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ABSTRACT
We connect galaxy properties with their orbital classification by analysing a sample of galaxies with stellar mass
M? ≥ 108.5h−1M� residing in and around massive and isolated galaxy clusters with mass M200 > 1015h−1M� at
redshift z = 0. The galaxy population is generated by applying the semi-analytic model of galaxy formation sag on
the cosmological simulation MultiDark Planck 2. We classify galaxies considering their real orbits (3D) and their
projected phase-space position using the roger code (2D). We define five categories: cluster galaxies, galaxies that
have recently fallen into a cluster, backsplash galaxies, infalling galaxies, and interloper galaxies. For each class, we
analyse the 0.1(g − r) colour, the specific star formation rate (sSFR), and the stellar age, as a function of the stellar
mass. For the 3D classes, we find that cluster galaxies have the lowest sSFR, and are the reddest and the oldest,
as expected from environmental effects. Backsplash galaxies have properties intermediate between the cluster and
recent infaller galaxies. For each 2D class, we find an important contamination by other classes. We find it necessary
to separate the galaxy populations in red and blue to perform a more realistic analysis of the 2D data. For the red
population, the 2D results are in good agreement with the 3D predictions. Nevertheless, when the blue population is
considered, the 2D analysis only provides reliable results for recent infallers, infalling galaxies and interloper galaxies.

Key words: galaxies: clusters: general – galaxies: haloes – galaxies: kinematics and dynamics – methods: numerical
– methods: analytical

1 INTRODUCTION

Clusters of galaxies play a key role in galaxy evolution. In the
last decades there have been several studies proving strong
correlations between galaxy properties and their environment
(see, for instance, Blanton et al. 2005; Martínez & Muriel
2006; Martínez et al. 2008). Properties such as colour (e.g.
Balogh et al. 1999; Baldry et al. 2006; Coenda et al. 2018;

? E-mail: vcoenda@unc.edu.ar

Venhola et al. 2019), luminosity (e.g. Adami et al. 1998; Gi-
rardi et al. 2003; Coenda et al. 2006), star formation rate
(e.g. Muzzin et al. 2012; Darvish et al. 2016; Coenda et al.
2019) and morphology (e.g. Dressler 1980; Bamford et al.
2009; Skibba et al. 2009; Kawinwanichakij et al. 2017) corre-
late with the galaxy position within the cluster.

Multiple physical mechanisms affect galaxies as they move
through the deep potential well of a galaxy cluster. They can
experience tidal stripping (e.g. Zwicky 1951; Gnedin 2003a;
Villalobos et al. 2014), which, in turn, can induce a central
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star formation burst (Byrd & Valtonen 2001) and bar in-
stabilities (Łokas et al. 2016), remove stars from the galaxy
(e.g. Ramos-Almendares et al. 2018), and truncate dark mat-
ter haloes (e.g. Gao et al. 2004; Limousin et al. 2009). In
intermediate-density regions, gravitational phenomena such
as galaxy-galaxy interactions and mergers can produce mor-
phological transformations (Moore et al. 1996, 1998; Gnedin
2003b; Smith et al. 2015). Additionally, as galaxies move at
high speed through the hot ionised gas of the intracluster
medium, they can have a significant fraction of the cold gas
removed through ram pressure stripping (e.g. Gunn & Gott
1972; Abadi et al. 1999; Book & Benson 2010; Steinhauser
et al. 2016). On the other hand, the warm gas in the galaxy’s
halo can also be removed, a process called starvation or stran-
gulation (e.g. Larson et al. 1980; Balogh et al. 2000; Mc-
Carthy et al. 2008b; Bekki 2009; Peng et al. 2010; Bahé et al.
2013; Vijayaraghavan & Ricker 2015). The removal of these
gaseous components ends up with red quenched galaxies.

In the hierarchical clustering scenario, clusters of galaxies
are continuously accreting galaxies. In this process of falling,
galaxies could undergo different physical processes that af-
fect their star formation even before they reach the cluster,
the so-called pre-processing (e.g. Balogh et al. 1999; Mihos
2004; Fujita 2004; McGee et al. 2009; De Lucia et al. 2012;
Jaffé et al. 2012; Wetzel et al. 2013; Hou et al. 2014; Pallero
et al. 2019). Most galaxies that fall into clusters come along
filaments and experience different environmental effects than
those falling from other directions (e.g. Martínez et al. 2016;
Salerno et al. 2019). Moreover, galaxies that are members of
a falling group will have different histories than those falling
in isolation (e.g. McGee et al. 2009; De Lucia et al. 2012;
Wetzel et al. 2013; Hou et al. 2014). Thus, from where and
with whom a galaxy falls into a cluster matters.

In recent years, several authors began to study the outskirts
of galaxy clusters (e.g. Mamon et al. 2004; Gill et al. 2005;
Rines & Diaferio 2005; Aguerri & Sánchez-Janssen 2010; Ma-
hajan et al. 2011; Muriel & Coenda 2014; Salerno et al. 2020;
Benavides et al. 2021), finding not only infalling star-forming
galaxies but also backsplash galaxies, i.e., galaxies whose or-
bits have taken them close to the cluster centre and are now
beyond the virial radius. Having experienced different envi-
ronmental effects during their evolution, it is expected that
backsplash galaxies and galaxies infalling for the first time
have different properties. Both should also present differences
with respect to the population of passive galaxies in virial
equilibrium inside the clusters.

