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ABSTRACT

Most confirmed circumbinary planets are located very close to their host binary where the tidal forces are expected to play an important
role in their dynamics. Here we consider the orbital evolution of a circumbinary planet with arbitrary viscosity, subjected to tides due to
both central stars. We adopt the creep tide theory and assume that the planet is the only extended body in the system and that its orbital
evolution occurs after acquiring its pseudo-synchronous stationary rotational state. With this aim, we first performed a set of numerical
integrations of the tidal equations, using a Kepler-38-type system as a working example. For this case we find that the amount of
planetary tidal migration and also, curiously, its direction both depend on the viscosity. However, the effect of tides on its eccentricity
and pericenter evolutions is simply a move toward pure gravitational secular solutions. Then we present a secular analytical model for
the planetary semimajor axis and eccentricity evolution that reproduces very well the mean behavior of the full tidal equations and
provides a simple criterion to determine the migration directions of the circumbinary planets. This criterion predicts that some of the
confirmed circumbinary planets are tidally migrating inward, but others are migrating outward. However, the typical timescales are
predicted to be very long, and not much orbital tidal evolution is expected to have taken place in these systems. Finally, we revisit the
orbital evolution of a circumbinary planet in the framework of the constant time lag model. We find that the results predicted with this
formalism are identical to those obtained with creep theory in the limit of gaseous bodies.
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1. Introduction

One of the most distinctive characteristics of observed circumbi-
nary (CB) planets is the extreme proximity to their central binary,
very close to the gravitational stability limit (e.g., Holman &
Wiegert 1999). At such distances, tidal forces are expected to
play a relevant role in the dynamical evolution of the planet,
while the central stars are expected to be little affected by the
planetary companion. Thus, in the CB hierarchy, each star is
expected to only feel the tidal torques due to its stellar com-
panion, and the two-body problem (2BP) represents an accurate
model for describing its tidal evolution (e.g., Zoppetti et al.
2019a). On the other hand, the CB planet is subjected to tides
due to two tidal disturbers with comparable magnitudes, and
the three-body problem (3BP) is required to study its dynamical
evolution.

In the framework of the constant time lag (CTL) model (e.g.,
Mignard 1979), we have been investigating the tidal evolution of
CB planets with the 3BP, and found results remarkably different
from those obtained with the 2BP approach (e.g., Correia et al.
2016). For example, regarding the spin evolution, we found dif-
ferent pseudo-synchronous stationary states, which may even be
subsynchronous for low-eccentricity CB planets (Zoppetti et al.
2019a, 2020). Moreover, according to our model the orbital evo-
lution is perhaps even more interesting. Once the CB planet
acquires its stationary rotational state, it can migrate outward
or inward, depending on the system parameters (Zoppetti et al.
2018, 2019a, 2020). However, weak-friction models like the CTL
are expected to only be valid for stars and gaseous planets,
which dissipate small amounts of tidal energy per cycle (e.g.,

Lainey et al. 2009) but not accurate for stiff bodies, whose energy
dissipation does not fit with this regime (e.g., Efroimsky 2012,
2015).

With the aim of having a tidal model able to describe the
dynamical evolution of CB planets with arbitrary viscosities, in
Zoppetti et al. (2021a; hereafter Z2021) we adapted the creep
tide model (Ferraz-Mello 2013) to the 3BP. The Newtonian creep
theory has proven to be analogous to models that consider the
extended masses as Maxwellian bodies (e.g., Correia et al. 2014),
but without taking into account the elastic component of the tides
(Ferraz-Mello 2015a). In particular, in Z2021 we applied this
model to study the rotational evolution of CB planets and found
that the results obtained were identical to those predicted by the
CTL model in the gaseous regime. However, new and completely
different behavior was derived with the creep theory for the rota-
tional evolution of planets in the stiff regime, where the model
always describes perfectly synchronous stationary states.

In this work we follow a similar pathway to that used in
Z2021, but now for studying the orbital evolution of CB plan-
ets. To this end, in Sect. 2 we briefly revisit the creep theory
and its extension to the CB problem. In Sect. 3 we consider a
Kepler-38-type system as a working example, and perform a set
of numerical integrations of the full tidal plus gravitational equa-
tions, assuming the CB planet locked in the pseudo-synchronous
stationary state. In Sect. 4 we present an analytical secular model
for the orbital evolution of the CB planet, expanded up to low
order in the eccentricity of the binary and the planet, but up
to high order in the ratio of the semimajor axes. In Sect. 5 we
revisit the results obtained with the CTL model for this problem
and compare them with those predicted by the creep theory in
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Fig. 1. Schematic of the 3BP from an inertial frame (O-frame) and from
a m2-relative frame.

the previous sections. Finally, in Sect. 6 we summarize our main
results and discuss their implications.

2. Creep tide model for a circumbinary planet

As we mention in the introduction, in the CB problem the cen-
tral stars are not expected to be affected much by the planetary
tidal force and, instead, are expected to evolve by mutual tides
following the 2BP (e.g., Hut 1981). For this reason, we focus on
the tidal evolution of the CB planet, which is expected to have a
peculiar evolution due to the presence of a central binary instead
of a single star.

To meet this goal we consider an extended CB planet with
mass m2 and mean radius R2 perturbed by the tidal forces of
a central binary with mass components m0 and m1 and respec-
tive radii R0 and R1. We assume that all the bodies share the
same orbital plane and all have spin vectors perpendicular to it.
From an arbitrary inertial frame, we denote by Ri the position
vectors of the body mi (i = 0, 1, 2), by ∆ j2 = R j − R2 ( j = 0, 1)
the distance from the star m j to the planet, and by φ j2 the angle
subtended between the position of m j and the reference axis,
measured from the planet (see Fig. 1).

Then, to study the orbital dynamics of the CB planet m2
under the effects of the tidal perturbations of each stellar com-
ponent, we employ the creep theory (Ferraz-Mello 2013, 2015a)
in its closed form (Folonier et al. 2018), but extended to the case
of three interacting masses. In what follows, we revisit the main
steps in building the 3BP extension and refer to Z2021 for details.

2.1. Revisiting the equilibrium and real figure in the 3BP

To compute all the tidal forces applied on the planet, in the
framework of the creep theory it is first necessary to know the
real shape of the bodies. In this work we consider that the real
shape of each body mi is the result of the tidal interactions with
its two partners, in addition to the polar flattening due to its
rotation. Moreover, we assume that the resulting deformation is
small enough to be accurately modeled up to the first order in the
flattenings.

In the ideal case where each mass mi of the 3BP is a per-
fectly elastic fluid that instantly responds to any external stress,
it immediately adopts an equivalent equilibrium figure whose
surface equation ρi can be approximated by a triaxial ellipsoid
(Eq. (3) in Z2021), and whose flattenings and orientation can be

obtained in terms of the two-body shape parameters (Eq. (4) in
Z2021).

However, in a more realistic case each body is expected to
have a certain viscosity that does not allow it to attain the equi-
librium figure instantly. Thus, the real shape of mi measured by
the surface distance ζi can also be modeled by a triaxial ellip-
soid, but now characterized by equatorial flattening Eρi and polar
flattening Ez

i , which are a priori unknown quantities. In addition,
the orientation of this real figure is also unknown but expected
to lag with respect to the equilibrium orientation by an angle
δi. The explicit surface equation of the real ellipsoid is given in
Eq. (5) in Z2021.

In this model the values of (Eρi ,E
z
i , δi) are calculated at any

instant of time by solving the creep equation

ζ̇i + γiζi = γiρi, (1)

where γi is the relaxation factor of mi, the only parameter of the
model that is assumed to be constant in this work, and that is
explicitly given by Ferraz-Mello (2013) as

γi =
GdiRi

2ηi
, (2)

where di is the density, Ri the radius, and ηi the viscosity of the
body, and G is the gravitational constant.

