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Abstract: The N, N´ dimethyl-biguanide : Metformin is an antidiabetic drug that increases glucose utilization in insulin-

sensitive tissues. As Polycystic Ovary Syndrome (PCOS) and diabetes share some altered parameters-such as abnormal 

glucose: insulin ratio, altered lipidic metabolism and insulin-resistance syndrome- the use of metformin has become 

increasingly accepted and widespread in the treatment of PCOS. Currently, metformin is used to induce ovulation and 

during early pregnancy in PCOS patients, however, a complete knowledge of the metformin action has not been achieved 

yet. This review describes beyond the classical reproductive action of metformin and explores other benefits of the drug. 

In addition, the present work discusses the molecular mechanisms involved further than the classical pathway that 

involves the AMP-activated protein kinase.  
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INTRODUCTION 

 Polycystic ovary syndrome (PCOS) - which is charac-
terized by hyperandrogenemia, hirsutism, oligo- or amenorr-
hoea and anovulation- is one of the most common endo-
crinological diseases encountered in premenopausal women 
[1, 2]. PCOS is frequently associated with hyperinsu-
linaemia, insulin resistance syndrome, increased cardio-
vascular risk and type 2 diabetes mellitus [1-3]. Its etiology 
is uncertain, but current theories emphasize genetic and 
intrauterine origins coupled with environmental factors such 
as diet and altered lifestyle patterns [1]. 

 Effective treatment of PCOS remains controversial but 
needs to be divided into the main requirements of the patient, 
depending on whether they are seeking cosmetic improve-
ment, restoration of the menstrual function, fertility, weight 
loss, or amelioration of metabolic changes. Reproductive 
disorders as low implantation rate, enhanced spontaneous 
abortion and neonatal mortality rate are described in women 
with PCOS.  

 The management of PCOS is complex and includes 
lifestyle modification combined with dietary-induced weight 
loss, and administration of oral contraceptives, clomiphene 
citrate, gonadotropins, antiandrogens and insulin-sensitizing 
agents. Women with properly diagnosed and managed PCOS 
reduces or even reverses the reproductive and metabolic 
morbidities and from a reduction in the risk factors for 
cardiovascular disorders.  

 Since the association of PCOS with insulin resistance 
impairs the pathophysiology of the syndrome, a family of the 
insulin-sensitizing agents, the biguanides are currently used 
in the treatment of PCOS. In that context, the use of N, 
N´dimethylbiguanide: metformin is becoming increasingly 
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accepted and widespread. It has bee reported that metformin 
restores sexual cycles and is effective in protecting early 
pregnancy of women with PCOS [4- 6]. In addition, the 
aminoguanidine-like activity of metformin allows the drug to 
cross-talk with other pathways (such prostaglandin pathway, 
the nitric oxide system) and acts as a scavenger of reactive 
oxygen species (ROS) [7-13]. However, metformin is being 
clinically used without a complete understanding of the 
mechanism involved. This review describes beyond the 
classical role of metformin as an anti-hyperglycemic drug 
and explores mechanisms of metformin action.  

METFORMIN AND CHANGES IN THE CELLULAR 
ENERGY CHARGE  

 It has been reported that metformin activates AMP-
activated protein kinase pathway (AMPK) in vitro and in 
vivo [14, 15]. By means of this mechanism metformin, 
decreases glucose production and increases fatty acid 
oxidation in hepatocytes [14], bovine aortic cells [16], 
skeletal muscle cells [16] and mouse ovarian tissue [11]. 
Phosphorylation of treonine (Thr

172
) of AMPK is necessary 

for its activity [11, 16] which is regulated by the upstream 
enzyme LKB1, a recently identified AMPK kinase [17]. In 
those studies [11, 16, 17], it has described that metformin 
decreases hyperglycemia without affecting insulin secretion. 
However, controversial studies describe the role of AMP 
levels in inducing metformin to activate the AMPK pathway. 
It has been demonstrated that when cellular energy charge 
decreases, metformin activates AMPK which in turn inhibits 
complex I of the respiratory chain [18, 19]. However, two 
recent studies argue against this notion since, in those 
studies, metformin activated AMPK without affecting the 
AMP/ATP ratio [20, 21]. The common point in all those 
studies is the finding that the key regulatory site is the 
phosphorylation of the Thr

