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ABSTRACT
This is the second part of a thorough investigation of the redshift-space effects that affect
void properties and the impact they have on cosmological tests. Here, we focus on the void-
galaxy cross-correlation function, specifically, on the projected versions that we developed
in a previous work. The pillar of the analysis is the one-to-one relationship between real
and redshift-space voids above the shot-noise level identified with a spherical void finder.
Under this mapping, void properties are affected by three effects: (i) a systematic expansion
as a consequence of the distortions induced by galaxy dynamics, (ii) the Alcock-Paczynski
volume effect, whichmanifests as an overall expansion or contraction depending on the fiducial
cosmology, and (iii) a systematic off-centring along the line of sight as a consequence of the
distortions induced by void dynamics. We found that correlations are also affected by an
additional source of distortions: the ellipticity of voids. This is the first time that distortions
due to the off-centring and ellipticity effects are detected and quantified. With a simplified
test, we verified that the Gaussian streaming model is still robust provided all these effects
are taken into account, laying the foundations for improvements in current models in order to
obtain unbiased cosmological constraints from spectroscopic surveys. Besides this practical
importance, this analysis also encodes key information about the structure and dynamics of
the Universe at the largest scales. Furthermore, some of the effects constitute cosmological
probes by themselves, as is the case of the void ellipticity.

Key words: large-scale structure of Universe – dark energy – distance scale – cosmological
parameters – galaxies: distances and redshifts

1 INTRODUCTION

Cosmic voids are promising cosmological probes for testing the
dark energy problem and alternative gravity theories. Since they
are the largest observable structures, they encode key information
about the geometry and expansion history of the Universe. The po-
tential of voids has been increased recently with the development
of modern spectroscopic surveys, such as the Baryon Oscillation
Spectroscopic Survey (Dawson et al. 2013, BOSS), its extension
eBOSS (Alam et al. 2021), and the future the Dark Energy Spec-
troscopic Instrument (Levi et al. 2019, DESI), the Euclid mission
(Laureĳs et al. 2011), and the Hobby-Eberly Telescope Dark Energy

★ E-mail: cmcorrea@unc.edu.ar (CMC)

Experiment (Hill et al. 2008, HETDEX), which will cover a volume
and redshift range without precedents. In view of this, it will be
possible to obtain rich samples of voids at different redshifts, and in
this way, to test the evolution of the Universe with high precision.

Two of the most important cosmological statistics in void stud-
ies are the void size function, that describes the abundance of voids
(Sheth & van de Weygaert 2004; Furlanetto & Piran 2006; Jennings
et al. 2013; Achitouv et al. 2015; Pisani et al. 2015; Ronconi &
Marulli 2017; Contarini et al. 2019; Ronconi et al. 2019; Verza
et al. 2019), and the void-galaxy cross-correlation function, that
characterises the density and peculiar velocity fields around them
(Paz et al. 2013; Hamaus et al. 2015; Cai et al. 2016; Hamaus et al.
2016; Achitouv 2017; Achitouv et al. 2017; Chuang et al. 2017;
Hamaus et al. 2017; Hawken et al. 2017; Achitouv 2019; Nadathur
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& Percival 2019; Nadathur et al. 2019a,b; Hawken et al. 2020;
Hamaus et al. 2020; Nadathur et al. 2020; Paillas et al. 2021). Both
statistics are affected by distortions in the observed spatial distribu-
tion of the galaxies, which translate into anisotropic patterns. There
are two main sources of distortions: the redshift-space distortions
(Kaiser 1987, hereafter RSD) and the Alcock & Paczynski (1979,
AP) effect. The former is a dynamical effect, caused by the impact
of the peculiar velocities of galaxies on the measured redshifts,
whereas the latter, a geometrical effect, caused by the fiducial cos-
mology used to transform the angles and redshifts from a survey
into distances expressed in a physical scale. These distortions can
be modelled from physical principles, and therefore, they encode
fundamental information about the cosmological parameters.