A set of three differential equations for the shape and orien-
tation of the real figure of each body mi is obtained by applying
the creep Eq. (1). A fourth differential equation is obtained for
each spin evolution Ωi from the decoupled conservation of the
total angular momentum. Then, the rotational evolution of each
body mi is characterized by the differential equation set given by
Eqs. (7) and (14) in Z2021.

2.2. Tidal forces on the planet

In Zoppetti et al. (2019a, 2020), we used the CTL model and
found that for Kepler-like CB systems the characteristic tidal
timescales of the planetary rotational evolution are typically
much lower than those associated with the orbital evolution.
Thus, CB planets are expected to have a significant orbital evo-
lution only after reaching rotational stationary states. Then, at
any instant of time the rotational state of each body mi character-
ized by (Ωi, δi,E

ρ
i ,E

z
i ) can be calculated by solving a differential

equation system assuming fixed orbital elements (with the excep-
tion of the fast angles). Finally, the subsequent orbital evolution
is expected to occur with these fixed rotational parameters.

The tidal force applied to m j due to the deformation of mi is
given by (Z2021)

F ji =
3Gm jmiR

2
i

5∆5
ji

[
E
ρ
i sin (2(φeq

i + δi) − 2φ ji) (k̂ × ∆ ji)

−

(
3
2
E
ρ
i cos (2(φeq

i + δi) − 2φ ji) + Ez
i

)
∆ ji

]
, (3)

where φeq
i is the orientation of the equilibrium bulge on mi and

k̂ is the unit vector parallel to the spin vectors.
In particular, the total tidal forces applied to planet F2 is the

result of the sum of the action forces due to the deformation
on m0 and m1 (i.e., F02 and F12, respectively) plus the reac-
tion forces that the planet exerts on each star due to its own
deformation (i.e., F20 and F21). Thus, we have

F2 = (F20 + F21)︸       ︷︷       ︸
action forces

+ (−F02 − F12)︸         ︷︷         ︸
reaction forces

. (4)
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Fig. 2. Tidal evolution of the Jacobian semimajor axis (left panel), the eccentricity (center panel), and the difference of pericenters (right panel),
for a pseudo-synchronous CB planet due to creep tides. Different relaxation factors γ2 are considered with different colors (see legend in center
panel). The thick curves correspond to the low-pass filtered evolution.

By comparing the amplitudes of the tidal forces in Eq. (4), it
is possible to show that in standard scenarios (i.e., main sequence
stars and planets with masses and radii similar to those observed
in the Solar System) the stellar tides are typically much smaller
with respect to the planetary tides. We note that it could happen
that the tides are strong enough to lead the planet to its endpoint
of tidal evolution (stationary rotational state and circular orbit)
where the planetary tides become null, and the stellar tides are
the only source of dissipation (e.g., Ferraz-Mello et al. 2008;
Benítez-Llambay et al. 2011). However, in the general CB the
presence of a secondary star always induces a non-zero mean
eccentricity (e.g., Zoppetti et al. 2021b), which inhibits the CB
planet from reaching the final tidal state.

As a result, tidal forces due to the deformation of the stars can
typically be neglected, and only the planet needs to be considered
an extended body. In this approximation the total forces on the
planet can be approximated as

F2 ≃ −(F02 + F12). (5)

We note from Eq. (5) that to compute the tidal force applied to
the planet (and thus its orbital evolution), only its own rotational
state needs to be known.

3. Numerical simulations

As we mention above, the expected different orders of tidal
evolution timescales allow us to assume that the orbital evo-
lution of the planet takes place with its spin in the stationary
state. In addition, in Z2021 we performed numerical simulations
of the rotational evolution of a CB planet with the creep the-
ory, and showed that the most probable stationary solution is
the pseudo-synchronous state, at least for low-eccentricity plan-
ets with relaxation factors in the range estimated for the Solar
System planets (e.g., Ferraz-Mello 2013).

The mean values around which the pseudo-synchronous rota-
tional solution oscillates were presented in Eq. (16)–(19) in
Z2021. The oscillation amplitudes of this solution were dis-
cussed in Zoppetti et al. (2021b). In Appendix A we discuss
an accurate approximation of these amplitudes and provide the
explicit set of coefficients employed in this work to characterize
the oscillations around the pseudo-synchronous state.

With these two motivations, in what follows we study the
orbital evolution of a CB planet whose rotational evolution has

Table 1. Initial conditions of our reference numerical simulation,
representing a Kepler-38-type system.

Body m0 m1 m2

mass 0.95 m⊙ 0.25 m⊙ 10 m⊕
radius 0.84R⊙ 0.27R⊙ 4.35R⊕
ai [AU] 0.1469 0.4644(*)
ei 0.1032 0.032(*)

Notes. Orbital elements are given in a Jacobi reference frame. The
parameters flagged with an asterisk were varied in different simulations,
as indicated in the text.

reached the pseudo-synchronous state. As initial conditions of
our numerical simulations, we chose a Kepler-38-type system
(Orosz et al. 2012a), which has been the working example of
several of our previous works (e.g., Zoppetti et al. 2018, 2019a,
2021a). The nominal values for the system parameters and ini-
tial orbital elements are detailed in Table 1. The body masses
and radii were taken close to the observed values, with two
exceptions: the primary radius R0 corresponds to an estimation
obtained from backward star evolutionary tracks (Zoppetti et al.
2018), while the mass m2 was estimated from a semi-empirical
mass–radius fit following Mills & Mazeh (2017).

Figure 2 shows the orbital evolution of a CB planet with ini-
tial conditions given in Table 1. To perform the simulation we
integrate the gravitational 3BP, but also consider that the planet
undergoes a tidal force given by Eq. (5). The rotational state of
the CB planet is analytically set in the pseudo-synchronous solu-
tion in the whole numerical integration. We explore different
rheologies for the planet by considering three different relax-
ation factors: γ2/n2 = 10 in blue (representing a planet in what
we call the gaseous regime), γ2/n2 = 0.1 in green (representing a
planet in the stiff regime) and γ2/n2 = 1 in orange (representing
a planet in transition). The planetary semimajor axis a2 evolution
is shown in the left panel, the eccentricity evolution e2 in the
center panel, and the difference of pericentre longitudes ∆ϖ =
ϖ1 − ϖ2 in the right panel. The results after the application of
the low-pass filter are shown as darker curves for a2 and e2.

For the considered initial conditions, perhaps the most inter-
esting feature that can be observed in Fig. 2 is that the tidal
migration direction depends on the planetary relaxation factor;

A53, page 3 of 14



A&A 666, A53 (2022)

for pseudo-synchronized planets with γ2/n2 = 10 the migration
in semimajor axis is outward, while the direction of migration
of planets with γ2/n2 = 0.1 is inward. Although not shown in
Fig. 2, the outward migration is observed for any planet with
γ2 ≫ n2, while inward migration is always obtained for the case
γ2 ≪ n2. However, we note that the characteristic timescales for
the semimajor axis evolution predicted by our numerical sim-
ulations are very long, about two orders of magnitude longer
than the estimated lifetime of the Kepler-38 system (Orosz et al.
2012a).

