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Abstract 

It is widely known that pre-training systemic administration of the muscarinic antagonist 

scopolamine (SCP) (0.5 mg/kg, i.p.) leads to anterograde memory impairment in 

retention tests. The administration of the α7-nicotinic receptor agonist choline (Ch) in 

the dorsal hippocampus (0.8 μg/hippocampus) immediately after memory reactivation 

allowed recovery from scopolamine-induced memory impairment. This effect of Ch was 

time-dependent, and retention performance was not affected in drug-treated mice that 

were not subjected to memory reactivation, suggesting that the performance effects are 

not due to non-specific effects of the drug. The effects of Ch also depended on the age 

of the reactivated memory. Altogether, our results suggest that Ch exerts its effects by 

modulating memory reconsolidation, and that the memory impairment induced by low 

doses of SCP is a memory expression failure and not a storage deficit. Therefore, 

reconsolidation, among other functions, might serve to change memory expression in 

later tests. Summarizing, our results open new avenues about the behavioral 

significance and the physiological functions of memory reconsolidation, providing new 

strategies for recovering memories from some types of amnesia. 

 

 

Research highlights 

- Pre-training administration of scopolamine leads to memory impairment. 

- Intra-hippocampal administration of choline modulates memory reconsolidation 

- Choline reverses scopolamine-induced amnesia by enhancing memory 

reconsolidation 

- Low doses of scopolamine cause memory expression deficit, but not storage 

impairment 

- Reconsolidation could modify the ability of a memory for being expressed later 

 

 

Keywords 

Memory reconsolidation, memory expression, memory retrieval, scopolamine-induced 

amnesia, cholinergic system 
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1. Introduction 

 

Memory consolidation regards the underlying processes occurring after a learning 

situation where memory is stabilized and strengthened. New memories are labile and 

sensitive to “disruption” before undergoing a series of processes that render the 

memory representation progressively stable (McGaugh, 1966; McGaugh, 2000; 

Roozendaal & McGaugh, 2011). Memory consolidation depends on modulation by 

neurotransmitter systems (McGaugh, 2000; Roozendaal & McGaugh, 2011). Among 

them, central cholinergic system has been implicated in learning and memory 

processes, either in invertebrates (Berón de Astrada & Maldonado, 1999; Terazima & 

Yoshino, 2010; Weinberger, 2006) and vertebrates (Blake, Boccia, Krawczyk, & Baratti, 

2011; Boccia, Blake, Acosta, & Baratti, 2004; Boccia, Blake, Acosta, & Baratti, 2006; 

Boccia, Blake, Krawczyk, & Baratti, 2010; Ortega, del Guante, Prado-Alcalá, & Alemán, 

1996; Quirarte et al, 1994; Roldán, Bolaños-Badillo, González-Sánchez, Quirarte, & 

Prado-Alcalá, 1997), including human subjects, and it seems to be involved in 

modulation of acquisition, consolidation, reconsolidation, extinction, and retrieval of 

information (Baratti, Boccia, & Blake, 2009).  

Cholinergic blockade by scopolamine (SCP, a muscarinic cholinergic receptor 

antagonist) before training cause anterograde memory impairment (Berón de Astrada & 

Maldonado, 1999; Blake et al., 2011; Decker & McGaugh, 1989; Decker, Tran, & 

McGaugh, 1990; Ohno & Watanabe, 1996; Rush, 1988). This scopolamine-induced 

memory impairment was also found in human subjects (Frumin, Herekar, & Jarvik, 

1976; Ghoneim & Mewaldt 1975; Ghoneim & Mewaldt, 1977; Richardson et al., 1985). 

Several studies have shown recovery from memory impairment, suggesting that a 

hidden memory can be expressed under the appropriate conditions (Cahill, McGaugh, 

& Weinberger, 2001; Gold, Haycock, Marri, & McGaugh, 1973; Haycock, Gold, Macri, & 

McGaugh, 1973; Nader & Wang, 2006; Parvez, Stewart, Sangha, & Lukowiak, 2005; 

Philips, Tzvetkova, Marinesco, & Carew, 2006; Rescorla, 1988). Recovery from 

amnesia lead us to consider alternative mechanisms for the amnesic treatments, 

different from impairment of information encoding, i.e. memory expression deficit. 

Post-reactivation administration of choline (Ch), a specific α7-nicotinic cholinergic 

receptor agonist (Albuquerque, Pereira, Alkongdon, & Rogers, 2009) modulates 

memory reconsolidation, either enhancing or impairing it, depending on training 

conditions (Boccia et al., 2010). Ch impairs memory reconsolidation when mice are 

trained with a high footshock, but enhances it when animals are trained with a mild 

footshock (Boccia et al., 2010). 