Nevertheless, our standard picture of distortions around voids
is incomplete. Nadathur & Percival (2019) and Nadathur et al.
(2019b) noticed that there are four commonly assumed hypothe-
ses in all RSD models for voids, which are violated when voids are
identified in redshift space, i.e. from observations. These postulates
that, under the redshift-space mapping:

(i) the number of void-galaxy pairs must be conserved;
(ii) the position of void centres must remain invariant;
(iii) the density field around voids must still be radially directed

(from the point of view of the galaxies in real space);
(iv) the peculiar velocity field must also be isotropic.

The failure of these hypotheses finds an explanation in the RSD and
AP effects, which besides distorting the spatial distribution of the
galaxies around voids, they also have a direct impact on the void
identification process itself, affecting intrinsic void properties, such
as their number, size and spatial distribution. This is because voids
are searched for and found using galaxy redshifts and angular posi-
tions. This problematic is important when designing cosmological
tests, since these void systematics generate deviations on observa-
tions that lead to biased cosmological constraints if they are not
taken into account properly. The validity of these hypotheses is also
discussed in Hamaus et al. (2020).

One approach to avoid these systematics is to use a recon-
struction technique (Eisenstein et al. 2007), which has been first ap-
plied to baryonic acoustic oscillations analyses. Themethod consists
of recovering the real-space position of the galaxies based on the
Zel’dovich approximation. This method has now been applied to the
case of voids (Nadathur et al. 2019a, 2020), showing robustness in
recovering the real-space statistical properties of voids, such as their
density and velocity profiles, and achieving unbiased cosmological
constraints. Given that this procedure depends on the cosmological
parameters, it must be applied iteratively in combination with the
void finding step. Therefore, it also has some disadvantages. For
instance, this results in an increment of the computational cost of
model evaluation. Moreover, it is quite redundant, since it removes
the peculiar velocity affectation of galaxies in order to find the opti-
mal centres of voids, but to achieve high precision constraints, then
it must be combined with an RSD analysis of the galaxies around
these realistic voids. Finally, as we shall demonstrate in this work,
there are valuable cosmological and dynamical information con-
tained in the z-space void systematics that are not fully exploited if
the reconstruction technique is employed.

In Correa et al. (2021, hereafter Paper I), we proposed an
alternative approach, namely, to find a physical connection between
the identification of voids in real space (hereafter r-space) and in
redshift space (z-space) using a spherical void finder. The case of
voids is more complex than the case of galaxies. Galaxies, on the
one hand, can be considered as particles, which are totally conserved

under the z-space mapping, only their position changes. Voids, on
the other hand, are extensive regions of space, hence some of them
can be destroyed under this mapping, whereas other artificial ones
can be created. Moreover, the properties of voids are sensitive to
the method of identification employed. Therefore, it is not clear
a priori if there is a relation between both void populations. We
found three relevant results. First, voids above the shot-noise level
are almost conserved under the z-space mapping; the void loss
decreases as larger voids are considered. In view of this, it is valid
to assume void number conservation when modelling. Second, two
independent effects act on the volume of voids under this mapping.
One is a systematic expansion, a by-product of the RSD induced by
tracer dynamics. The other is an overall expansion or contraction
due to the AP effect, depending on the fiducial cosmology. Third,
the position of the void centres are systematically shifted along the
line-of-sight direction (hereafter LOS), a by-product of a different
class of RSD induced at larger scales by the global dynamics of the
whole region containing the void, which can be considered as a void
dynamics (Lambas et al. 2016; Ceccarelli et al. 2016; Lares et al.
2017). We provided a theoretical framework to describe physically
these effects from dynamical and cosmological considerations.