In particular, observing the orange curves in all the panels
of Fig. 2 we note that the orbital elements abruptly change their
evolution at ∼900 Gyr. This is due to the CB planet (which was
initially with n1/n2 ∼ 5.6) having such a migration in the semi-
major axis that finishes its evolution captured in the 5:1 mean
motion resonance, with the consequent excitation in eccentricity
and circulation of the difference of pericenters. We recall from
the tidal 2BP results (e.g., Folonier et al. 2018) that the case
γ2/n2 = 1 represents the situation in which the dissipation of
energy is at its maximum, which translates into maximum orbital
evolution, a phenomenon that we also observe in our problem
(compare color curves in left panel of Fig. 2).

On the other hand, in Fig. 2 we observe that the eccentricity
and the pericenter evolution seem to be little affected by the
tides, and instead are dominated by the purely gravitational
dynamics of the 3BP. The CB planetary eccentricity oscillates
around a mean eccentricity ⟨e2⟩, which is a combination of
the forced eccentricity (Moriwaki & Nakagawa 2004) and the
semi-mean eccentricity (Paardekooper et al. 2012; see Zoppetti
et al. 2019b for details). Then the smooth (increasing or decreas-
ing) secular evolution observed is an indirect consequence of
the semiaxis migration; since ⟨e2⟩ is inversely proportional to
a2, when the planet migrates outward the mean eccentricity
decrease, while the opposite occurs when the planet migrates
inward.

In the right panel of Fig. 2 we note, independently of the
relaxation factors considered, that the difference of pericenter
longitudes ∆ϖ shows a libration of high amplitude around ∼0◦,
which corresponds to the Mode 0 secular mode (Michtchenko
& Malhotra 2004). As we noted in Zoppetti et al. (2019a), this
angle coupling should be taken into account when constructing
models averaged in the pericenters, which usually assume that
ϖ1 and ϖ2 vary independently.

We finally mention that due to the extremely long timescales
of orbital tidal evolution (see timescales on the x-axis of panels
in Fig. 2), we needed to employ a numerical technique in order
to obtain reasonable computational integration times. With this
aim, we artificially introduced an acceleration factor Γ in the tidal
forces of Eq. (5) to scale down the time span of the numerical
integration. We were careful to consider only small values of Γ
in order for the tidal force to remain adiabatic with respect to the
pure gravitational interaction. In addition, we also checked for
short time intervals to obtain an identical evolution with respect
to the non-accelerated simulation. However, the data output had
to be strongly limited, and it seems not to have been large enough
to result in a soft filtration (see thick curves in left and center
panels of Fig. 2).

4. Analytical model for the secular orbital evolution

To understand the problem in greater depth and to better explain
the results of the numerical simulations, we constructed an
analytical secular model for the orbital evolution of a CB planet
in the pseudo-synchronous rotational state.

With this goal, we first adopted the Jacobian reference frame
in which the state vector of the secondary star is m0-centric,
but the planetary state vector is calculated from the barycen-
ter of the binary. Then we again considered that the CB planet
is the only extended mass in the system, and is locked in the
pseudo-synchronous state described by the mean values given in
Eqs. (16)–(19) in Z2021, and the oscillation amplitudes given in
Appendix A.

4.1. Orbital evolution of CB planets

In the Jacobian frame, the variational equation for the planetary
semimajor axis a2 can be written as (e.g., Beutler 2005)

da2

dt
=

2a2
2

G(m0 + m1 + m2)
(ρ̇2 · δf2), (6)

where δf2 is the total tidal force per unit mass perturbing the
two-body motion of the planet around the center of mass of the
binary. It is explicitly related to the total tidal force by means of
the reduced mass β2 =

(m0+m1)m2
(m0+m1+m2) as (e.g., Zoppetti et al. 2019a)

δf2 =
1
β2

F2. (7)

By substituting the total tidal force in Eq. (5) into Eq. (6);
expanding in power series of α = a1/a2, e1, and e2; and finally
averaging over the mean longitudes, we obtain〈

da2

dt

〉
=

n2(m0 + m1)R5
2

m2a4
2

4∑
i=0

A(a)
i α

i, (8)

which is developed up to the fourth order in α and up to the
second order in the eccentricities, with the exception of the α4-
term which is up to the zeroth order in these small parameters.
The non-null coefficients are

A(a)
0 = −

63
2
γ2n2

γ2
2 + n2

2

e2
2,

A(a)
2 = −

225
2
M2

γ2n2

γ2
2 + n2

2

e2
2,

A(a)
3 =

225
2
M3

γ2n2

γ2
2 + n2

2

e1e2 cos(∆ϖ),

A(a)
4 =

1557
16
M2

2
γ2(2n1 − 2n2)
γ2

2 + (2n1 − 2n2)2 , (9)

with

M2 =
m0m1

(m0 + m1)2 ; M3 =
m0m1(m0 − m1)

(m0 + m1)3 .

As we mention in Sect. 3, unlike the semimajor axis case, the
presence of a massive secondary star companion induces a mean
eccentricity ⟨e2⟩ in the planet that is the main secular attractor
on secular timescales. Thus, in the CB context, the expected
effect of the tidal forces on this orbital element is that it will
lead to the equilibrium gravitational solution by damping the free
eccentricity, which depends on the initial conditions. However, to
understand the dependence of this damping on the physical and
orbital parameters of the system, we also compute the secular
tidal evolution of the CB eccentricity, but only up to low order
in α.
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Fig. 3. Secular orbital evolution of the semimajor axis (left panels) and eccentricity (right panels) of a pseudo-synchronous CB planet due to creep
tides, as a function of its normalized relaxation factor. The solid curves are the results of a numerical averaging of the full evolution equations, while
the dashed curves represent the results of our analytical secular model. Different α-values are used in the different rows and different planetary
eccentricities are shown in the different colors. The region γ2/n2 > 1 approximately corresponds to the gaseous regime while the region γ2/n2 < 1
corresponds to the stiff regime.

This variational equation can be obtained by differ-
entiating the planetary orbital angular momentum L2 =

β2

√
G(m0 + m1 + m2)a2(1 − e2

2) as (e.g., Zoppetti et al. 2019a)

d(e2
2)

dt
=

1
a2

[ (
1 − e2

2

) da2

dt
−

2L2

G(m0 + m1)m2

(
(ρ2 × δf2) · k̂

)]
, (10)

and then proceeding in the same manner as for obtaining Eq. (8).
Up to second order in α and the eccentricities, we have〈

de2
2

dt

〉
= −

n2(m0 + m1)R5
2

m2a5
2

γ2n2

γ2
2 + n2

2

(
63
2
+

225
2
M2α

2
)

e2
2. (11)

In Fig. 3 we show the secular planetary semimajor axis (left
panels) and eccentricity evolution (right panels) obtained with
our model for a pseudo-synchronous CB planet as a function of
its normalized relaxation factor. We consider different values of
the semimajor axis ratio: α = αK38 ≃ 0.32 (see Table 1) in the
upper panels and α = 0.5αK38 ≃ 0.16 in the lower panels. Differ-
ent types of curves represent different methods for computing the
temporal evolution: numerical averaging (solid curves) and ana-
lytical approximation (Eqs. (8) and (11)) (dashed curves). The
different colors represent different planetary eccentricity values,
as indicated in the upper left panel.

Regarding the pure effect of creep tides on the planetary
eccentricity (right panels of Fig. 3), we observe similar results
to those predicted by the 2BP: tides always cause an eccentric-
ity damping that is strongly proportional to the proximity to the
disturber and also to the eccentricity of the perturbed body. This
can also be seen from the analytical Eq. (11), where the zeroth

order (i.e., the 2BP coefficient) is at least two orders of mag-
nitude larger than the second-order term (i.e., the 3BP term).
However, one of the main differences between tides on a CB
planet with respect to tides on a planet around a single star is
that in the former case eccentricity is not able to be damped to
zero due to the non-zero mean eccentricity ⟨e2⟩ induced by the
presence of a secondary star.

