus on bioenergy production through pyrolysis, gasification, and torrefaction, 

among others, using raw materials like biomass and wastewater (StartUs Insights 2021a; 

StartUs Insights 2021b). In the same way, some companies were reelevated with a focus 

on energy optimization and efficiency using AI (StartUs Insights 2021c).  

 

 

CONCLUSIONS 
 
1. The applications of Industry 4.0 technologies in biorefineries are increasing, and their 

implementation is getting special attention. Artificial intelligence (AI), machine 

learning (ML), and artificial neural networks (ANN) are the most used technologies, 

but others like the Internet of things (IoT) and big data analytics (BDA) are gaining 

attention. 
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2. The current strategy for designing biorefinery processes could be considerably 

improved by using new technologies such as AI, ML, ANN, IoT, BDA, etc. In addition, 

these technologies could be applied to all steps of commercial process implementation, 

e.g., design, operation, logistics, management, etc. The use of analyzed technologies 

could increase in quality in biorefinery implementations. 

3. Artificial intelligence and its subsets (ML and ANN) are promising technologies that 

have great potential to improve several concerns, e.g., reducing energy consumption, 

environmental burdens, and the operational risks of chemical production. In addition, 

the IoT and BDA are little explored technologies in the biorefinery field. However, 

they have shown great potential for improving and optimizing the assessment and 

monitoring of production processes. 

4. Most studies about Industry 4.0 tools found in the bibliography were performed at lab 

and pilot scales; in this sense, large-scale applications of these technologies are still 

limited.  

5. Another barrier is the lack of quantitative understanding of the potential benefits and 

risks of different applications of these technologies.  

6. Applying these technologies in biorefineries processes design and assessment at the 

beginning could be developed as integrated biorefineries in consolidated industries 

such as pulp and paper, chemical, food industries, and energy to increase the 

opportunities of its successful implementation. 

7. For a better understanding and consolidation of biorefineries on a commercial scale, 

considerable analysis, and development of these technologies are necessary for their 

application in the design step. 

8. Circular economy and sustainable development concepts demand considerable 

commitment from all involved sectors (industry, society, academia, and government). 

Therefore, using Industry 4.0 technologies for biomass valorization through a 

biorefinery platform could be crucial for sustainable development. 
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