  

4 

 

The present work is aimed to evaluate whether the scopolamine-induced memory 

impairment is due to storage failure or to memory expression deficits. The results 

presented here suggest that SCP-induced amnesia is a failure of behavioral expression 

of the memory, but not absence of memory storage. 
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2. Materials and methods 

2.1. Experimental subjects 

CF-1 male mice from our own breeding stock were used (age: 60 – 70 d; weight: 25 – 

30 g). They were caged in groups of 10 and remained housed throughout the 

experimental procedures. The mice were kept in a climatized animal room (21 – 23 ºC) 

maintained on a 12-h light / 12-h dark cycle (lights on at 6:00 AM), with ad libitum 

access to dry food and tap water. Experiments were carried out in accordance with the 

National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH 

Publication Nº 80-23 / 96) and local regulations. All efforts were made to minimize 

animal suffering and to reduce the number of animals used. 

 

2.2. Behavioral procedures: Inhibitory avoidance (IA) task 

The avoidance behavior was studied in one-trial learning, step-through type (Blake, 

Boccia, & Baratti, 2008), which utilizes the natural preference of mice for a dark 

environment. The apparatus consisted of a dark compartment (20cm×20cm×15cm) 

with a stainless-steel grid floor and a small illuminated platform (5cm×5cm) attached to 

its front center, elevated 100 cm from the floor (conditioning context) (Blake et al., 

2008). The mice were not exposed to the apparatus before the learning trial. During 

training each mouse was placed in the illuminated platform and received a footshock 

(1.2 mA, 50 Hz, 1 sec) as it stepped into the dark compartment. At the times indicated 

for each experimental group, the retention tests were performed. Each mouse was 

placed on the platform again and the step-through latency was recorded. The retention 

test was finished either when the mouse stepped into the dark compartment or failed to 

cross within 300 sec. In the latter case the mouse was immediately removed from the 

platform and assigned a score of 300 sec (ceiling score). In the retention test session 

the foot-shock was omitted. 

 

2.3. Drug administrations 

Scopolamine hydrochloride (SCP), scopolamine methyl-bromide (mSCP), and Choline 

bitartrate (Ch) were purchased from Sigma, St Louis, MO. All the drugs were dissolved 

in sterile saline solution immediately before use. The doses were calculated as the free 

base. All other agents were of analytical grade and obtained from local commercial 

sources. The doses of the drugs were determined from previous experiments of our 

laboratory (Blake et al., 2011; Boccia et al., 2010). SCP and mSCP were injected 

intraperitoneally (i.p.) (0.1 ml/kg), and Ch was injected bilaterally in the dorsal 

hippocampus (dHPC) (0.5 μl/hippocampus). Experiments were carried out in a blinded 

fashion with regard to drug treatments. 
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2.4. Intra-dorsal-hippocampal (dHPC) Injections 

Mice were prepared (Boccia et al., 2010) for the dHPC injections of vehicle or drug 

solutions 48 h before training, so that a minimum of time was necessary for injection, 

which was administered under light ether anesthesia in a stereotaxic instrument. The 

preliminary surgery was also performed under ether anesthesia and consisted of an 

incision of the scalp. Two holes were drilled in the skull without perforating the brain, at 

the following stereotaxic coordinates AP: -1.50 mm posterior to bregma, L/R + 1.20 mm 

from the midsagital suture and DV: -1.75 mm from a flat skull surface (Franklin & 

Paxinos, 1997), in order to bilaterally infuse the drugs after recovery. The skull was 

covered with bone wax and the mouse was returned to its home cage. Injections lasted 

90 sec and were driven by hand through a 30-gauge blunt stainless steel needle 

attached to a 5 l Hamilton syringe with PE-10 tubing. The volume of each 

intrahippocampal infusion was 0.5 l. 

The accuracy of dHPC injections was determined by histological determination of the 

needle position on an animal-by-animal basis. For this purpose, the brains of injected 

animals were dissected, fixed in 4% parafomaldehide/ buffer phosphate saline, and 

stored in 30% sucrose. They were then cut into 25 m coronal sections with a cryostat. 

The deepest position of the needle was superimposed on serial coronal maps (Franklin 

& Paxinos, 1997). Coronal sections containing the deepest reach of the needle were 

Nissl stained to estimate the damage produced during the procedure (Fig 7). Animals 

were excluded from the statistical analysis if the infusions caused excessive damage to 

the targeted structure or if the needle tips extended outside the target structure. 