In Paper I we analysed the impact that these void systematics
have on the void size function as a cosmological test. The present
work is a continuation of Paper I, focusing now on the void-galaxy
cross-correlation function. To carry out this study, we adopted the
methodology of Correa et al. (2019, hereafter C19) by analysing
two perpendicular projections of the correlation function with re-
spect to the LOS. Using these projections have some advantages.
For instance, they are affected by RSD and AP distortions in differ-
ent proportions. Moreover, they can be measured directly in terms
of void-centric angular distances and redshifts without the need
to assume a fiducial cosmology. These features allow us to break
effectively the degeneracies between the geometrical and dynami-
cal distortions. Furthermore, our model takes into account a third
source of systematics besides the AP and RSD effects: the mixture
of scales due to the binning scheme. This is what allowed us to
work with full projections. Finally, the associated data covariance
matrices are much smaller than those corresponding to the tradi-
tional way of measuring correlations, and the noise in the likelihood
analysis is reduced, which allows to use a smaller number of mock
catalogues to measure them.

This paper is organised as follows. In Section 2, we describe
the data set, that is, the numerical N-body simulation and the void
catalogues. We also describe the bĳective mapping between voids
in real and redshift space, along with the sample selected to mea-
sure the correlation function. In Section 3, we review and adapt our
method based on the projected correlation functions from C19, and
present the results from the simulation. In Section 4, we recapitu-
late the description of the z-space effects that affect void properties
from Paper I. Section 5 constitutes the core of this paper, where
we explain in full detail the impact of these z-space effects on the
projected correlations and how to account for them based on the the-
oretical framework of the previous section. Finally, we summarise
and discuss our results in Section 6.

2 DATA SET

2.1 Simulation setup

We used the same data set as in C19 and Paper I. Briefly, we used the
Millennium XXL N-body simulation (Angulo et al. 2012, hereafter
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MXXL), which follows the evolution of 67203 dark matter particles
inside a cubic box of length 3000 ℎ−1Mpc. The particle mass is
8.46 × 109 ℎ−1M� in a flat-ΛCDM cosmology with the following
cosmological parameters: Ω𝑚 = 0.25, ΩΛ = 0.75, Ω𝑏 = 0.045,
Ω𝜈 = 0.0, ℎ = 0.731, 𝑛𝑠 = 1.0 and 𝜎8 = 0.9. We used the snapshot
belonging to redshift 𝑧 = 0.99, assumed as the mean redshift of the
sample.

Dark matter haloes were chosen as tracers, which were identi-
fied as groups of more than 60 particles using a friends-of-friends
algorithmwith a linking length parameter of 0.2 times themean inter
particle separation.We selected a lowermass cut of 5×1011 ℎ−1M� ,
finding in this way 136, 688, 808 haloes.

Positions x = (𝑥1, 𝑥2, 𝑥3) [ℎ−1Mpc] and peculiar velocities
v = (𝑣1, 𝑣2, 𝑣3) [km/s] of haloes in real space were available to
quantify the effects of distortions. In order to generate RSD, we
treated the 𝑥3-axis of the simulation box as the LOS direction,
assuming the distant observer approximation. We applied the fol-
lowing equation to shift the LOS coordinates of haloes from real to
redshift space:

𝑥3 = 𝑥3 + 𝑣3
(1 + 𝑧)
𝐻 (𝑧) , (1)

where 𝑥3 denotes the shifted 𝑥3-coordinate, and 𝐻 (𝑧) is the Hubble
parameter, which for a flat-ΛCDM cosmology can be expressed in
terms of the cosmological parameters as follows:

𝐻 (𝑧) = 100 ℎ
√︃
Ω𝑚 (1 + 𝑧)3 +ΩΛ, (2)

where in turn, ΩΛ = 1 −Ω𝑚.

2.2 Void catalogues

A detailed description of the void catalogues used in this work can
be found in Paper I. Briefly, we applied the spherical void finder
developed by Ruiz et al. (2015), which is a modified version of the
algorithm of Padilla et al. (2005). Below, we summarise the main
steps.