According to our model, the tidal secular evolution in the
semimajor axis of pseudo-synchronous CB planets is much
richer, especially in regions close to the binary where the con-
firmed CB systems are located (see upper left panel of Fig. 3).
On the one hand, for CB planets in the stiff regime the direction
of migration is always inward and more important for eccentric
planets. On the other hand, for planets in the gaseous regime the
direction of migration is the result of a competition between the
planetary eccentricity and the proximity to the binary; eccen-
tric and wide CB planets tend to migrate inward (as the scenario
resembles the 2BP), while low-eccentricity and tight CB planets
tend to migrate outward. This last result for the gaseous regime
was reported in our previous work by using the CTL model
Zoppetti et al. (2019a, 2020).

Regarding the accuracy of our model, a simple comparison
of the different type of curves of Fig. 3 shows that the analytical
approximation represent a very good fit of the numerical simu-
lation. However, strictly speaking γ2 is not a small parameter of
our model. Then, in Fig. 4 we consider two particular γ2-values
and validate our analytical approach of the planetary semima-
jor axis tidal evolution as a function of α. We employ the same
convention for the type of curves and colors as that used in Fig. 3.

We note in Fig. 4 that for low-eccentricity CB planets
this approximation represents a very good fit of the numerical
behavior, even for high α-values such as those observed in the
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Fig. 4. Secular semimajor axis evolution of a pseudo-synchronous CB
planet due to creep tides, as a function of its distance to the binary mea-
sured with α = a1/a2. In the different panels CB planets in different
viscosity regimes are considered. The different types of curves and dif-
ferent colors are the same as those for Fig. 3.

confirmed CB population. The accuracy of the analytical fit does
not seem to be strongly dependent on the viscosity regime, but
becomes less precise for eccentric planets because e2 is another
small parameter of the model. Although it is not explored in
Fig. 4, we observe only a smooth dependence of the results with
the binary eccentricity e1, which seems to be a parameter of
secondary importance in determining the semimajor axis sec-
ular evolution due to tides. This is consistent with the analytical
expectation, since the dependence with e1 only appears up to the
third order in α (see Eq. (8)).

4.2. Application to Kepler systems

In the previous subsection we confirm with a secular analytical
model the results obtained in Sect. 3 with numerical simula-
tions that the direction of tidal migration of pseudo-synchronous
CB planets depends not only on the physical parameters of the
system and orbital elements, but also (and curiously) on the vis-
cosity regime of the planet. This makes the tidal orbital evolution
of CB planets much more complex compared to the 2BP case,
and prevents us from establishing the general migration trends
of the systems (and thus the general evolution histories), without
knowing the particular characteristics of the physical parameters.

In Table 2 we consider the sample of confirmed CB planets,
where with only one exception (i.e., TOI-1338) all the systems
were discovered by the Kepler mission. We use the estimated
α = a1/a2, e2, andM2 according to the discovery papers unless

otherwise stated. We estimate its viscosity regime by consider-
ing its observed mass, then inferring its γ2-values by comparison
with the Solar System planet estimations of Ferraz-Mello (2013),
and finally compared with the fundamental frequencies of the
system n1 and n2. We note that probably due to an observational
bias the discovered CB planets are typical of high radius (and
high mass), so their relaxation factors γ2 are expected to be sim-
ilar to those of Neptune or Saturn, then much higher than the
fundamental frequencies of the system, and thus are expected to
be in the gaseous regime. For the case of Kepler-38 and Kepler-
47c, the estimated range of planetary mass is too large to estimate
a reliable viscosity regime.

To explore its evolutionary history due to tides, we note that
for close CB planets where tidal forces are expected to play
an important role (i.e., discarding Kepler-47d, Kepler-47c, and
Kepler-1647), the mean semimajor axis ratio is ⟨α2⟩ ≃ 0.28 and
the mean planetary eccentricity is ⟨e2⟩ ≃ 0.07. Thus, we have
that ⟨α⟩2 ∼ ⟨e2⟩, and the analytical tidal semimajor axis evolu-
tion given in Eq. (8) is expected to be governed by only the α0

term with coefficient A(a)
0 plus the α4 term with coefficient A(a)

4 .

4.2.1. Direction of tidal migration

Using this approach, the change in the migration direction that
occurs when ⟨ da2

dt ⟩ = 0 implies

A(a)
0 + A(a)

4 α
4
crit = 0, (12)

where the semimajor axis ratio αcrit represents the critical value
such that systems in which α > αcrit CB planets migrate outward
(i.e., ⟨ da2

dt ⟩ > 0), while in those systems where α < αcrit the plan-
ets experience an inward secular tidal evolution (i.e., ⟨ da2

dt ⟩ < 0)
according to our analytical model. Its explicit expression is

α4
crit =

28
173

n2

n1 − n2

(γ2
2 + (2n1 − 2n2)2

γ2
2 + n2

2

) e2
2

M2
2

. (13)

We note that this equation contains some of the results pre-
viously reported. First, in the limit m1 → 0, M2 → 0, and
αcrit → ∞. Then, when α < ∞ the predicted migration direction
is always inward, as is well known in the 2BP for pseudo-
synchronous bodies. Second, in the limit of circular planetary
orbit e2 → 0, αcrit → 0. Then, when α > 0 in all the cases
the direction of migration is always outward, as we previously
reported with the CTL model (e.g., Zoppetti et al. 2019a, 2020).

Thus, if we assume that the confirmed CB planet has
acquired its pseudo-synchronous rotational solution, Eq. (13)
allows us to estimate the direction of tidal migration through
computing αcrit, which only depends on parameters that can
be derived from classical transit observations, except the relax-
ation factor γ2. However, this dependence can be avoided if
we can somehow infer the viscosity regime, for example using
mass estimations and comparison with Solar System planet
parameters.

For CB planets in the gaseous regime, we expect γ2 ≫ n1, n2
and then Eq. (13) becomes

α4
crit,g =

28
173

n2

n1 − n2

e2
2

M2
2

. (14)

For the particular case of Kepler-38 (see Table 1) we have
αcrit,g ≃ 0.16. Then, if we assume that the CB planet is in this
regime, because αK38 > αcrit,g our model predicts an outward
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Table 2. Physical and orbital parameters of confirmed circumbinary systems, and tidal parameters estimated with our model.

α e2 M2
Viscosity
regime αcrit,g αcrit,s

Migration
direction τmin

a,gas[yr] τmin
a,sti[yr]