172
 site on the catalytic alpha 

subunit of AMPK [11, 20, 21]. On the other hand, a second 
AMPK kinase (AMPKK) isoform that is not AMP-
dependent has been reported [17, 22, 23].  
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 Recently, Zou et al [16] established that the mechanism 
by which metformin activates AMPK is mediated by 
mitochondria-derived reactive nitrogen species. In that work, 
the authors found that the activation of either c-Src kinase or 
phosphoinositide 3-kinase (PI3K) generates a metabolite or a 
molecule -no identified- that in turn activates AMPK via the 
LKB1 complex. In addition, the polymorphism in the STK11 
gene (gene that codify by the LKB1) is associated to the 
chance of ovulation and was described as a target for the 
metformin action [24].  

METFORMIN AND CARDIOVASCULAR RISK 

 One consequence of altered lipid metabolism is the 
increased cardiovascular risk shown in women with PCOS. 
The endogenous nitric oxide synthase inhibitor asymmetric 
dimethyl-L-arginine (ADMA) is associated with the 
development of atherosclerosis and represents an indepen-
dent marker for cardiovascular morbidity and mortality. In 
fact, women with PCOS have elevated levels of ADMA and 
metformin treatment decreases ADMA levels independently 
of body mass index (BMI) and metabolic changes [25]. The 
mechanisms whereby metformin improves ADMA levels in 
women with PCOS are not quite clear. In that work, the 
authors found that inflammatory markers as protein C 
reactive (CRP) and interleukin 6 (IL-6) were not signi-
ficantly correlated with ADMA and did not change in res-
ponse to metformin. Thus, the reduction in ADMA following 
metformin treatment does not seem to be due to this kind of 
anti-inflammatory effectors [25].  

METFORMIN AS AN ANTI-INFLAMMATORY DRUG 

 Migration inhibitor factor (MIF) is a pro-inflammatory 
cytokine [26-28] which has been related to obesity [29]. 
Dandona et al. [29] found that mRNA expression of MIF in 
the mononuclear cells is elevated in the obese, consistent 
with a pro-inflammatory state. The authors demonstrated that 
the increases in MIF are related to body mass index (BMI), 
fatty acids concentrations and C-reactive protein (CRP). 
They also found that metformin suppress plasma MIF con-
centration and normalizes BMI, fatty acids concentrations 
and CRP in the obese in a clear anti-inflammatory effect of 
the drug. 

 The pro-inflammatory status associated with the poly-
cystic ovarian pathology is related to increased levels of 
serum tumor necrosis factor alpha (TNF alpha) which 
mediates insulin resistance [30]. The molecular mechanism 
involves the nuclear factor-kappa B (NF-kB) since it has 
been described that activation of NF-kB triggers insulin 
resistance and inflammation in PCOS [31]. In fact, met-
formin exerts a direct vascular anti-inflammatory effects by 
inhibiting NF-kB [32] which in turn decreases ADMA levels 
in cultured endothelial cells [25, 33].  

METFORMIN AND OXIDATIVE STRESS 

 Hyperglycemia triggers oxidative stress [34] and glucose 
intake, even in normal subjects, leads to increased reactive 
oxygen species (ROS) generation and inflammation media-
ted by an increase in NF-kB [35]. This may partly explain 
the increased risk factors for the diabetic patients to develop 

cardiovascular complications [36, 37]. As we mentioned, 
metformin is able to normalize plasma glucose concentration 
without any stimulation of insulin production [11, 16, 17]. 
To discuss this point we have to consider that the molecular 
structure of metformin confers the biguanide an amino-
guanidine-like activity [38]. That activity allows the 
biguanide to improve liver antioxidant potential in rats fed a 
high-fructose diet [39], ameliorate the antioxidant status in 
diabetic patients [40], modulate lipid peroxidation markers 
as LDL and HDL cholesterol [41] and increase reduced 
glutathione (GSH) in blood concentration [42] and ovarian 
tissue from hyperandrogenized mice [11].  