(i) Voronoi tessellation. A Voronoi tessellation is performed to
obtain an estimation of the density field. We used a parallel version
of the public library voro++ (Rycroft 2009).
(ii) Selection of candidates. A first selection of underdense re-

gions is done by selecting all Voronoi cells that satisfy the criterion
in local density contrast of 𝛿cell < −0.4. Each underdense cell is
considered the centre of a potential void.
(iii) Growth of spheres.Centred on each candidate, the integrated

density contrastΔ(𝑟) = 𝛿(< 𝑟) is computed in spheres of increasing
radius 𝑟 until it satisfies a redshift-dependent threshold of Δid =

−0.853 for 𝑧 = 0.99, obtained from the spherical evolution model
(Gunn & Gott 1972; Lilje & Lahav 1991) by fixing a final spherical
perturbation of Δid = −0.9 for 𝑧 = 0.
(iv) Optimisation. Once these first void candidates are identi-

fied, step (iii) is repeated iteratively displacing the centre randomly
a value proportional to 0.25 times the previous radius until conver-
gence to a sphere with maximum radius is achieved. This procedure
mimics a random walk around the original centre in order to obtain
the largest possible sphere in that local minimum of the density
field.

1 The Hubble constant is parametrised as 𝐻0 = 100 ℎ km Mpc−1 s−1.
All distances and masses are expressed in units of ℎ−1Mpc and ℎ−1M� ,
respectively.

(v) Overlap filtering.Finally, the list of void candidates is cleaned
so that each resulting sphere does not overlap with any other. This
cleaning is done by ordering the list of candidates by size and
starting from the largest one. The final result is a catalogue of non-
overlapping spherical voids with a well-defined centre, a radius 𝑅v,
and overall density contrast Δ(𝑅v) = Δid.

The void finder also provides the position Xv =

(𝑋v1, 𝑋v2, 𝑋v3) [ℎ−1Mpc] and peculiar velocity Vv =

(𝑉v1, 𝑉v2, 𝑉v3) [km/s] of the void centres. Void velocities were
computed summing all the individual velocities of haloes inside a
spherical shell with dimensions 0.8 ≤ 𝑟/𝑅v ≤ 1.2. This velocity is
an unbiased and fair estimation of the bulk flow velocity of the void,
as was demonstrated in Lambas et al. (2016) (see their Fig. 1).

We do not consider AP distortions in this work. In Section 5.2
we provide a justification. For this reason, we make use of the TC
void catalogues of Paper I, for which the same cosmology of the
MXXL simulation was adopted in order to compute distances and
densities, needed in void definition. In order to study the impact
of the RSD distortions, the identification was performed both in
r-space and z-space. In this context, 𝑅rsv and 𝑅zsv will denote void
radius in both spatial configurations, respectively.

2.3 Bĳective mapping

In Paper I, we defined a bĳective mapping between voids in r-space
and z-space. Specifically, for each z-space centre, we picked the
nearest r-space centre with the condition that it must lay inside
1 𝑅zsv , removing all voids for which no partner could be found. This
mapping is a well defined function, since the condition of the nearest
r-space neighbour assigns only one object to each z-space void.
This mapping is also injective, since the non-overlapping condition
implies that each r-space void can only be reached by a single z-
space object. The filtering condition guarantees then a one-to-one
relationship between voids in the two configurations. These voids
constitute what we call the bĳective catalogues (TC-rs-b and TC-zs-
b in Table 1 fromPaper I, the former for the bĳective voids in r-space,
the latter for the bĳective voids in z-space). By construction, these
catalogues have the same number of elements (318, 784), and it is
ensured in this way that a void and its associated counterpart span
the same region of space. The original catalogues will be referred to
as the full catalogues (TC-rs-f and TC-zs-f in Table 1 from Paper I)
in order to distinguish them from the bĳective ones.

In Fig. 1, the left panel shows the void abundances correspond-
ing to the z-space catalogues, for both the full (grey dashed line) and
bĳective (grey solid line) versions. The error bands were calculated
from Poisson errors in the void counting process. In Paper I, we
demonstrated that the void loss in the z-space mapping decreases as
larger voids are considered. Particularly, voids above the shot noise
level are almost bĳective. A good indicator of this level is to take the
median of the radius distribution. In this case, it is 13.26 ℎ−1Mpc.
Visually, this can be appreciated in the figure by the small dif-
ferences between the dashed and solid curves. As a consequence,
the full and bĳective catalogues are statistically equivalent at these
scales. For this reason, we will not distinguish between them from
now on, unless otherwise stated.