It is not an easy task to differentiate observationally back-
splash galaxies from infalling galaxies, although they are
possibly distinguishable through kinematics (e.g. Gill et al.
2005; Pimbblet et al. 2006). Infalling galaxies starting from
larger apocenters reach larger radial velocities at their peri-
centers (see fig. 9 of Mahajan et al. 2011). Recently, Haggar
et al. (2020) studied the fraction of backsplash galaxies on
the outskirts of clusters using hidrodynamical simulations.
They found that the fraction of backsplash galaxies depends
on the the dynamical state of a cluster, as dynamically re-
laxed clusters have a greater backsplash fraction. Muriel &
Coenda (2014) explore the properties of galaxies in the out-
skirts of clusters, selecting low and high-velocity subsamples,
according to their line-of-sight velocity relative to the cluster.
They found that late-type galaxies in the low-velocity sample

are systematically older, redder, and have formed fewer stars
than galaxies in the high-velocity sample.
To understand how environmental processes affect galaxy

properties, it is necessary to perform a good characterisation
of the population of galaxies. Several authors classify galaxies
around clusters using different criteria based on their posi-
tion in the Projected Phase-Space Diagram (PPSD), which
combines the projected cluster-centric distance with the line-
of-sight velocity relative to the cluster (e.g. Mahajan et al.
2011; Oman et al. 2013; Muriel & Coenda 2014; Rhee et al.
2017). In de los Rios et al. (2021, hereafter dlR21), we present
the code roger (Reconstructing Orbits of Galaxies in Ex-
treme Regions) that relates the two-dimensional PPSD posi-
tion (2D) of galaxies to their orbital classification (3D). The
code uses three different machine learning techniques to clas-
sify galaxies in and around clusters according to their PPSD
position. The main aim of this work is to understand how
the inherent complexity of classifying galaxies according to
their projected position affects the conclusions we draw about
the connection between their observed properties (color, star
formation rate, age) and their inferred dynamical state. To
carry out this study, we use a sample of galaxy clusters gen-
erated by applying the semi-analytic model of galaxy forma-
tion sag (Cora et al. 2019) to a set of massive dark matter
haloes extracted from the MultiDark Planck 2 cosmolog-
ical simulation (Klypin et al. 2016). Firstly, we assign two
orbital classifications to each galaxy, one given by their real
orbit provided by the 3D phase-space and the other inferred
from the PPSD through the code roger. Then, for a given
galaxy class, we compare the distributions of galaxy prop-
erties (color, specific star formation rate, age) with respect
to their stellar mass obtained for these two orbital classifica-
tions. Thus, we are able to evaluate the limits imposed by the
2D projections upon the conclusions that can be drawn from
the observations. We also focus on the properties of galaxies
classified according to their real orbits to find out how the
environment affects galaxies when they cross the virial radius
of a cluster.
This article is organised as follows. In section 2, we describe

the sample of simulated galaxy clusters and their surround-
ings, the caracterisation of galaxies according to their orbits,
and how we use the code roger to classify galaxies in the
PPSD. The main results of the paper are presented in section
3, where we compare the properties of galaxies belonging to
different dynamical classes and analyse the biases introduced
by the 2D orbital classification. Finally, we present our con-
clusions and discussions in section 4.

2 GALAXY CLUSTERS AND THEIR
SURROUNDINGS

The sample of simulated galaxy clusters and of galaxies in
their surroundings used throughout this work is generated
by applying the semi-analytic model of galaxy formation
and evolution sag (acronym of Semi-Analytic Galaxies; Cora
et al. 2018) to the MultiDark Planck 2 cosmological sim-
ulation (mdpl2; Klypin et al. 2016). Here, we describe briefly
the mdpl2 simulation, the sag model and the selection cri-
teria used to construct the sample.

MNRAS 000, 1–12 (0000)
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2.1 The mdpl2 cosmological simulation

The mdpl2 cosmological simulation is part of the Multi-
Dark suite of cosmological simulations (Riebe et al. 2013;
Klypin et al. 2016). This simulation counts with 38403 dark
matter particles in a comoving cubic box of 1h−1Gpc of side
length, resulting in a particle mass mp = 1.51× 109h−1M�.
The adopted cosmology corresponds to a flat ΛCDM model
with Ωm = 0.307, h = 0.678, n = 0.96 and σ8 = 0.823, in
concordance with Planck measurements (Planck Collabora-
tion et al. 2014, 2016). The simulation tracks the dynamical
evolution of dark matter particles from the initial redshift
z = 120 using Gadget-2 (Springel 2005). The outputs were
stored into 126 snapshots between z = 17 and z = 0.
Dark matter haloes in mdpl2 were identified using the

phase-space halo finder Rockstar (Behroozi et al. 2013a),
and the merger trees were constructed using Consistent-
Trees (Behroozi et al. 2013b). The halo catalogues and
merger trees used in this work are publicly available at the
CosmoSim1 and Skies & Universes 2 databases. They
are the backbone of the semi-analytic model to generate the
galaxy population.