Kepler-16 (1) 0.318 0.0069 0.175 Gaseous 0.086 0.260 Outward 3 × 1013 6 × 1014

Kepler-34 (2) 0.210 0.182 0.250 Gaseous 0.309 1.340 Inward 7 × 1013 3 × 1012

Kepler-35 (2) 0.292 0.042 0.249 Gaseous 0.171 0.559 Outward 2 × 1012 1 × 1012

Kepler-38 (3) 0.316 0.023 0.165 ? 0.162 0.492 ? 5 × 1012 8 × 1012

Kepler-47b (4) 0.283 0.021 0.194 Gaseous 0.135 0.455 Outward 3 × 1012 6 × 1012

Kepler-47d (5) 0.116 0.024 0.194 Gaseous 0.100 0.701 Outward 2 × 1015 3 × 1013

Kepler-47c (4) 0.085 0.044 0.194 ? 0.121 1.070 Inward 7 × 1015 7 × 1013

Kepler-64 (6) 0.267 0.0702 0.166 Gaseous 0.261 0.921 Outward 1 × 1015 1 × 1013

Kepler-413 (7) 0.286 0.1181 0.240 Gaseous 0.290 0.966 Inward 5 × 1013 3 × 1011

Kepler-453 (8) 0.235 0.0359 0.142 Gaseous 0.191 0.753 Outward 3 × 1014 3 × 1013

Kepler-1647 (9) 0.047 0.0581 0.247 Gaseous 0.098 1.367 Inward 3 × 1018 1 × 1016

Kepler-1661 (10) 0.295 0.057 0.181 Gaseous 0.235 0.761 Outward 2 × 1014 3 × 1013

TOI-1338 (11) 0.287 0.093 0.173 Gaseous 0.303 1.007 Inward 5 × 1012 1 × 1011

Notes. The viscosity regime of the CB planet is inferred from the mass and radius, compared with the γ2-values estimated for the Solar System
planets in Ferraz-Mello (2013). The critical α-values and the migration direction are discussed in Sect. 4.2.1., while the tidal timescales for the
semimajor axis evolution are explained in Sect. 4.2.2. For Kepler-38 we consider the mass estimated by means of a mass-radius fit in Zoppetti et al.
(2019a), while the eccentricity adopted corresponds to the forced eccentricity.
References. (1)Doyle et al. (2011). (2)Welsh et al. (2012). (3)Orosz et al. (2012a). (4)Orosz et al. (2012b). (5)Orosz et al. (2019). (6)Schwamb et al.
(2013). (7)Kostov et al. (2014). (8)Welsh et al. (2015). (9)Kostov et al. (2016). (10)Socia et al. (2020). (11)Kostov et al. (2020).

migration, in agreement with what we previously reported in
Zoppetti et al. (2018, 2019a, 2020). Moreover, this analytical esti-
mation is consistent with the outward migration observed in the
left panel of Fig. 2 for the case γ2 = 10n2 (blue curve).

On the other hand, for CB planets in the stiff regime we have
γ2 ≪ n1, n2 and the critical semimajor axis of Eq. (13) is now
simply given by

α4
crit,s =

112
173

n1 − n2

n2

e2
2

M2
2

. (15)

Again, for the case of Kepler-38 we have αcrit,s ≃ 0.49. Then, if
the CB planet is assumed to be a stiff body αK38 < αcrit,s, our
model predicts an inward migration. We note that this is exactly
what we observe in the left panel of Fig. 2 for the case γ2 = 0.1n2
(green curve).

In Table 2, we also compute for each confirmed CB system
the parameters αcrit,g and αcrit,s, following Eqs. (14) and (15),
respectively. We highlight the parameter (in bold) that has to
be specially considered due to the estimation of the viscosity
regime. By comparing the α-value of the planet with the critical
values, we infer the direction of tidal migration in the semima-
jor axis. As can be seen in Table 2, these directions strongly
depend on the particular parameters of the system, especially on
the distance to the binary and the planetary eccentricity. In par-
ticular, the planet Kepler-47c is so far from the binary that our
model predicts an inward migration, regardless of its particular
viscosity.

We finally note that the parameter αcrit in Eq. (13) can also
be interpreted as a quantification of the tidal interaction that
dominates the migration of the CB planet. If αcrit < 0, then
|A(a)

4 | < |A
(a)
0 |, and the tidal evolution is mainly governed by the

classical 2BP, where n2 is the main dynamical frequency; in
the opposite case, |A(a)

4 | > |A
(a)
0 | and the tides are dominated by

the 3BP with a central dipole, whose fundamental frequency
is 2n1 − 2n2. Thus, in the case of inward migrating planets the

maximum possible tidal energy dissipated can be estimated by
setting γ2 = n2, while for outward migrating CB planets it can
be estimated with γ2 = 2n1 − 2n2.

4.2.2. Orbital evolution timescales

We now use our simplified analytical model to estimate the
timescales of semimajor axis evolution due to creep tides, using
the observed physical parameters and the current values of α and
e2 given in Table 2.

Using the approach described in Sect. 4.2.1, the tidal
timescales in the semimajor axis can be estimated as

τa =
a2

⟨
da2
dt ⟩

(16)

≃
1
n2

( a2

R2

)5( m2

m0 + m1

) 1∣∣∣∣∣ − 63
2
γ2n2

γ2
2+n2

2
e2

2 +
1557

16 M
2
2
γ2(2n1−2n2)
γ2

2+(2n1−2n2)2α4
∣∣∣∣∣ .

In the regime of gaseous bodies, the limit case of minimum tidal
timescales (i.e., maximum semimajor axis variation) occurs for
γ2 = 2n1 − 2n2, and the timescale is

τmin
a,gas ≃

1
n2

( a2

R2

)5( m2

m0 + m1

) 1∣∣∣∣∣ − 63
4

n2
n1−n2

e2
2 +

1557
16 M

2
2α

4
∣∣∣∣∣ . (17)

Analogously, in the regime of stiff bodies the limit case of
minimum timescales of semimajor axis evolution occurs for γ2 =
n2 and is given by

τmin
a,sti ≃

1
n2

( a2

R2

)5( m2

m0 + m1

) 1∣∣∣∣∣ − 63
2 e2

2 +
1557
32 M

2
2

n2
n1−n2
α4

∣∣∣∣∣ . (18)

These minimum timescale estimations for the semimajor axis
evolution (Eqs. (16) and (17)) are also included in Table 2 for
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each specific system. As can be observed, independently of the
viscosity regime in which the CB planet is assumed to be, the
tidal timescales for semimajor axis evolution are at least three
orders of magnitude greater than the age of the system. Then,
according to our model, the observed sample of discovered CB
planets are not expected to have had a relevant semimajor axis
migration.

4.2.3. The CTL limit

Following Ferraz-Mello (2013) (see Sect. 7.1), we can relate the
planetary relaxation factor γ2 with the classical dissipation fac-
tor Q2, and from this with the lag angle ϵ2 = 1/Q2. Unlike the
constant phase lag model (e.g., MacDonald 1964), in the creep
tide theory this quantity is not constant, but depends on the tidal
frequency ν as

Q2(ν) =
1
ϵ2(ν)

=
2
3

k2,2
γ2

2 + ν
2

γ2ν
, (19)

where k2,2 is the planetary tidal Love number, and we consider
a homogeneous sphere planetary fluid Love number (i.e., k f 2 =
1.5).

In the CTL model (e.g., Mignard 1979), the phase lag is
assumed to be proportional to the tidal frequency ϵ(ν) = ν∆t2,
where the proportionality factor ∆t2 represents the time lag of
the tidal bulge, and is assumed to be constant and equal for all
the tidal frequencies in the model. Thus, the link between the
two model parameters is given by

k2,2∆t2 =
3
2
γ2

γ2
2 + ν

2
. (20)

Using the relation given in Eq. (20) in the computation of the
coefficients that characterize the secular tidal evolution with the
creep theory (Eqs. (9) and (11)), we obtain the same coefficients
as those obtained with the pure CTL model detailed in the next
section.

5. Revisiting the orbital evolution of a CB planet in
the CTL model

5.1. CTL tidal forces including cross tides

Similarly to what we find in Z2021 for the case of the rota-
tional evolution, the orbital evolution of synchronous bodies that
results from Eqs. (8) and (10) in the case of gaseous bodies (i.e.,
γ2 ≫ n2) does not fit with the evolution calculated in Zoppetti
et al. (2019a) with the CTL model. The reason for this discrep-
ancy is that in our previous work the cross tides were neglected.
In what follows we build a CTL model for the CB problem that
includes the cross tidal forces, and show that it predicts a secular
orbital evolution for the planet that is identical to that predicted
by the creep model in the limit of gaseous bodies.