2.4 Void sample

In order to measure the correlation function, we selected a sample
of z-space voids with sizes between 20 ≤ 𝑅zsv /ℎ−1Mpc ≤ 25.
This cut is shown in Fig. 1 (left panel) by the red vertical lines that
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delimit the sample. We have verified that the general results do not
depend on this cut, as long as it is carried out in the bĳective range.

The right panel of the figure shows the corresponding void
abundances of the r-space catalogues. In particular, the blue curve
describes how the r-space counterparts of the voids in the sample are
distributed in radius. Note that, unlike the z-space voids, the r-space
counterparts are not confined to a defined band, but they have a
more complex distribution in r-space covering an extended range of
scales, although notice that the y-axis is expressed in a logarithmic
scale. This is a central aspect in the analysis of this work, so we will
come back to this figure later to explain the remaining features (see
Section 5).

3 THE PROJECTED CORRELATION FUNCTIONS

We follow the methodology of C19 in order to measure correla-
tions. It is important to highlight that the original method relies on
measuring correlations directly in terms of void-centric angles and
redshifts between void-tracer pairs. The cosmological dependence
of these quantities with a physical distance scale is contained in the
model, thus allowing us to test different cosmologies without the
need to assume a fiducial one. In this way, the AP effect is taken into
account naturally. However, as we are not considering AP distor-
tions in this work, we treat correlations in the comoving coordinate
system defined by the simulation and concentrate purely on RSD
distortions.

Let us recall the basics here, in the context of these consider-
ations. 𝜉 (𝜎, 𝜋) denotes the void-galaxy cross-correlation function
in redshift space, where 𝜎 represents the comoving void-centric
distance in the plane of the sky (hereafter POS), and 𝜋 the analogue
distance along the LOS. Projecting 𝜉 (𝜎, 𝜋) towards the POS in a
given 𝜋-range, PR𝜋 , we get the POS correlation function, 𝜉pos (𝜎),
which is a function only of 𝜎. Conversely, projecting 𝜉 (𝜎, 𝜋) to-
wards the LOS in a given𝜎-range, PR𝜎 , we get the LOS correlation
function, 𝜉los (𝜋), a function only of 𝜋.

3.1 Binning scheme

The measurement of the z-space correlation function is based on a
cylindrical binning scheme. In this geometry, a bin is a cylindrical
shell oriented along the LOS, with internal radius 𝜎int, external
radius 𝜎ext, a lower height 𝜋low, and an upper height 𝜋up. For this
study, in which the simulation box is taken as a simple mock survey,
which is periodic, complete in volume and without any complicated
selection functions, there is no need to employ estimators involv-
ing a random comparison sample (see for instance Landy & Szalay
1993). Therefore, the estimate of the correlation function can be
considered analogous to that given by the natural estimator. Given a
bin labelled by (𝑖, 𝑗), and represented by the coordinates of its geo-
metrical centre, (𝜎𝑖 , 𝜋 𝑗 ), the estimator for the correlation function
can be written as

𝜉𝑖 𝑗 (𝜎𝑖 , 𝜋 𝑗 ) =
DD𝑖 𝑗
RR𝑖 𝑗

− 1, (3)

where DD𝑖 𝑗 represents the number of void-halo pairs counted inside
the bin, and RR𝑖 𝑗 , the expected number of pairs in a homogeneous
distribution, which in turn can be calculated analytically as the
product of the density of haloes, the volume of the bin and the total
number of voids.