2.2 The sag Model

The sag model originates from the semi-analytic model de-
scribed in Springel et al. (2001). The latest version of the
model is presented in Cora et al. (2018). The evolution of
galaxy properties is followed by assigning one galaxy to each
dark matter halo detected in the underlying dark matter sim-
ulation, and using the merger trees of haloes and subhaloes.
sag includes radiative cooling of the hot halo gas in central
and satellite galaxies, quiescent star formation in the gaseous
disc, starbursts triggered by galaxy mergers and disc instabil-
ities, which contributes to the formation of galaxy bulges (La-
gos et al. 2008; Muñoz Arancibia et al. 2015; Gargiulo et al.
2015), a detailed treatment of chemical enrichment consider-
ing the contribution from stellar winds and different types of
supernovae (Cora 2006; Collacchioni et al. 2018), and feed-
back from supernova and active galactic nuclei (AGN). The
modelling of the former takes into account an explicit depen-
dence of the reaheated mass on redshift based on relations
measured from full-physics hydrodynamical simulations; be-
sides, gas from haloes is ejected and reincorporated later to
avoid excess of star formation at high redshifts (Cora et al.
2018). The implementation of AGN feedback considers the
growth of supermassive black holes in the centre of galaxies
(Lagos et al. 2008; Cora et al. 2019).
Environmental effects like tidal stripping (TS) and ram

pressure stripping (RPS) are also included in the model (Cora
et al. 2018); they are particularly relevant for the interpre-
tation of results obtained for galaxies classified according to
their real orbits (3D classification; see Section 2.4). When
Galaxies become satellites, they lose their hot gas in a grad-
ual way by the action of RPS. The gradual stripping of the
hot gas is modelled assuming a spherical isothermal density
profile for the gas and following Font et al. (2008) and Mc-
Carthy et al. (2008a). When the ratio between the hot gas
mass and the baryonic mass of a satellite galaxy decreases

1 https://www.cosmosim.org/cms/simulations/mdpl2/
2 http://skiesanduniverses.org/Simulations/MultiDark/

below 0.1, ram pressure can strip gas from the galaxy disc
following the model of Tecce et al. (2010), where the stripping
radius is calculated by using the Gunn & Gott (1972) con-
dition. In any case, the ram pressure exerted on the gaseous
components of satellite galaxies is estimated from an ana-
lytic fitting profile that recovers the ram pressure dependence
on halo mass, halocentric distance and redshift using the in-
formation of the gas particle distribution in hydrodynamical
simulations of groups and clusters of galaxies (Vega-Martínez
et al. 2021). The mass and metals removed by RPS from both
the hot gas halo and cold gas disc of the satellite are trans-
ferred to the hot gas of the galaxy identified as the central of
the processed satellite (i.e. the intra-cluster/group medium),
which is the central galaxy of the main host halo in most of
the cases. sag also considers ejection of gas from the haloes
as a result of supernovae feedback, but the ejected reservoir is
not affected by RPS because of the uncertain physical inter-
pretation of this galaxy component. The rest of the galaxy
components (gaseous halo and disc, stellar disc and bulge)
are also affected by TS but, in general, RPS dominates.
The modelling of these physical processes involves free pa-

rameters that are calibrated to a set of observed relations
of galaxy properties by using the Particle Swarm Optimi-
sation technique (Ruiz et al. 2015). The galaxy properties
considered are the stellar mass functions at redshifts z = 0
and z = 2, the star formation rate distribution function at
z = 0.15, the fraction of mass in cold gas as a function of
stellar mass at z = 0, and the relation between bulge mass
and the mass of the central supermassive black hole at z = 0.
The values of the set of free parameters that characterise the
version of the model used here are given in table 1 of Cora
et al. (2018), except the parameter that regulates the red-
shift dependence of the supernova feedback, which has been
reduced to achieve a better agreement between simulated and
observed values of the fraction of quenched galaxies as a func-
tion of stellar mass and halo mass (see fig. 11 in Cora et al.
2018 and the corresponding discussion).
It is worth noting that the calibration of the model takes

into account orphan satellite galaxies, i.e., satellite galaxies
whose dark matter substructure is not longer detected by the
halo-finder. However, orphan galaxies are excluded from the
sample considered for the analysis carried out in this work, as
we did in dlR21. The orbits of orphan satellites are tracked
by an orbital evolution model in a pre-processing step before
applying sag and, thus, they are model dependent. Therefore,
we only consider central galaxies and satellite galaxies that
keep their dark matter substructure whose trajectory is well
followed by the dark matter simulation.

2.3 Sample of simulated galaxies in and around
clusters

The sample of clusters used in this work is the same used
by dlR21. It contains 34 massive, relaxed and isolated
galaxy clusters selected from the mdpl2-sag galaxy cata-
logue. Firstly, we select all haloes at redshift z = 0 with mass
M200 ≥ 1015h−1M� that have no companion haloes within
5 × R200 more massive than 0.1 ×M200, where M200 is the
mass contained within the region of radius R200 that encloses
200 times the critical density. These criteria exclude haloes
undergoing a major merger, or interacting with a massive