 

2.5. Data analysis 

Data are expressed as median latencies (sec) to step-through and interquartile ranges 

during the retention test and were analyzed, when appropriate, with the nonparametric 

analysis of variance of Kruskal-Wallis. The differences between groups were estimated 

by individual Mann-Whitney U tests (two-tailed) (Siegel 1956). In all cases, p < 0.05 

values were considered significant. 
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3. Results 

 

3.1. Pre-training administration of SCP, but not mSCP, causes memory impairment 

In the first experiment, three groups of 10 mice each received an injection either of 

vehicle (Veh), SCP (0.5 mg/kg, i.p.), or mSCP (a quaternary molecule with limited 

access to central nervous system, 0.5 mg/kg, i.p.), and 20 min later they were trained in 

the inhibitory avoidance (IA) task. Retention test was performed 2 days after it. 

Scopolamine impaired retention performance in the IA task (p<0.001, compared with 

the respective Veh-injected control group) (Fig 1). These results show that pre-training 

administration of SCP produces memory impairment in our experimental conditions, 

and confirm previous results. The effects of SCP were centrally mediated, as mSCP did 

not affect retention latencies at T1. 

The following experiments were aimed to determine whether scopolamine-induced 

memory impairment results from storage or memory expression failure. 

 

3.2. Post-reactivation administration of choline reverses scopolamine-induced memory 

impairment 

This experiment was aimed to determine whether the administration of Ch after the first 

retention test allowed recovery from scopolamine-induced memory impairment. Four 

groups of 10 mice each were injected either with Veh or SCP (0.5 mg/kg, i.p.), and 20 

minutes after it they were trained in the IA task. The first retention test (T1) was 

performed 48 h after training. Immediately after the test, mice received a bilateral dHPC 

infusion of Veh or Ch (0.8 μg/hippocampus). Mice were tested again (T2) 24 h after T1. 

The behavioral procedure and results of this experiment are shown in Figure 2. Pre-

training administration of SCP impaired performance in T1 (p<0.001, compared with 

the respective Veh-injected group). Choline administered immediately after memory 

reactivation to mice receiving SCP before training, significantly enhanced retention 

latencies at T2 (p<0.001, comparing SCP-Ch vs. SCP-Veh groups). That is, Ch 

reversed SCP-induced memory impairment. However, consistent with our previous 

results (Boccia et al., 2010), Ch caused memory impairment in control mice (p<0.001, 

comparing Veh-Ch vs. Veh-Veh injected groups) (Fig 2). 

 

3.3. The effects of Ch are time-dependent 

In the following experiment, four groups of 10 mice each received Veh or SCP (0.5 

mg/kg, i.p.), and 20 min after it they were trained in the IA task. The first retention test 

(T1) was performed 48 h after training. Three hours after T1, mice received a bilateral 
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dHPC infusion of Veh or Ch (0.8 μg/hippocampus). Mice were tested again (T2) 24 h 

after T1. 

The behavioral procedure and results are shown in Figure 3A. Pre-training 

administration of SCP induced memory impairment (p<0.001, compared with the 

respective Veh-injected groups). The administration of Ch 3h after memory reactivation 

did not affect retention latencies, showing that Ch effects are time-dependent (Fig 3A). 

 

3.4. Ch effects are observed only if the avoidance memory was reactivated 

In the next experiment, four groups of 10 mice each received Veh or SCP (0.5 mg/kg, 

i.p.), and 20 min after it they were trained in the IA task. Forty eight hours after training, 

mice received a bilateral dHPC infusion either of Veh or Ch (0.8 μg/hippocampus). The 

first retention test (T1) was performed 24 hours after it. The behavioral procedure and 

results are represented in Figure 3B (note that the reactivation session was omitted). 

The administration of Ch 48h after training without memory reactivation, did not affect 

retention performance (p>0.05 comparing animals injected with Ch with each 

respective Veh-injected group) (Fig 3B). 

 

3.5. The effects of Ch on memory are not disclosed shortly after memory reactivation 

The results shown in the previous experiments suggest that Ch modulates memory 

reconsolidation. However, to add evidence that the pharmacological actions of Ch are 

exerted on memory reconsolidation the effects of Ch should not be seen in a retention 

test performed shortly after retrieval, as was already shown blocking protein synthesis 

(Nader, Schafe, & LeDoux, 2000) and using NF-B inhibitors (Boccia et al., 2007). 

Four groups of 10 mice each were injected either with Veh or SCP (0.5 mg/kg, i.p.) and 

20 min later they were trained in the IA task. The first retention test (T1) was performed 

48 h after training. Immediately after the test, mice received a bilateral dHPC infusion of 

Veh or Ch (0.8 μg/hippocampus). Mice were tested again (T2) 1 h after T1, and (T3) 24 

hours after T1. The behavioral procedure and results are shown in Figure 3C. 