With this goal we again consider the 3BP composed of m0,
m1, and m2, where all the tidal interactions between pairs are
taken into account. Then, due to the presence of each body mi,
one ellipsoid is generated on m j and one ellipsoid on mk. Here
we denote as Fk

i, j the tidal force applied to mi due to the ellipsoid
that the presence of mk generates on m j (see Sect. 5 of Z2021 for
details). For the particular case of a CB planet m2, we have

F2 = (F2
2,0 + F2

2,1 − F0
0,2 − F1

1,2)︸                          ︷︷                          ︸
direct tides

+ (F1
2,0 + F0

2,1 − F1
0,2 − F0

1,2)︸                          ︷︷                          ︸
cross tides

. (21)

We recall that the forces with three different indexes in
Eq. (21) correspond to the cross tides (which were neglected in
Zoppetti et al. 2019a), while the forces with two repeated indexes
correspond to the direct tides (which we did consider in the same
work). We also note that the CTL force Eq. (21) is very similar to
the creep force Eq. (4); the only difference is that in the Newto-
nian creep formalism we work with the equivalent ellipsoid that
results from the sum of the ellipsoids generated by the pairwise
interactions. In the classical CTL model of Mignard (1979), the
interacting tidal force Fk

i, j is expanded up to first order in the time
lag ∆t j as

Fk
i, j = Fk,(0)

i, j + ∆t jFk,(1)
i, j , (22)

where the explicit expressions of Fk,(0)
i, j and Fk,(1)

i, j are respectively
given in Eqs. (25) and (26) in Z2021.

5.2. Orbital evolution of the full problem

Using Eqs. (5) and (6), but now with the Mignard force given
in Eq. (21), the secular variation of the planetary semimajor axis
expanded up to fourth order in α and up to second order in the
eccentricities is given by〈

da2

dt

〉
=

n2

GM a4
2

4∑
i=0

2∑
i, j=0

A(a)
i, j,kα

ie j
1ek

2, (23)

where

A(a)
0,0,0 = K2(2Ω2 − 2n2) +M2

1∑
i=0

Ki(2Ωi − 2n2),

A(a)
0,0,2 = K2(27Ω2 − 46n2) +M2

1∑
i=0

Ki(27Ωi − 46n2),

A(a)
1,1,1 = 6M2

1∑
i=0

Kiβi(12Ωi − 19n2) cos∆ϖ, (24)

A(a)
2,0,0 = 5M2K2(Ω2 − n2)

+M2
1∑

i=0

Kiβ
2
i (24Ωi + 10n1 − 34n2),

A(a)
2,2,0 =

15
2
M2K2(Ω2 − n2)

+M2
1∑

i=0

Kiβ
2
i (36Ωi − 5n1 − 51n2),

A(a)
2,0,2 = 5M2K2(22Ω2 − 35n2)

+M2
1∑

i=0

Kiβ
2
i (528Ωi + 220n1 − 1135n2),

A(a)
3,1,1 =

(
−

75
8
M3K2(16Ω2 − 23n2)

+
25
2
M2

1∑
i=0

Kiβ
3
i (96Ωi + 32n1 − 193n2)

)
cos∆ϖ,

A(a)
4,0,0 =

5
16
M2

2K2

[
21

(m2
0 + m2

1)
m0m1

(Ω2 − n2)

+26(9Ω2 + 10n1 − 19n2)
]
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+20M2
1∑

i=0

Kiβ
4
i (6Ωi + 5n1 − 11n2),

A(a)
4,2,0 =

25
16
M2

2K2

[
21

(m2
0 + m2

1)
m0m1

(Ω2 − n2)

+26(9Ω2 + 2n1 − 19n2)
]

+100M2
1∑

i=0

Kiβ
4
i (6Ωi + n1 − 11n2),

A(a)
4,0,2 =

5
32
M2

2K2

[
21

(m2
0 + m2

1)
m0m1

(65Ω2 − 98n2)

+26(585Ω2 + 650n1 − 1722n2)
]

+10M2
1∑

i=0

Kiβ
4
i (390Ωi + 325n1 − 1008n2),

where Ki = 3GR5
i k2i∆ti ,M = m2

m0+m1
and

β0 =
m1

m0 + m1
; β1 = −

m0

m0 + m1
. (25)

The secular variation in the planetary eccentricity up to the
second order in the small parameters is given by〈

de2
2

dt

〉
=

n2

GMa5
2

2∑
i=0

2∑
i, j=0

A(e)
i, j,kα

ie j
1ek

2, (26)

where

A(e)
0,0,2 = K2(11Ω2 − 18n2) +M2

1∑
i=0

Ki(11Ωi − 18n2),

A(e)
1,1,1 =

1
8
M2

1∑
i=0

Kiβi(156Ωi + 5
m1a3

2

m2a3
1

n1 − 216n2) cos (∆ϖ),

A(e)
2,0,2 =

25
2
M2K2(3Ω2 − 5n2)

+5M2
1∑

i=0

Kiβ
2
i (36Ωi + 15n1 − 74n2). (27)

Equations (23) and (26) describe the orbital evolution of
an extended CB body rotating with arbitrary angular velocity
Ω2, around a binary whose components are also considered as
extended objects and are rotating with arbitrary spinsΩ0 andΩ1.
In the next subsection we discuss the particular case in which
the system has physical and orbital parameters similar to those
observed in the confirmed CB systems of Table 2.

5.3. Analytic orbital solution for punctual stars and
synchronous CB planets

The secular planetary orbital evolution for the case in which the
stars are assumed to be punctual can be easily obtained by setting
K0 = K1 = 0 in the coefficients of Eqs. (24) and (27). In this
case it is possible to see, for low-eccentricity CB planets far from
the pseudo-synchronous state, that the tidal secular evolution is
mainly dominated by the zeroth-order term in α, which is at least
two orders of magnitude greater than the rest. Thus, according to
this model CB planets in free rotation are expected to have a

similar secular orbital evolution to that obtained for its analogs
around single stars. In what follows we see that this is not the
case for CB planets in the pseudo-synchronous stationary state.

As previously mentioned, we expect very different tidal
timescales of the rotational evolution with respect to the orbital
evolution. This allows us to assume that a significant orbital
evolution only occurs with the planet in its pseudo-synchronous
rotational steady state.

The mean value of the CB planet spin in the pseudo-
synchronous solution can be estimated by Eqs. (16) in Z2021. In
the limit of gaseous bodies in which the CTL model may serve
as the first approximation (e.g., Efroimsky 2012, 2015), this sta-
tionary pseudo-synchronous spin expanded up to the fourth order
in α and up to the second order in the eccentricities (with the
exception of the α4) is

⟨Ω2⟩/n2 = 1 + (6 + 5M2α
2)e2

2 (28)

−
325
16

e1e2 cos(∆ϖ)M3α
3 − 19

(
n1

n2
− 1

)
M2

2α
4.

For this particular rotational configuration the secular semi-
major axis evolution is simply given by〈

da2

dt

〉
=

3n2
2R

5
2k2,2∆t2
Ma4

2

(
− 7e2

2 − 25M2e2
2α

2 (29)

+25M3e1e2 cos(∆ϖ)α3 +
173

4
M2

2

(
n1

n2
− 1

)
α4

)
,

while the secular eccentricity evolution is given by〈
de2

2

dt

〉
= −

3n2
2R

5
2k2,2∆t2
M2a5

2

(
7 + 25M2α

2
)
e2

2. (30)

It is easy to see that expressions (29) and (30) are identical
to the expressions obtained in the creep tide theory, when we
consider the gaseous bodies limit (see Sect. 4.2.3).