MNRAS 000, 1–12 (0000)
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companion, which may affect galaxy orbits in the vicinity of
galaxy clusters.
We also include in our analysis those galaxies residing in

the surroundings of each selected cluster. For each cluster, we
consider a region delimited by a cylinder elongated along the
Z−axis of the simulation box which is adopted as the line-of-
sight direction, without loss of generality. This region includes
the cluster galaxies, galaxies in the surroundings of the clus-
ter, and interlopers. The latter are galaxies that appear in
or around the cluster in projection but are unrelated to it;
they constitute a major source of contamination in the PPSD.
The dimensions of these cylinders are: a radius of 5 × R200,
and a longitude in the Z−axis that extends as far as to in-
clude all galaxies within |∆VZ +H0∆Z| ≤ 3σ, where ∆VZ is
the galaxy peculiar velocity in the Z−direction relative to the
cluster, ∆Z is the proper distance between the galaxy and the
cluster centre in the Z−direction, H0 = 67.8 km s−1 Mpc−1

is the Hubble constant, and σ is the one dimensional ve-
locity dispersion of the cluster. As shown by Munari et al.
(2013), the value of σ is sensitive to the tracers used in its
computation, i.e., dark matter particles or subhaloes. We use
the σ values computed by dlR21. They measure the veloc-
ity dispersion of the clusters in our sample using as tracers
those subhaloes that host a central galaxy (satellite galaxy)
more massive than log(Mmin

? /h−1M�) = 8.5. This threshold
in stellar mass was adopted to guarantee completeness in the
sample of galaxies (Knebe et al. 2018). Below this mass limit,
observed galaxy properties are not followed reliably.

2.4 Classification of galaxies in and around clusters
based on their real orbits: 3D classification

We classify galaxies in and around clusters according to their
real orbits in 3D using the same scheme as in dlR21. We
consider the galaxies located within the region around each
cluster of our sample and track their positions relative to
the cluster centre in the successive outputs of the simulation.
Thus, we define five orbital classes at redshift z = 0:

(i) Cluster galaxies (CL): These galaxies involve the cen-
tral galaxy of the cluster, plus all galaxies that have been
satellites of the cluster for more than 2 Gyr. The latter have
been either inside R200 since they have been accreted by the
cluster or they have crossed R200 more than twice, or just
once in their way in and earlier than 2 Gyr ago. Most of them
are located within R200, and a few are found temporarily out-
side R200 in their orbital motion.
(ii) Recent infallers (RIN): These galaxies are located

within R200 and have crossed this radius inwards only once
in the last 2 Gyr.
(iii) Backsplash galaxies (BS): These galaxies are found

outside R200 and have crossed this radius exactly twice in
their lifetimes, the first time on their way in, and the second
on their way out of the cluster. According to this selection
criterion, a RIN can become a BS in the future.
(iv) Infalling galaxies (IN): These galaxies are in haloes

that have negative radial velocity relative to the cluster centre
and have never been within R200.
(v) Interlopers (ITL): These galaxies have never ap-

proached the cluster centre within R200, and they are found
in haloes that are receding from the cluster. They are not
related to the cluster but, as a result of projection effects,

they can be confused with galaxies in classes i−iv above in
the PPSD.

Hereafter, we will refer to this classification of galaxies as 3D
classification.

2.5 Classification of Galaxies based on the
Projected Phase Space Diagram Using roger:
2D classification

In this section, we present a brief summary of the code
roger presented in dlR21 and used in the present work to
carry out the orbital classification of galaxies according to
their projected phase space position.
The roger code is an automatic machine learning algo-

rithm that determines the probability of each galaxy of be-
longing to the previously defined orbital classes using only
their PPSD position. This code was presented as an R pack-
age3 that can be installed and used directly from an R console.
To train and test roger, dlR21 used those galaxies within

33 out of the 34 regions around the massive, relaxed and
isolated galaxy clusters in our sample (Section 2.3). With
these galaxies they built two independent subsets, namely: a
training-set used to train the machine learning models and a
validation-set used to measure the performance of the models
in each training epoch. In turn, the galaxies belonging to the
remaining galaxy cluster were used as a testing set to measure
the performance of the models after the full training. To avoid
any over-fitting that may bias the present results, in this work
we only use the galaxies corresponding to the testing and
validation sets originally presented in dlR21.
Although roger has the possibility of using 3 differ-

ent machine learning techniques (random forest, k-nearest
neighbours (KNN) and support vector machines), in the
present work we use only the KNN implementation as was sug-
gested by dlR21.
To perform an analysis of the galaxy properties that resem-

bles what can be done in real observations, we compute for
each galaxy of our sample its position in the PPSD. Phase
space positions of galaxies relative to their parent cluster’s
centre are computed by projecting the 3D cartesian coordi-
nates of the galaxies in the mdpl2 box at redshift z = 0
into the (X,Y ) plane. Hereafter, the projected distance on
this plane, Rp, will be referred to as the 2D distance, and
it will be quoted in units of R200 unless otherwise speci-
fied. On the other hand, the Z−axis velocity relative to the
cluster, ∆Vlos ≡ |∆VZ +H0∆Z|, is the line-of-sight velocity,
and will be quoted in units of σ. Then, using the previously
trained code roger (dlR21), we compute the probability of
each galaxy to belong to each category.
As specified in dlR21, galaxies can be classified into the five

classes defined in Section 2.4 from the probabilities computed
by roger by choosing different thresholds. For instance, if
the i−th galaxy has a probability p

(i)
cl of being a cluster

galaxy, it will be classified as such only if the probability
of being a cluster galaxy is the highest probability and if it is
higher than the chosen threshold, i.e., p(i)cl ≥ Tcl. In this way,
we can tune up the thresholds to end up with purer, although
smaller, samples, or, conversely, end up with larger but more