Choline effects were not seen in the retention test performed shortly after memory 

reactivation (p>0.05, comparing performance of each group in T2 vs T1, Fig 3C), but 

reversion of memory impairment was evident in T3 (p<0.05 for Veh-Ch, and p<0.01 for 

SCP-Ch, comparing performance of each group at T3 vs T1) (Fig 3C). 

 

3.6. Choline effects depends on the age of the reactivated memory 

In this experiment, twelve groups of 10 mice each were injected with Veh or SCP (0.5 

mg/kg, i.p.) and 20 min after it they were trained in the IA task. The first retention test 
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(T1) was performed 7, 14 or 21 days after training, depending on the experimental 

group. Immediately after the test, mice received a bilateral dHPC infusion of Veh or Ch 

(0.8 μg/hippocampus). Mice were tested again (T2) 24 h after T1. The behavioral 

procedure and results are shown in Figure 4. 

In order to compare data from groups of mice receiving the same treatment (but in 

which memory reactivation occurred at different training-T1 intervals), the retention 

performance in T2 is represented (combining data from this experiment with data from 

experiment 2). These data are resumed in Figure 5. 

There was an inverse correlation between choline effects and the age of the 

reactivated memory. That is, the older the memory became, the less susceptible it was 

to choline effects. Recovery from scopolamine-induced amnesia was almost complete 

for 2-days-old memories. However, the effect diminished for older memories, being no 

longer observed for 21 days old memories. Interesting, the age-dependence was also 

observed for the impairment effect of Ch in control groups (Veh-Ch groups) (Fig 4 and 

5). In Figure 5, the distance between Veh and Ch curves represent the susceptibility of 

the memory to the effects of Ch. 

 

3.7. Choline failed to reverse amnesia caused by a high dose of SCP 

The last experiment was designed to evaluate whether the reversion of scopolamine-

induced memory impairment is also possible if mice received a high dose of SCP. Two 

groups of mice were injected with vehicle or SCP (5 mg/kg, i.p.) and 20 min after it they 

were trained in the IA task. The first retention test was performed 48 h after training 

(T1). Immediately after the test, animals received a bilateral dHPC injection of Veh or 

Ch (0.8 μg/hippocampus). Mice were tested again (T2) 24 h after T1. The behavioral 

procedure and results are shown in Figure 6. 

Post-reactivation administration of Ch failed to reverse scopolamine-induced amnesia 

in mice receiving a high dose of SCP before training (p>0.05, comparing performance 

on T1 vs T2) (Fig 6). 
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4. Discussion 

 

It is widely known that pre-training administration of scopolamine (SCP) leads to 

impaired performance on behavioral tests (Berón de Astrada & Maldonado, 1999; 

Blake et al., 2011; Decker & McGaugh, 1989; Ohno & Watanabe, 1996; Rush, 1988). If 

scopolamine is given after training, retrograde amnesia is also produced, suggesting 

that cholinergic system is necessary for memory consolidation (Berón de Astrada & 

Maldonado, 1999; Blake et al., 2011; Boccia et al., 2004; Roldán et al., 1997). 

Although pre-training and post-training administration of SCP cause memory 

impairment, the effects seem to be different. Low doses of SCP (even 0.1 mg/kg) are 

enough to impair memory when administered before training. On the contrary, if the 

drug is given after training, memory impairment is seen only with very high doses 

(above 4 mg/kg). Cholinergic system serves to facilitate cue detection and attentional 

performance (Hasselmo & Stern, 2006; Hasselmo & Sarter, 2011). Therefore, blockade 

of cholinergic system with pre-training administration of SCP is followed by changes in 

attentional processes and in information processing, which may alter acquisition of the 

novel information and may cause subsequent memory impairment. For all these 

reasons, traditional views considered that SCP impairs acquisition, but not memory 

consolidation (Ghoneim & Mewaldt, 1975; Rush, 1988; but see Izquierdo, 1989). Along 

this line, the different effects of pre- and post-training administration of SCP lead to the 

interpretation that acquisition is more sensitive than consolidation to disruption by 

cholinergic blockade, and it was proposed that cholinergic muscarinic receptors play 

different roles on acquisition and consolidation (Blake et al., 2011; Rush, 1988). 

Nevertheless, the fact that post-training administration of SCP also produces memory 

impairment shows that consolidation is also affected by cholinergic blockade (Berón de 

Astrada & Maldonado, 1999; Blake et al., 2011; Roldán et al., 1997). Besides, it must 

be considered that when SCP is given periferally, the onset of the pharmacological 

effect is not immediate because the drug needs time to reach the target structure. 