The projected correlation functions can be considered as a
special case in this binning scheme. The POS projection ismeasured

from a set of nested cylindrical shells distributed across the POS,
whereas the LOS projection is measured from a string of filled
cylinders oriented along the LOS. More specifically, the scheme
for the POS projection involves bins with dimensions 𝜎int, 𝜎ext,
𝜋low = 0 and 𝜋up = PR𝜋 , where 𝛿𝜎 = 𝜎ext − 𝜎int is the POS
binning step.Conversely, the scheme for theLOSprojection involves
bins with dimensions 𝜎int = 0, 𝜎ext = PR𝜎 , 𝜋low and 𝜋up, where
𝛿𝜋 = 𝜋up − 𝜋low is the LOS binning step. For the analysis of this
work, we took equal projection ranges in both directions: PR𝜎 =

PR𝜋 = 40ℎ−1Mpc. For simplicity, we refer to both quantities with
the common notation PR. We also took equal binning steps: 𝛿𝜎 =

𝛿𝜋 = 1ℎ−1Mpc.

3.2 Configurations

We measured correlations in different configurations of the spatial
distribution of haloes and voids. Measurements made with z-space
voids and z-space haloes are referred to as the 𝑧× 𝑧-space configura-
tion. Similarly, measurements made with r-space voids and z-space
haloes are referred to as the hybrid 𝑟 × 𝑧-space configuration. Fi-
nally, measurements made with r-space voids and r-space haloes
are referred to as the 𝑟 × 𝑟-space configuration. This notation also
applies for measurements of the velocity field.

Fig. 2 shows the projected correlation functions corresponding
to the void sample defined in Section 2.4. The left panel shows
the POS projection, whereas the right panel, the LOS projection.
FollowingC19, we are interested in scales greater than theminimum
radius of the sample, in this case 20 ℎ−1Mpc. The measurements
made on the 𝑧×𝑧-space configuration are representedwith a red solid
line, i.e., these correlations are obtained from the spatial distribution
of voids and haloes both in z-space, and hence, mimic a possible
observational measurement. The measurements made on the hybrid
𝑟 × 𝑧-space configuration, on the other hand, are represented with
a blue dashed line, i.e., these correlations are obtained taking the
associated voids in r-space but keeping the haloes in z-space. This
is important because current models for RSD are defined to work in
this hybrid configuration (Nadathur& Percival 2019; Nadathur et al.
2019b), and the aim of this paper is to compare model predictions
with observations. We will explain the meaning of the remaining
curves in Section 5.

It is more useful to compare correlations in different config-
urations by quantifying their fractional differences: Δ𝜉/(𝜉 + 1) :=
(𝜉tar−𝜉ref)/(𝜉ref +1), where 𝜉tar is the target correlation we want to
compare, and 𝜉ref is the one used as reference. They are shown in the
lower panels of the figure, where the hybrid 𝑟×𝑧-space configuration
has been chosen as the reference one (blue dashed lines).

3.3 Model

In C19 we developed a physical model for the correlation function
that takes into account the coupled distortions generated by the
RSD and AP effects, along with the mixture of scales due to the
geometry of the binning scheme. We summarise its main aspects in
this subsection. For the following analysis we assume an arbitrary
cylindrical binning scheme. In this way, the model remains general
and the projected correlation functions can be treated as a special
case. A central aspect to keep in mind is that this model is defined
to work in the hybrid 𝑟 × 𝑧-space configuration.

The first step is to model the mixture of scales. The correlation
value corresponding to the bin (𝑖, 𝑗) can be predicted by expressing
Eq. (3) in differential form and then integrating over the volume of
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counterpart of the sample. The black curves are two model predictions: without performing the expansion effect correction (naive, dashed lines) and after
performing this correction (solid lines). The green dot-dashed curves represent the 𝑟 × 𝑧-space correlations using the sample N2, which allows us to test the
performance of the t-RSD correction. In all cases, a projection range of 40 ℎ−1Mpc was used. The lower panels show the corresponding fractional differences,
taking the 𝑟 × 𝑧-space configuration as reference.
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the bin:

𝜉𝑖 𝑗 (𝜎𝑖 , 𝜋 𝑗 ) = 2

∫ 𝜋up
𝜋low

𝑑𝜋
∫ 𝜎ext
𝜎int

𝜎[1 + 𝜉 (𝜎, 𝜋)]𝑑𝜎

(𝜎2ext − 𝜎2int) (𝜋up − 𝜋low)
− 1. (4)

This equation was adapted from Eq. (10) of C19 for the case of our
simplifiedmock consisting of the simulation box and our hypothesis
of working in a comoving coordinate system without AP distortions
(instead of angles and redshifts as in the original method).