3 https://github.com/Martindelosrios/ROGER
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Class CL BS RIN IN ITL

Real Number 396 684 414 1263 1214

Predicted Number 539 392 286 704 798
Threshold 0.4 0.48 0.37 0.54 0.15

Precision 0.39 0.48 0.55 0.64 0.85

Sensitivity 0.54 0.27 0.38 0.35 0.55

Table 1. Sizes and thresholds values used for each orbital class
and their corresponding precision and sensitivity values.

contaminated samples. To quantify the properties of the re-
sulting classifications, dlR21 define the following statistics:

• Sensitivity: the number of correct predictions of a given
class in the resulting sample, divided by the total number of
galaxies of that class in the validation-set.
• Precision: the number of correctly predicted galaxies of

a given class in the resulting sample, divided by the total
number of galaxies of that class in the resulting sample.

Classifying galaxies by choosing different probability
thresholds results in samples of different degree of sensitivity
and contamination. We have probed different threshold val-
ues and kept those that, for each class, give purer samples
(high precision) without loosing statistical power (high sen-
sitivity). This exploration is equivalent to moving along the
curves depicted in Fig. 5 of dlR21 which show the sensitivity
and precision of the resulting samples for different probability
threshold values. The usefulness of such curves can be under-
stood by considering regions in the PPSD where different real
classes coexist. For a galaxy located in one of these regions,
the machine learning algorithm will predict similar proba-
bilities for the coexisting classes, and hence, the galaxy will
have two or more predicted probabilities of comparable mag-
nitudes. If the probability thresholds are increased enough,
such regions can be discarded, and, on the one hand, the con-
tamination will decrease, while on the other hand, we pay the
price of decreasing the sensitivity of the resulting samples. In
the end, the trade-off between contamination and sensitivity
is user dependent.
Table 1 shows the number of galaxies belonging to each

orbital class, together with the thresholds values used for each
class and their corresponding precision and sensitivity. As
a result of this procedure, galaxies in our sample has two
classifications: their (true) 3D classification based on their
real orbit described in section 2.4, and a 2D classification,
described in this section, based on the probabilities computed
by roger and our selected threshold values.
Although with these threshold values, miss-classified galax-

ies are minimised, there is still some contamination in the
final samples for each category. Hence, these miss-classified
galaxies will introduce biases on the final properties of the
different categories, that must be taken into account in any
analysis. We remark that, although in the current work we fo-
cus the analysis on the results obtained using the roger code,
these biases will be present in any study of galaxy properties
that tries to make a dynamical classification from the PPSD
positions since in real observations the full 3D orbits can
not be determined. The analysis of the biases introduced by
the 2D classifications in the statistical properties that char-
acterise each category is the main contribution of this work
and will be the main topic of the following sections.

3 COMPARING PROPERTIES OF GALAXIES:
3D VS 2D CLASSIFICATIONS

In this section, we focus on the dependence on stellar mass of
the 0.1(g− r) colour, the specific star formation rate (sSFR),
and the stellar age of galaxies, analysing the trends obtained
for different orbital classes, and compare the results obtained
from the 3D and 2D classifications. The results for the 3D
classification are interpreted according to the environmental
processes included in sag (Section 2.2).

3.1 Colour

Fig. 1 shows the colour-stellar mass diagram for each galaxy
class. We have adopted a band shift to a redshift z = 0.1
for the colour to approximate the mean redshift of the main
galaxy sample of SDSS (York et al. 2000). Left panels cor-
respond to 3D classes, while central panels to 2D classes,
classified out of their roger estimated probabilities. Dif-
ferent colours indicate the galaxy number density, from the
lowest non-zero value (green) to the highest value (orange).
On the other hand, right panels show in open circles the in-
dividual positions in the colour-mass diagram of the galaxies
in the 3D category, where each circle is filled with a colour
corresponding to the 2D classification. From top to bottom,
we show CL, BS, RIN, IN and ITL galaxies, respectively; we
observe a gradual increase of the blue population for both,
3D and 2D classes. For 3D classes, we see that the number of
BS galaxies lying on the red sequence is lower than the cor-
responding number of CL galaxies, on one hand, and higher
than the number of red RIN galaxies, on the other. If we con-
sider the 2D classes, there is no clear difference in the galaxy
distribution on the colour-stellar mass plane between BS and
RIN. Right panels of Fig. 1 show how the colour-mass dia-
grams of the 2D classification are built up in terms of galaxies
in the five 3D (real) classes. As can be seen from this fig-
ure, the most common miss-classifications occur between CL
and RIN galaxies, and between BS and IN galaxies. Interlop-
ers contaminate almost exclusively the IN class. It is worth
mentioning that this behaviour was already pointed out by
dlR21. These miss-classifications have immediate and impor-
tant consequences for the 2D classes: CL galaxies appear to
have a relevant blue cloud that is not real but a result of
the contamination by bluer RIN galaxies; BS galaxies have
a weaker red sequence due to contamination from bluer IN
galaxies.
A more detailed analysis on how the 2D classes are made

up out of the five 3D classes as a function of the stellar mass is
shown in Fig. 2. In this figure, we split our samples of galaxies
into five bins of stellar mass: log(M?/M�h