Thus, when SCP is administered after training, processes occurring during the first 

seconds (and even minutes) after it are not affected by the drug because it did not 

reach the pharmacological target yet. On the contrary, if SCP is administered before 

training, the drug is present in the brain during and after the training session. So, when 

SCP is given before training, it is not possible to distinguish whether the effects on 

memory are due to acquisition blockade or to impairment of the early processes 

occurring during the first seconds after training, that are part of the memory 

consolidation processes. The question remains unanswered and, for this reason, since 

SCP impairs acquisition and consolidation processes, we will consider that SCP affects 
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memory formation. What we do know is that the impairing effects of SCP are centrally 

mediated and are not due to changes in peripheral autonomic functions, as pre-training 

administration of mSCP did not affect retention latencies. Previous findings showed 

that the dose of SCP employed in the present work does not significantly affect 

exploratory activity (Blake et al., 2011). 

Scopolamine-induced memory impairment was suggested for modeling some features 

of geriatric memory dysfunction and of Alzheimer's disease (AD) memory impairment 

(Bartus, Dean, Beer, & Lippa, 1982; Ebert & Kirch, 1998; Giacobini, 1990). This was 

proposed because a mild cholinergic dysfunction occurs in the elderly and at early 

stages of AD. Further, the magnitude of the reduction in cholinergic system activity is 

correlated with the degree of cognitive impairment (Francis, Palmer, Snape, & Wilcock, 

1999). Geriatric mild cognitive impairment is characterized by episodic memory 

impairment such as forgetting details of a recently viewed movie or conversations 

(Neugroschl & Wang, 2011). At early stages of AD, the cholinergic failure is also mild, 

and the impairment includes forgetting of daily events such as paying bills or taking 

medications (Neugroschl & Wang, 2011). On the contrary, at advanced stages of AD, 

the cholinergic dysfunction is profound, and there is also an important loss of cortical 

neurons. As the disease become severe, semantic and procedural memories 

progressively deteriorate and other behavioral disturbances are evident. For these 

reasons, it is important to study the consequences of cholinergic system activity 

blockade on memory processing, and the possibility of reversion of the subsequent 

dysfunction using the available pharmacological tools. 

Several markers of cholinergic activity are reduced in AD (both pre- and post-synaptic) 

(Quirion, 1993). In particular, cholinergic nicotinic receptors were found to be reduced 

in 30-40%, mainly due to reduction of the α4β2 subtype, with relative preservation of the 

α7-nicotinic receptors (Court et al., 2001; Perry et al., 1995). Thus, α7-nicotinic 

receptors can be considered useful for studying the possibility of memory recovery. For 

this reason, choline (Ch), a specific α7-nicotinic cholinergic receptor agonist 

(Albuquerque et al., 2009), was administered after the first retention test in order to 

modulate post-reactivation memory processes (Boccia et al., 2010). Despite Ch 

participates as a precursor of acetylcholine synthesis, and may modify cholinergic 

activity in different ways, the effects of post-reactivation administration of Ch on 

memory are likely due to its binding to α7-nicotinic receptors, since its effect is 

completely blocked by the co-administration of the specific α7-nicotinic receptors 

antagonist methyllicaconitine (Boccia et al., 2010). 

It was previously found that the effects of Ch on memory reconsolidation of the 

inhibitory avoidance response depend on training conditions (Boccia et al., 2010). If a 
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weak foot-shock is used during the training procedure, retention latencies are about 

120 sec. In these conditions, Ch enhances memory reconsolidation if given in the 

hippocampus after memory reactivation. On the contrary, if a strong training procedure 

is employed (an intense foot-shock), animals perform during the retention test with 

latencies at the ceiling (300 sec). In this condition, Ch impairs memory reconsolidation 

(Boccia et al., 2010). 

Throughout the present work, the mice were trained using the intense foot-shock, and 

animals receiving vehicle before the training session performed during the first 

retention test (T1) with latencies at the ceiling. In these mice, Ch exerted impairing 

effects on memory reconsolidation, confirming previous results (Boccia et al., 2010). 