6. Summary and discussion

In this work we presented an extension of the creep tide the-
ory first developed in Ferraz-Mello (2013) to study the orbital
evolution of a coplanar circumbinary planet without obliquity.
A simple analysis of the amplitudes of the tidal forces shows, at
least for CB systems like those confirmed here, that the tides on
the planet that are due to the stars are much greater than the tides
on the stars. Then, we studied the problem under the assumption
that the stellar components are punctual masses.

In addition, in this work, we took advantage of two pre-
viously reported results for the rotation of CB planets, which
considerably simplified the problem. On the one hand, the
timescales of the rotational evolution of the CB planet are
expected to be much smaller than the orbital evolution (Zoppetti
et al. 2019a, 2020). On the other hand, for low-eccentricity
CB planets with viscosities similar to the values estimated for
the Solar System bodies (Ferraz-Mello 2013), the most prob-
able final stationary rotational state is the pseudo-synchronous
(Z2021). Thus, instead of solving the full differential equations
system (i.e., rotation + orbit), we only solved the subsystem
associated with the orbital evolution, assuming the pseudo-
synchronous whose mean values are given in Z2021 and oscilla-
tion amplitudes are discussed in Zoppetti et al. (2021b) and given
in Appendix A.
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Assuming this rotational state, we then briefly revisited the
formalism presented in Z2021 to extend the creep theory to the
CB problem. As in our previous work, we used a Kepler38-type
system as a working example. Although this is the reference
system of our investigation, we also explored a wide range of
physical parameters to obtain general results valid for a large
number of CB planets (already and yet-to-be discovered).

We performed direct numerical integrations of gravitational
3BP on the planet and studied the secular orbital evolution due
to the creep tides on it considering different planetary relaxation
factors γ2. Regarding the eccentricity and pericenter evolution,
we find that in this context they are little affected by the tides, but
instead are dominated by the pure 3BP gravitational interactions.
In particular, as confirmed later with the analytical model and
similar to the effect expected in the 2BP, tides try to circularize
the orbit of CB planets. However, the presence of the secondary
star induces a mean eccentricity that is even non-zero for a cir-
cular binary (e.g., Zoppetti et al. 2019b). This pure gravitational
equilibrium governs the secular eccentricity of the CB planets
and inhibits the perfect circularization of their orbits. Thus, the
effect of tides on these orbital elements is that it simply leads to
this equilibrium solution.

However, the secular evolution of the CB planetary semi-
major axis shows a very curious behavior in our numerical
simulations. For relaxation factors much greater than the mean
motion of the planet (what we call the gaseous regime), the
planet exhibits an outward migration, as was reported in our pre-
vious works with the CTL model (Zoppetti et al. 2018, 2019a).
On the other hand, for relaxation factors much lower than the
mean motion (what we call the stiff regime), the planetary orbit
tends to shrink, as is expected for pseudo-synchronous plan-
ets around single stars. However, independently of the planetary
viscosity regime, the timescales for a significant secular orbital
evolution are observed to be at least two orders of magnitude
longer than the estimated age of the systems.

To better understand these curious results, we developed
a secular analytical model for the evolution of the planetary
eccentricity and semimajor axis, assuming a CB in the pseudo-
synchronous rotational state. To this end, we expanded the
variational equation in power series of the semimajor axis ratio
α and eccentricities e1 and e2. The extreme proximity of the
observed CB planets requires a high-order expansion in α, while
this is not strictly necessary for the eccentricities because the
confirmed systems are typically low eccentricity. Then, for the
semimajor axis we expanded up to fourth order in α and second
order in e1 and e2, and averaged over the mean anomalies of the
binary and the planet, assuming no commensurability between
its mean motion frequencies. For the case of the CB planetary
eccentricity secular evolution, we only present the expansion up
to second order in all the small parameters since, as we previ-
ously noted, we expect tides to be a secondary effect with respect
to the pure gravitational forces.

Either way, our secular analytical model is shown to be very
precise in predicting the orbital evolution of low-eccentricity CB
planets with arbitrary viscosity and up to high α-values. In par-
ticular, for the semimajor axis evolution the analytical model
confirms the numerical prediction that, in the CB context, the
direction of migration of a pseudo-synchronous planet may be
inward or outward depending on the viscosity regime, in addition
to the expected dependency on the system parameters and orbital
elements. This means that according to our tidal model two CB
planets with the same mass and radius located in the same orbital
configuration around the same binary, may have different tidal
directions of migration depending on the viscosity regime they

belong to. This represents a completely novel finding that has no
counterpart in the 2BP.

Inspired by this curious finding, we used the analytical coef-
ficients that characterize the secular semimajor axis evolution
to define a critical α-value that allows us to establish the direc-
tion of tidal migration of CB planets. This simple criterion
requires knowing physical parameters that are “easy” to observe,
except for the planetary viscosity. However, this dependency can
be removed if the viscosity regime the planet belongs to can
be estimated (e.g., from the planetary mass and radius, and a
comparison with Solar System values).

When applying this criterion to the confirmed CB planets,
we note that probably due to an observational bias, most of them
are expected to be in the gaseous regime. The cases of Kepler-38
and Kepler-47c may be examples of planets in the stiff regime,
but the great uncertainty on its masses inhibits any rigorous esti-
mation of its viscosity. However, the direction of migration also
depends on each particular system’s parameters, especially on
the planetary eccentricity and semimajor axis ratio. For exam-
ple, the planet Kepler-47c is far enough from the binary that our
model predicts inward tidal migration, regardless of its particular
associated relaxation factor.

On the other hand, our analytical secular model can be
also employed to estimate the timescales of orbital evolution, in
particular those associated with the semimajor axis. From the
currently observed system parameters and orbital elements, we
computed the minimum tidal timescales by considering the limit
case in which the CB planet has a viscosity that results in a max-
imum dissipation of energy. We note that this estimation is not
possible to perform in models like the CTL, where the qual-
ity function that characterizes the energy dissipation per cycle
has no minimum possible value (i.e., the time lag ∆t2 can be
an arbitrarily large quantity). We then considered different vis-
cosity regimes and estimated the minimum timescales for the
semimajor axis evolution in each regime.

We find typical semimajor axis timescales at least three
orders of magnitude larger than the estimated age of the systems,
and these results are shown to be weakly dependent on the vis-
cosity regimes. Thus, according to our model, only a very small
secular tidal evolution is expected in the orbits of the observed
CB system past stories. However, we mention that some of the
more realistic tidal models predict increased tidal dissipation
under some circumstances (Renaud & Henning 2018).

When comparing the results of our creep model in the limit
of gaseous bodies with those reported in Zoppetti et al. (2019a),
we note a discrepancy. Then, we revisit the problem of the orbital
evolution of a CB planet in the framework of the CTL model
and find that this discrepancy is due to our previous incorrect
assumption of negligible cross tides. When these torques are
taken into account, the results predicted with the CTL formal-
ism are identical to those obtained with the creep theory in the
gaseous limit. Then, the first model is contained inside the sec-
ond, which in turn has the advantage of being able to reproduce
the main behavior of Maxwellian bodies with arbitrary viscosity
(Correia et al. 2014; Ferraz-Mello 2015a).