−1) = [8.80−9.25],
[9.25−9.70], [9.70−10.15], [10.15−10.60], and [10.60−11.05],
and show the corresponding 0.1(g−r) colour distributions. We
observe a fictitious excess of blue galaxies in the 2D classes
CL and BS over the whole mass range. In the case of CL
galaxies, this blue excess is made up mostly by misclassified
RIN galaxies. For BS galaxies, the main source of the excess
are misclassified IN galaxies. In addition, we see that a large
number of 3D BS galaxies are lost. They are either, classi-
fied as other class, or left out of the 2D classification as their
computed probabilities of being BS do not exceed the chosen
threshold. Fig. 2 warns about straightforward interpretations
of observations when galaxies are classified according to their
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Figure 1. The 0.1(g − r) colour−stellar mass diagram. From top to bottom, the panels of each row corresponds to CL, BS, RIN, IN,
and ITL galaxies, respectively. Left panels correspond to galaxies classified according to their real orbits (3D, see Sec. 2.4), while central
panels correspond to galaxies classified out of their roger estimated probabilities (2D, see Sec. 2.5). In those panels, different colours
indicate the galaxy number density, from the lowest (green) to the highest (orange) value in each case. Right panels show in open circles
the individual positions in the colour-mass diagram of the galaxies in the 3D classes. Each circle is filled with a colour corresponding to
the 2D classification: CL in red, BS in orange, RIN in green, IN in violet, and ITL in grey; those circles that remain empty are galaxies
that do not overpass the selection criteria and, therefore, they are not taken into account.
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Figure 2. Distribution of 0.1(g − r) colour in five bins of stellar mass. Dashed histograms correspond to galaxies classified according to
their real orbit, while shaded histograms correspond to the 2D classification. Galaxies classified by roger are shown as shaded coloured
histograms. Each colour corresponds to a different 3D class as specified in the inset box.

position in the PPSD. The blue population of galaxies classi-
fied as CL or BS will have a high degree of contamination thus
affecting the conclusions that can be drawn. Nonetheless, we
note that the red population of CL and BS galaxies are well
recovered by roger. On the other hand, RIN, IN and ITL
galaxies have a good agreement between the 3D and 2D types.
It is worth emphasising that, although we are analysing the
results obtained using the roger code, any code that clas-

sifies galaxies according to their PPSD position is likely to
have similar biases.

In the light of Fig. 2, it is strongly recommended a sepa-
rate analysis of the red sequence and the blue cloud whenever
possible while studying galaxy properties in and around clus-
ters. To separate our sample in red and blue populations, we
consider a threshold linear in the logarithm of stellar mass,
0.1(g − r) = 0.125 × log(M?/M�h

−1) − 0.45, adopted by
Salerno et al. (2021, in preparation), based on the 0.1(g − r)
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Figure 3. Median 0.1(g − r) colour as a function of stellar mass. Shaded areas depict errors obtained by the bootstrap resampling
technique. Top panels correspond to red galaxies and bottom panels show blue galaxies. Left panels correspond to galaxies selected by
their real orbits (3D), and central panels show the results for galaxies classified according to the roger code (2D). Right panels show
the colour relative difference between the 3D and 2D orbital types for each stellar mass bin, with shaded areas showing the propagation
of the errors from the 3D and 2D classes.

colour–stellar mass diagram for galaxies in the sag model at
z = 0. In Fig. 3 we show the median value of the colour as a
function of the stellar mass. Median colours are computed
by splitting galaxies into the same stellar mass bins used
in Fig. 2. We restrict to those bins containing at least ten
galaxies. Shaded areas were computed using the bootstrap
re-sampling technique. Given the low number of red galaxies
in 2D types for the RIN, IN and ITL classes, we only analyse
the properties of the red population of galaxies for CL and
BS classes, hereafter.
From Fig. 3, we observe an increase of the median colour

with increasing stellar mass for both the red and blue pop-
ulations, when considering either the 3D or the 2D orbital
classes (left and central panels, respectively). More specifi-
cally, for a fixed stellar mass, CL galaxies are systematically
the reddest. In particular, for the red population of galax-
ies, there are no significant differences in colour between real
and projected orbital types, as we show in the right panels
of Fig. 3. We can see that the largest bin-to-bin differences
are of the order of ∼ 3 per cent and ∼ 2 per cent, for CL and
BS galaxies, respectively. For the blue population of the 3D
types, there is a clear difference in colours among the galaxy
types for a fixed stellar mass: CL galaxies are the reddest,
followed by BS and RIN galaxies, in that order. IN and ITL
galaxies are the bluest with small differences between them.
However, we observe an important difference in colours be-
tween the 3D and 2D blue populations of classes CL and BS,
being up to ∼ 20 per cent for both, CL and BS galaxies. This
is a consequence of the contamination by a the fictitious blue
population discussed above (see Fig. 2). This discrepancy is
not seen for the other classes, where the largest bin-to-bin
differences are ∼ 2 per cent for RIN and ITL galaxies, and
∼ 7 per cent for IN galaxies.

The results shown in Fig. 3 strongly suggest that when
studying CL and BS galaxies in observations, only their red
populations can be reliably studied. On the other hand, stud-
ies of the blue population are reliable for RIN, IN, and ITL
classes. Our samples do not allow for a reliable statistics of
the red population of these latter classes.