However, animals receiving a pre-training injection of SCP showed impaired 

performance during T1. In these conditions, post-reactivation administration of Ch 

enhanced retention performance in subsequent tests. These apparently contradictory 

effects of Ch on memory reconsolidation depending on the training conditions resemble 

to those reported by Gold and Van Buskirk (1976). In that case, a dose of epinephrine 

that enhanced retention performance after low-footshock training produced amnesia if 

administered after high-footshock training. Accordingly, our results are very similar, but 

in our case Ch was administered immediately after memory reactivation. We can 

speculate that post-reactivation treatments have important roles in modulating memory 

processes occurring after retrieval and seem to be very similar, though not identical, to 

that occurring after learning. The reasons underlying these opposed effects remain 

undeciphered and could be explained as an example of hormesis (Mattson & 

Calabrese, 2010). Therefore, the opposite effects caused by the administration of Ch 

after memory reactivation, depending on training conditions, may be considered as a 

manifestation of its modulatory effects on memory reconsolidation (Boccia et al., 2010). 

Specific controls are needed to assume that a post-retrieval treatment affects memory 

reconsolidation processes. Since the reminder that induce reconsolidation is also a part 

of the cues presented during training, but the unconditioned stimulus (US) is not 

presented after the conditioned stimulus (CS), new information is available for being 

learned and other processes emerge as candidates for explaining any post-retrieval 

effect, like extinction (Myers and Davis, 2002). Standard controls determine that 

retention performance should not be affected if the treatment is administered in 

absence of memory reactivation or showing that the post-retrieval treatment needs to 

be given before the end of a temporal window to be effective (Alberini, 2011; Alberini, 

Milekic, & Tronel, 2006; Dudai, 2006; Misanin, Miller, & Lewis, 1968; Przybyslawski & 

Sara, 1997; Tronson & Taylor, 2007). However, none of these controls can completely 
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discard that a new learning process is occurring, and that it is the actual responsible for 

performance in subsequent tests. 

In our experimental conditions, recovery from SCP-induced memory impairment was 

produced by post-retrieval memory enhancement by Ch. This recovery depended on 

memory reactivation, and only occurred if the treatment was administered within a 

temporal window. Besides, to provide compelling evidence that Ch acts specifically on 

the mechanisms mediating memory reconsolidation, as opposed to producing 

nonspecific effects, it is necessary to show that the change does not occur shortly after 

retrieval, but is observed later (Boccia et al., 2007; Nader et al., 2000). Along this line, 

we observed that Ch was effective only when T2 was delayed enough from T1. 

Since no repetition of CS-US pairing is presented during the memory reactivation 

session, the improved performance may not be attributed to retraining or to new 

learning, because new information should lead to learn that CS is not followed by US 

(Squire, 2006). All these facts suggest that the effects of Ch are exerted on memory 

reconsolidation. 

The modulatory effects of Ch on post-retrieval memory processes also depended on 

the age of the reactivated memory (Baratti, Boccia, Blake, & Acosta, 2008; Boccia et 

al., 2006; Milekic & Alberini, 2002). Young reactivated memories are more sensitive to 

modulation than older memories (Alberini, 2005), in accordance with Ribot’s law (Ribot, 

1881). This fact was clearly demonstrated for protein synthesis inhibitors such as 

anisomycin or cycloheximide (Milekic & Alberini, 2002; Alberini, 2005). Age-

dependence was also demonstrated for the acetylcholine synthesis inhibitor 

hemicholinium-3 (Boccia et al., 2006). Similar to these results, recent memories were 

very sensitive to the effects of Ch, but older ones were more resistant. In the present 

study, we show evidence that recent memories (2-7 days old) are labile but remote 

ones (14-21 days old) become progressively insensitive to Ch administration. The 

sensitivity for Ch effects were observed in vehicle-injected and in SCP-receiving mice. 

That is, in mice receiving the pre-training injection of Veh, Ch caused a strong 

impairment in recent memories (2-7 days old), but did not impair older ones (21 days 

old). In mice receiving the pre-training injection of SCP, Ch caused recovery from 

amnesia of young reactivated memories (2-7 days old), but failed in recovering older 

ones (21 days old). The fact that Ch effects are dependent on the age of the 

reactivated memory, suggest that α7-nicotinic receptors of the hippocampus are 

involved in post-reactivation memory processes for a limited period of time. 

Several observations suggest that the hippocampus contributes to consolidation of 

memories over long periods (Izquierdo & McGaugh, 2000). Hence, information 

processing depends on hippocampal function, but the temporal dependence is different 
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among species. Hippocampal lesions in mice cause retrograde amnesia for events 

occurring a few hours prior to the damage (Izquierdo & McGaugh, 2000). On the 

contrary, hippocampal lesions in human beings produce retrograde amnesia of several 

years (Corkin, 2002; Squire & Wixted, 2011). This difference shows that hippocampal 

processing of information is more prolonged in humans than in mice. For many events, 

the elapsed time in mice life is very shorter than the same in humans. A mouse 

become adult in about 60 days, while it takes about 25 years to men (a relation of 

about 100-150 times) (Flurkey, Currer, & Harrison, 2007). A mouse model of AD (3xTg) 

develops cognitive impairment in about 6 months, while AD begins with symptoms at 

about 70 years in humans (again a relation of about 100-150 times) (Querfurth & 

LaFerla, 2010). If one assumes that many processes occurring in humans develop 

about 100-150 times faster in mice, a 7-days-old-memory in mice might represent a 

memory of about 3 years in men. Therefore, the period of 7 days within which a 

memory is very susceptible to enhancement by post-reactivation administration of Ch in 

mice may represent 3 years in humans. 