However, the less-general CTL model has its own advan-
tages. In addition to resulting in a differential equation system
that can be numerically integrated directly, it is also much easier
to obtain analytical secular expressions for the orbital evolution,
which do not assume any punctual mass or a particular rotational
state for the bodies.
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Appendix A: Revisiting the oscillation amplitudes
around the pseudo-synchronous state

In this Appendix we revisit the problem of the oscilla-
tions around tidal pseudo-synchronous solutions of CB planets
addressed in Zoppetti et al. (2021b), and we refer to this article
for details. Our aim here is to provide a small set of coef-
ficients that allows us to construct a simple analytical model
that is capable of reproducing the behavior of the full numeri-
cal simulations. Once again, given the different timescales that
the rotational and orbital evolution are expected to have in the
dynamical evolution of CB planets, counting with an analyti-
cal approximation avoids having to integrate the full evolution
of system (rotational + orbital) over very long timescales (∼
Gyrs). Instead, if we assume that the orbital evolution occurs
with the CB planet in its pseudo-synchronous solution, which
can be estimated analytically, it can be introduced in the numer-
ical integration as a recipe, and we only need to solve the orbital
differential equations.

From a Jacobian frame, in the planar pseudo-synchronous
rotational state the parameters that characterize the rotational
evolution of the CB planet Ω2, δ2, Eρ2, and Ez

2 can be written
in Fourier series of the orbital elements as

Ω2 =
∑
ℓ

{Ω2}ℓ cos (l1M1 + l2M2 + l3ϖ1 + l4ϖ2 − Φℓ,Ω2 ),

E
ρ
2 =

∑
ℓ

{E
ρ
2}ℓ cos (l1M1 + l2M2 + l3ϖ1 + l4ϖ2 − Φℓ,Eρ2

),

δ2 =
∑
ℓ

{δ2}ℓ cos (l1M1 + l2M2 + l3ϖ1 + l4ϖ2 − Φℓ,δ2 ), (A.1)

Ez
2 =

∑
ℓ

{Ez
2}ℓ cos (l1M1 + l2M2 + l3ϖ1 + l4ϖ2 − Φℓ,Ez

2
),

where M1 andϖ1 are the mean anomaly and pericenter longitude
of the secondary star, while M2 and ϖ2 are those corresponding
to the planet. In addition, Φℓ,w are constant phases that depend
on ℓ = (l1, l2, l3, l4).

The terms in system (A.1) with l1 = l2 = 0 correspond to
the mean values of the rotational stationary solution and are
explicitly given in equations (16)–(19) in Z2021. The remain-
ing periodic terms characterize the oscillations around the mean
solution. In Zoppetti et al. (2021b), we analytically computed the
coefficients associated with these periodic terms up to the third
order in α and up to the first order in the eccentricities, and we
were able to predict very well the oscillation amplitudes of low-
eccentricity CB planets close to their host binary. However, due
to the very complicated mathematical expressions, and also due
to space limitations, we were not able to explicitly provide them.

Here we present a much simpler approximation that is able
to reproduce very well the oscillation amplitudes observed in the
full numerical simulations, and that depends only on a small set
of coefficients. Using this approach, each rotational parameter
w2 in the pseudo-synchronous solution can be expressed as

w2 = ⟨w2⟩ + {w2}, (A.2)

where ⟨w2⟩ represents the mean values and

{w2} = [wc
001 cos (M2) + ws

001 sin (M2)]e2 (A.3)

+M2α
2[wc

200 cos (2M1 − 2M2) + ws
200 sin (2M1 − 2M2)

+ (wc
201 cos (M2) + ws

201 sin (M2))e2]

+M3α
3[wc

310 cos (M1) + ws
310 sin (M1)]e1,

and where the coefficients of the periodic terms wc
i jk and ws

i jk are

Ωc
001 = −2κ

n3
2

γ2
2 + n2

2

; Ωs
001 = 2κ

γ2n2
2

γ2
2 + n2

2

Ωc
201 = −5κ

n3
2

γ2
2 + n2

2

; Ωs
201 = 5κ

γ2n2
2

γ2
2 + n2

2

Ωc
200 = 2κn2

2
2(n1 − n2)C2 − γ2S2

γ2
2 + 4(n1 − n2)2

Ωs
200 = −2κn2

2
γ2C2 + 2(n1 − n2)S2

γ2
2 + 4(n1 − n2)2

Ωc
310 =

25
16
κn2

2
n2C1 + γ2S1

γ2
2 + n2

2

Ωs
310 = −

25
16
κn2

2
γ2C1 − n2S1

γ2
2 + n2

2

(A.4)

δc001 = −2
n2γ2

γ2
2 + n2

2

; δs
001 = −2

n2
2

γ2
2 + n2

2

δc201 = 0 ; δs
201 = 0

δc200 = 4(n1 − n2)
γ2C2 + 2(n1 − n2)S2

γ2
2 + 4(n1 − n2)2

δs
200 = 4(n1 − n2)

2(n1 − n2)C2 − γ2S2

γ2
2 + 4(n1 − n2)2

δc310 =
25
16

n2γ2C1 − n2
2S1

γ2
2 + n2

2

δs
310 =

25
16

n2
2C1 + n2γ2S1

γ2
2 + n2

2

(A.5)

E
ρ
001

c = 3ϵ̄ρ2
γ2

2

n2
2 + γ

2
2

; Eρ001
s = 3ϵ̄ρ2

n2γ2

n2
2 + γ

2
2

E
ρ
201

c =
25
4
ϵ̄
ρ
2

γ2
2

n2
2 + γ

2
2

; Eρ201
s =

25
4
ϵ̄
ρ
2

n2γ2

n2
2 + γ

2
2

E
ρ
200

c =
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4
ϵ̄
ρ
2

γ2
2C2 + 2(n1 − n2)γ2S2

γ2
2 + 4(n1 − n2)2

E
ρ
200

s =
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ϵ̄
ρ
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2
2S2
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E
ρ
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c = −
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ρ
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ρ
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2
2S1
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(A.6)

A53, page 12 of 14



F. A. Zoppetti et al.: Orbital tidal evolution of circumbinary planets

Fig. A.1. Oscillation amplitudes of the spin Ω2 (top row), the lag angle δ2 (second row), the equatorial flattening Eρ2 (third row), and polar flattening
Ez

2 (bottom row) of a Kepler-38-type planet around the pseudo-synchronous solution. The different colors indicate different methods of obtaining
the amplitudes: numerical in black, analytical up to zeroth-order in green, up to third order in red, and our new simplified model in blue. The dashed
black lines represent the numerical mean solution. The different columns represent different planetary eccentricities: e2 = 0.05 (left column) and
e2 = 0.1 (right column).
and
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, (A.7)

where

ϵ̄
ρ
2 =

15
4

m0 + m1

m2

R3
2

a3
2

; ϵ̄M
2 =

5
4

n2
2R

3
2

Gm2
≃
ϵ̄
ρ
2

3

κ = 3
m0 + m1

m0 + m1 + m2
ϵ̄
ρ
2 (A.8)

Ck = cos k∆ϖ ; Sk = sin k∆ϖ.

In Figure A.1 we compare the oscillation amplitudes obtained
with our simplified model (blue curves), with the numerical
solutions (black curves) and also with the analytical solution
presented in Zoppetti et al. (2021b) (red curves), considering dif-
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ferent eccentricities for the CB planet in the different columns.
We exclude the pure circular case (i.e., e2 = 0) in this analy-
sis since the presence of a secondary star prohibits this scenario
from existing in reality. For completeness, we also include the
amplitudes obtained with the 2BP simplification (green curves)
in which the binary is considered as a unique body with mass
equal to the sum of the masses of the stellar components, and the
mean numerical solutions (dashed black curves).

From Figure A.1 we observe that our simplified analytical
model not only represents very well our previous and more
complex analytical model, but also is able to very accurately
reproduce the oscillation amplitudes of all the parameters that
characterize the rotational state. For this reason, in this work
we employ the analytical approximation given in equation (A.1)
with the coefficients given in the system (A.4)–(A.7) for charac-
terizing the oscillation amplitudes of the CB planetary rotation
in the pseudo-synchronous state.
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