3.2 Specific star formation rate and stellar age

Galaxy colours are a natural consequence of the evolution
of the galaxy star formation rate, which also determines its
average stellar age. Thus, we now analyse the sSFR and age
of the red an blue galaxy populations, separately. As in Fig.
3, we split each sample in five stellar mass bins. In the light
of the results in Sect. 3.1, the CL and BS galaxies have not
been taken into account to analyse the blue populations of
galaxies.
In Fig. 4, we compare the median values of the sSFR as a

function of the stellar mass, for the blue population of galax-
ies in all five classes. We do not present the median values of
sSFR for the red populations of galaxies because most of them
have already ceased their star formation in their evolution.
As those red galaxies have not formed new stars during the
last time-step considered to calculate their sSFR, their null
values of star formation rate can not be included in the cur-
rent analysis. Moreover, the fraction of red galaxies featuring
star formation is not large enough to do a robust comparison
using them, as each stellar mass bin is filled with less than
10 galaxies.
As expected, the sSFR decreases with increasing stellar

mass (e.g. Spindler et al. 2018; Belfiore et al. 2018; Coenda
et al. 2019); this behaviour is observed independently of the
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Figure 4. Median sSFR as a function of stellar mass for blue galaxies.

Figure 5. Median of stellar age τ as a function of the stellar mass.

galaxy class. For 3D classes, CL galaxies are the most passive
systems, followed by BS types. RIN types are in a interme-
diate zone between BS and IN types. This explains the pro-
gressive redder colours displayed by these 3D classes, with IN
being the bluest galaxies and CL the reddest ones.

If we focus only on the RIN, IN and ITL types, as sug-
gested in the previous section, we do not observe a significant
difference between the 3D and 2D classes, being the largest
bin-to-bin differences of ∼ 2 per cent for RIN and IN classes
of galaxies, and ∼ 0.05 per cent for ITL galaxies.

Finally, in Fig. 5, we analyse the median of stellar age τ
as a function of the stellar mass. For the red sub-sample,
CL galaxies are systematically the oldest. Only the highest
stellar mass bin shows that BS and CL galaxies have sim-
ilar stellar ages. The 2D trends are consistent with the 3D
predictions. The bin-to-bin comparison shows that the dif-
ferences between 2D and 3D are lower than ∼ 8 per cent
and almost consistent with zero considering the large errors.
For the blue sub-sample of 3D types, CL galaxies are clearly

the oldest ones followed by BS, RIN, IN and ITL galaxies,
in that order. It is interesting to note that blue CL and BS
galaxies differ significantly in τ in contrast to their similarity
regarding colour or sSFR. For 2D types, we observe the same
behaviour for RIN, IN and ITL types. The largest difference
between 3D and 2D classes occurs for RIN galaxies, with a
maximum value of ∼ 3 per cent, while the largest difference
for IN and ITL galaxies is ∼ 2 per cent and ∼ 1 per cent,
respectively.

4 DISCUSSION AND CONCLUSIONS

In this paper we perform a comparison of properties of galax-
ies around massive and isolated clusters galaxies at z = 0,
using a sample of galaxies generated from the combination of
the semi-analytic model of galaxy formation (sag) and the
MultiDark Planck 2 simulation (MDPL2). We track the or-
bit of the galaxies in our sample to define five galaxy classes:
cluster galaxies (CL), galaxies that have recently fallen into
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a cluster (RIN), backsplash galaxies (BS), infalling galaxies
(IN), and interlopers (ITL).
Since only galaxy positions in PPSD are accessible, dif-

ferent methods have been proposed to link these positions
with orbits (e.g. the inversion of the Jeans equation, Binney
& Mamon 1982; Natarajan & Kneib 1996; Biviano & Kat-
gert 2004). We use the probabilities computed by roger,
to make the best use of the PPSD information and classify
our sample of galaxies into the five classes mentioned above.
We choose different thresholds values for each class to min-
imise the overlapping regions in the projected phase-space
and hence end with more pure samples. We analyse a num-
ber of galaxy properties: 0.1(g − r) colour, the sSFR and the
stellar age, as a function of the stellar mass, and consider
separately red and blue sub-samples of galaxies for both the
3D classes (classified according to their real orbits) and the
2D classes (classified with roger).
Environmental effects inherent to galaxy clusters are

clearly evident when focusing on the properties (colour, spe-
cific star formation rate, age) of 3D classes. Our results show
that, for the red population and at fixed stellar mass, galax-
ies in clusters are redder and older than BS galaxies. For the
blue population, CL galaxies are the reddest, the oldest and
have the lowest specific star formation rate. When a galaxy
dives into a cluster for the first time, environmental quench-
ing onsets and the galaxy’s stellar population gets older and
redder in comparison to galaxies external to the cluster. The
action of environmental effects is even stronger for BS galax-
ies as they have travelled longer inside the cluster. However,
they are not yet as red, old and with the star formation as
quenched as the cluster galaxies that have experienced the
environmental effects for a longer period, i.e., CL galaxies.
Infalling and interlopers galaxies are quite similar; these are
forming stars, are blue and have young stellar populations.
We interpret the trends depicted by galaxies classified ac-