Therefore, the main point of our work is that reversion of SCP-induced amnesia was a 

consequence of enhancement of the reconsolidation process by Ch. The memory trace 

was stored, but did not guide behavior in T1. In other words, the trace was not 

behaviorally expressed during the first retention test. This memory was, however, 

labilized by the reactivation session, and by improving memory reconsolidation using 

Ch, memory was expressed in T2. Therefore, reconsolidation processes might serve to 

change memory expression in later tests, among other functions. 

Interestingly, very similar results were found in invertebrates, using the visual danger 

stimulus memory model in the crab Chasmagnatus (Caffaro, Suárez, Blake, & 

Delorenzi, 2012). In this work, recovery from SCP-induced amnesia was obtained by 

improving memory reconsolidation using water deprivation (Frenkel, Maldonado, & 

Delorenzi, 2005; Frenkel, Suárez, Maldonado, & Delorenzi, 2010). 

Altogether, our results support the notion that SCP-induced memory impairment is a 

consequence of memory expression deficit rather than memory formation impairment. 

In our experimental conditions, memory recovery by Ch was only possible in the 

animals receiving a low dose of SCP, but not when a higher dose was given. This 

result suggests that recovery from amnesia is not possible when a strong cholinergic 

blockade is produced during learning or during consolidation. It might be speculated 

that when a high dose of SCP is given, consolidation is completely blocked and the 

information is not stored. However, it might be possible that a very weak memory is 

formed, and higher doses of Ch (or other reconsolidation enhancers) may be needed to 

reverse the impairment. 
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From these results, it could be presumed that mild cholinergic dysfunction still allows 

memory formation, but the stored memory traces fail to be behaviorally expressed. 

These memories are labilized during the reactivation session, and may be improved 

through reconsolidation processes, to control behavior in subsequent evaluations. On 

the contrary, deep cholinergic failure might impair memory formation. Accordingly, 

memory impairment observed in mild cholinergic failure conditions, as in the elderly 

and in early stages of AD (Court et al., 2001; Perry et al., 1995), might actually be a 

symptom of memory expression impairment rather than a real memory loss. Therefore, 

memories may actually be stored, but remain hidden. If these undisclosed memories 

are labilized and then enhanced through reconsolidation, one might get behavioral 

expression of the stored information. This statement would apply at least for recent 

episodic memories, whose loss is one of the characteristics of mild cognitive 

impairment and of early stages of AD (Neugroschl & Wang, 2011). In fact, there are no 

FDA-approved therapies for mild cognitive impairment, and the only approved 

pharmacological treatment for the early stage of AD is the administration of 

cholinesterase inhibitors (Hasselmo & LaFerla, 2007; Neugroschl & Wang, 2011). 

As was already mentioned, mice receiving SCP before the learning trial performed 

poorly in the first retention test. However, our results also suggest that a memory trace 

was stored. This fact is intriguing, and important questions arise from this point. If these 

animals had stored a memory trace of the task, why they perform poorly in the first 

retention test? Was this memory trace retrieved during the retention test? Can a 

memory trace enter in a labile state without being retrieved? Or retrieval is a necessary 

condition to labilize a memory? 

One possibility is that memory labilization can occur independently of memory retrieval. 

If this were the case, mice performed poorly due to a retrieval deficit. In other words, 

mice entered the dark compartment because they did not retrieve the information. The 

other possibility is that memory must be retrieved in order to be labilized. Thus, if 

retrieval is a necessary condition for memory labilization, one can conclude that mice 

retrieved the memory trace. But in this case one can assume that memory did not 

guide behavior, as mice performed poorly. Therefore, if the memory of the task is 

retrieved but does not guide behavior, which process does it? Do decision-making 

processes (Bogacz, 2007; Clark, Cools, & Robbins, 2004; Khader et al., 2011) guide 

behavior and lead mice to enter the dark compartment? These possibilities are 

represented in figure 8. Unfortunately, the present results do not provide answers for 

these questions, and we are working to unravel them. 