 Metformin is also able to increase the activities of 
antioxidant enzymes, such as catalase and CuZn superoxide 
dismutase [42]. Khouri et al [43] have studied the 
scavenging capacity of metformin against reactive oxygen 
species like hydroxyl (OH

.
), hydrogen peroxide (H2O2) and 

superoxide (O2
.
) radicals. According to their results, the 

authors concluded that metformin does not scavenge O2
. 

radicals nor H2O2 but is able to react with OH
.
 radicals. In 

addition, it seems that metformin exerts its in vivo 
antioxidant activity by different pathways other than the 
simple free radical scavenging action, such as the increase of 
antioxidant enzyme activities [7, 42, 44], the decrease of the 
markers of lipid peroxidation [41, 42] and the inhibition of 
the formation of advanced glycation end products [45, 46]. 
In addition, the aminoguanidine-like activity of metformin 
allows the biguanide to interact to the heme-group of nitric 
oxide synthase enzyme and thus to regulate oxidative 
nitrogen species [38]. The thiazolidenediones have antioxi-
dant properties - suppressing production of ROS- [47] and 
anti-inflammatory effect [48] and for these reasons represent 
an important option in the treatment of infertility in women 
with PCOS [49] many times in combination with metformin. 

METFORMIN AND THE ENDOTHELIAL FUNCTION 

 Cardiovascular disease is the leading cause of death in 
women; particularly those with PCOS are at a seven-fold or 
greater risk for myocardial infarction [50, 51]. One of the 
early signs of cardiovascular lesions is the endothelial injury 
[52]. The mechanism by which the vascular bed is affected 
under the influence of various metabolic and hormonal 
abnormalities is not clear. Several hypotheses have been 
formulated, and several factors seem to have a synergistic 
role in this process. Insulin resistance seems to play a key 
role in the development of endothelial damage [53]. The 
increased insulin levels shown in women with PCOS are 
associated with decreased cardiac flow [54] and extensive 
coronary artery disease has been lately demonstrated in 
women with PCOS as well [55]. In addition, hyperandro-
genemia underlies the acceleration of the endothelial injury 
process [56]. In agreement with those findings, Diamanti-
Kandarakis et al [57] found that both obese and non-obese 
women with PCOS have elevated endothelin-1 (ET-1) levels 
compared with the age-matched control group. These authors 
also demonstrated that metformin therapy for 6 months 
reduces ET-1 levels [58].  

 Anovulatory patients with PCOS have an alteration in 
uterine vascularization. These patients have higher pulsatility 
index and resistance index, two measures of blood impe-
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dance inversely related to blood flow, compared to healthy 
controls [58]. These authors demonstrated that metformin 
improves those surrogate markers of endometrial receptivity. 
In addition, metformin reverses the formation of pro-apop-
totic structures of endometrial uterus from hyperandro-
genized mice [59]. Moreover, it has been recently reported 
that metformin reduces human cancer incidence and 
improves the survival of cancer patients including those with 
breast cancer [60]. These actions are mediated by the action 
of metformin in regulating the cellular cycle. Moreover, a 
direct effect of metformin in regulating in vitro the adverse 
effect of excess of androgens in the proliferation of T 
lymphocyte has been recently reported [61].  

CONCLUSION 

 In spite of the controversial results as regards the action 
of metformin, it seems that this drug represents an effective 
treatment for the reproductive dysfunctions and for the 
alterations derived of polycystic ovary syndrome. A deeper 
knowledge of the limitations of metformin will allow the 
search for combined treatment with other drugs, a metho-
dology that has been widespread in the last years.  
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