cording to their real orbits taking into account the mod-
elling of environmental effects implemented in sag (see Sec-
tion 2.2). Galaxies defined as satellites by the halo finder
are affected by gradual removal of hot halo gas and cold gas
disc by RPS. While most of CL galaxies are within the virial
radius of the cluster, there are galaxies identified as satel-
lites by the halo finder that reside at a further clustercentric
distance. Hence, not only CL galaxies are affected by such
processes but BS, RIN and IN galaxies could also feel the ac-
tion of RPS when approaching the cluster. Therefore, galaxies
that have dived for the first time into the cluster in the last
2 Gyr (RIN) already have signatures of the environmental
quenching in their star formation rate (Fig. 4) and are red-
der than IN galaxies (Fig. 3). However, in the outskirts of
clusters, the values of ram pressure are low, of the order of
∼ 10−12 h2 dyn cm−2 (see fig. 1 of Vega-Martínez et al. 2021).
When a satellite galaxy crosses the virial radius of a host

halo and approaches the cluster centre, it is affected by in-
creasing values of ram pressure, not only because ram pres-
sure is higher in the inner regions of the cluster but also be-
cause of the build-up of the intra-cluster medium density over
time as the satellite’s orbit evolves. At z ∼ 2, most of satellite
galaxies are already experiencing medium-level ram pressure
(i.e., ∼ 10−11 h−2 dyn cm−2) and, at z . 0.5, those satellites
located within 0.5R200 feel strong-level ram pressure, i.e.,
& 10−10 h2 dyn cm−2 (Tecce et al. 2010; Vega-Martínez et al.
2021). The most important effect of RPS is the gradual re-

moval of the hot gas component of satellite galaxies. The mass
stripped by ram pressure is larger for less massive satellites,
being the the cumulative stripped hot gas fractions of the or-
der of ∼ 70 per cent for low-mas satellites (M? ∼ 3×109M�)
and ∼ 40 per cent for high-mas ones (M? ∼ 1011M�; see fig.
14 of Cora et al. 2018). The lost of cold gas by RPS is an or-
der of magnitude lower because the cold gas disc is shielded
by the hot gas halo during most of the galaxy lifetime. Hence,
the final effect of RPS is the reduction of the gas cooling rate
which derives in the quenching of the star formation rate,
which in turn is reflected in the colours and average ages of
satellites.
It is clear then that the sSFR and colour is more affected

the longer a galaxy is in a cluster, giving rise to the progres-
sive quenching and reddening manifested by ITL, IN, RIN,
BS and CL galaxies. A single excursion in and out of a clus-
ter (BS) quenches star formation in a significant way. These
results are in agreement with Lotz et al. (2019). Thus, with
only one passage close to the centre of the cluster, galaxy
colour is strongly affected, as suggested by the comparison
between BS and RIN.
By focusing on the 2D classes, we see an important con-

tamination over the projected populations: there are miss-
classifications between CL and RIN galaxies, and BS and IN
galaxies. Interlopers contaminate almost exclusively the IN
class. These miss-classifications have significant consequences
for the 2D classes: CL galaxies appear to have an exceptional
blue cloud that is not real but a result of the contamina-
tion by bluer RIN galaxies; BS galaxies have a weaker red
sequence due to contamination from bluer IN galaxies. This
degree of contamination considerably affects the conclusions
that can be deduced. From our results, we consider that it
is necessary to separate the red and blue galaxy populations
to perform a more realistic analysis of observational data.
Reliable results can be obtained for red CL and BS galaxies,
and for blue RIN and IN galaxies. Interlopers are not affected
significantly by contamination. We recall that the red popu-
lation of RIN, IN and ITL galaxies has not been analysed due
to the low number of galaxies, however, these classes should
not be discarded in future studies.
From the observational point of view, Muriel & Coenda

(2014) explore several properties of early and late-types
galaxies, defined in terms of their concentration index, in
the outskirts of clusters. They select galaxies with projected
distances in the range 1 < Rp/Rvir < 2 from a sample
of X-ray selected clusters (Coenda & Muriel 2009; Muriel
& Coenda 2014). They distinguish between low velocity
(∆Vlos/σ < 0.5), and high velocity (∆Vlos/σ > 1) galaxies.
They find evidence that, for a fixed stellar mass, late-type
low-velocity galaxies have formed less stars in the last 3 Gyr,
are redder and older, than their high-velocity counterparts. In
terms of their PPSD position, we can qualitatively associate
high-velocity galaxies with the IN class, and the low-velocity
galaxies with the BS class. Since each colour branch is also
associated to a different galaxy morphology, i.e., late-type
galaxies are associated to the blue cloud, whereas early-types
are located in the red sequence in the colour-magnitude di-
agram (e.g. Conselice 2006), thus, the results of Muriel &
Coenda (2014) are consistent with the results presented in
this paper.
There are some works in the literature that compare the

properties of galaxies classified according to their position in
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the projected phase-diagram (e.g. Biviano et al. 2002; Oman
et al. 2013; Muzzin et al. 2014; Lotz et al. 2019, 2021) but
they are a few. However, there is effort to achieve a good
separation of the galaxies in the phase-space diagram (e.g.
Mahajan et al. 2011; Rhee et al. 2017; Jaffé et al. 2018). Based
on the results shown here, we will apply the roger code to
a real sample of galaxy clusters in a forthcoming paper to
shed light on the properties of galaxies in the surroundings
of galaxy clusters.
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