In summary, the results of the present work show that low doses of SCP did not impair 

memory formation. The stored memory is not expressed during the first retention test 
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but can be improved by modulating memory reconsolidation with Ch. Once enhanced, 

memory is expressed in T2. Therefore, our results open new avenues about the 

behavioral significance and the physiological functions of memory reconsolidation. In 

addition, they provide new strategies for recovering memories from some types of 

amnesia. 
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Figure legends 

 

Fig. 1. Effect of the pre-training administration of SCP on retention performance. SCP 

(0.5 mg/kg, i.p.) and mSCP (0.5 mg/kg, i.p.) were administered 20 min before training. 

The behavioral protocol is represented above the graph. Each bar represents the 

median and interquartile range (n=10 mice/group). TR: training session, T1: retention 

test. *** p<0.001, compared with the Veh-injected group. 

 

Fig. 2. Effects of Ch on retention performance of mice receiving SCP (0.5 mg/kg, i.p.) 

20 min before training. Choline (0.8 μg/hippocampus) was given immediately after T1. 

The behavioral protocol is represented above the graph. Each bar represents the 

median and interquartile range (n=10 mice/group). TR: training session, T1-2: retention 

tests. *** p<0.001, compared with the corresponding test of the respective Veh-injected 

group; ### p<0.001, comparing T1 vs. T2 of each group. 

 

Fig. 3. Effects of Ch on retention performance of mice receiving SCP (0.5 mg/kg, i.p.) 

20 min before training. Choline (0.8 μg/hippocampus) was given: (A) 3 hours after T1, 

(B) 48 hours after training, in absence of memory reactivation, and (C) immediately 

after T1, but T2 was performed 1 hour after T1. The behavioral protocol is represented 

above each pannel. Each bar represents the median and interquartile range (n=10 

mice/group). TR: training session, T1-3: retention tests. * p<0.05, ** p<0.01, *** 

p<0.001, in all cases compared vs. the corresponding Veh-injected group; ## p<0.01, 

comparing T2 vs. T3 of each group; &&& p<0.001, comparing T3 of SCP-Veh vs. T3 of 

SCP-Ch groups. 

 

Fig. 4. Effects of Ch on retention performance of mice receiving SCP (0.5 mg/kg, i.p.) 

20 min before training. Choline (0.8 μg/hippocampus) was given immediately after T1. 

The first retention test was performed (A) 7 days, (B) 14 days, and (C) 21 days after 

training. The behavioral protocol is represented above each pannel. Each bar 

represents the median and interquartile range (n=10 mice/group). TR: training session, 

T1-2: retention tests. ** p<0.01, *** p<0.001, in both cases compared vs. the 

corresponding Veh-injected group; ### p<0.001, comparing T1 vs. T2 of each group. 

 

Fig. 5. Effects of Ch on retention performance of mice receiving Vehicle or SCP (0.5 

mg/kg, i.p.) 20 min before training, for different TR-T1 intervals. Vehicle (dashed lines) 

or choline (solid lines) (0.8 μg/hippocampus) were given immediately after T1. The first 
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retention test was performed 2, 7, 14 or 21 days after training. Only median latencies at 

T2 are represented (data collected from figures 2 and 4). Each point represents the 

median (n=10 mice/group).  

 

Fig. 6. Effects of Ch on retention performance of mice receiving a high dose of SCP (5 

mg/kg, i.p.) 20 min before training. Choline (0.8 μg/hippocampus) was given 

immediately after T1. The behavioral protocol is represented above the graph. Each 

bar represents the median and interquartile range (n=10 mice/group). TR: training 

session, T1-2: retention tests. *** p<0.001, compared with the corresponding test of the 

Veh-injected group. 

 

Fig. 7. Coronal brain images adapted from the atlas of Franklin and Paxinos (1997), 

indicating location of the injections in the hippocampus corresponding to experiment 7 

(● SS ■ Ch 0.80 μg/hippocampus). 

 

Fig. 8. Proposed sequence of events determining retention performance. To obtain a 

good performance in a retention test, memory had to be successfully stored, efficiently 

retrieved, and after evaluation of other possibilities, the animal must let to this memory 

control its behavior. All these steps are necessary, and any failure can cause a poor 

performance. 
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- Pre-training administration of scopolamine leads to memory impairment. 

- Intra-hippocampal administration of choline modulates memory reconsolidation 

- Choline reverses scopolamine-induced amnesia by enhancing memory 

reconsolidation 

- Low doses of scopolamine cause memory expression deficit, but not storage 

impairment 

- Reconsolidation could modify the ability of a memory for being expressed later 

 