The next step is to provide a model for the correlation function
taking into account the RSD effect. Following Peebles (1979) and
Paz et al. (2013), 𝜉 (𝜎, 𝜋) can be computed as the convolution of
the 𝑟 × 𝑟-space correlation function, 𝜉 (𝑟), and a pairwise velocity
distribution of void-tracer pairs. Note that 𝜉 (𝑟) is a one-dimensional
profile in view of the intrinsic spherical symmetry in r-space, with
𝑟 the distance to the centre of the voids. This profile characterises
the density contrast field around voids. The pairwise velocity dis-
tribution can be assumed as a Gaussian distribution centered on
the 𝑟 × 𝑟-space velocity profile describing the velocity field around
voids, 𝑣(𝑟), with a constant velocity dispersion, 𝜎𝑣 . We get the
following expression:

1 + 𝜉 (𝜎, 𝜋) =
∫ ∞

−∞
[1 + 𝜉 (𝑟)] 1

√
2𝜋𝜎𝑣

exp

[
−
(𝑣 ‖ − 𝑣(𝑟) 𝑟‖𝑟 )

2

2𝜎2𝑣

]
d𝑣 ‖ .

(5)

This is the so-called Gaussian streaming model (hereafter GS
model). Here, 𝑟⊥ and 𝑟 ‖ are the 𝑟 × 𝑟-space analogues of the 𝑟 × 𝑧-
space quantities 𝜎 and 𝜋. Moreover, 𝑣 ‖ denotes the LOS compo-
nent of the void-centric peculiar velocity of tracers. To complete
the model, we need prescriptions for the 𝑟 × 𝑟-space velocity and
density contrast profiles.

The velocity profile can be derived following linear theory via
mass conservation up to linear order in density (Peebles 1976; Paz
et al. 2013; Hamaus et al. 2015; Cai et al. 2016; Nadathur & Percival
2019):

𝑣(𝑟) = −1
3

𝐻 (𝑧)
(1 + 𝑧) 𝛽(𝑧)𝑟Δ(𝑟). (6)

where Δ(𝑟) is the integrated density contrast (introduced in Sec-
tion 2.2), and 𝛽(𝑧) = 𝑓 (𝑧)/𝑏 is the so-called RSD parameter, i.e.,
the ratio between the logarithmic growth rate of density perturba-
tions, 𝑓 (𝑧), and the linear bias parameter, 𝑏, that relates the matter
and halo density fields. For the snapshot 𝑧 = 0.99 of the MXXL
simulation that we are considering, 𝛽 = 0.65, obtained from the
analysis carried out in C19. In turn, Δ(𝑟) can be explicitly related
to 𝜉 (𝑟) by the following expression:

Δ(𝑟) = 3
𝑟3

∫ 𝑟

0
𝜉 (𝑟 ′)𝑟 ′2𝑑𝑟 ′. (7)

Unlike 𝑣(𝑟), there is not a successful model for the density
profile derived from first principles, but it is a common practice to
use parametric and empirical approaches (see for instance Paz et al.
2013; Hamaus et al. 2014; Nadathur et al. 2016). In particular, we
provided one in C19 (see Eq. 15). Nevertheless, we do not use any
of them in this work. Instead, we use the 𝑟 × 𝑟-space profile of the
sample directly measured from the simulation as input in the model.
This allows us to understand with precision all the z-space system-
atics that affect the correlation function, the aim of this paper, since
we are not introducing additional effects due to the performance of
the density models. This profile is shown at the left panel of Fig. 3
with blue dots. The right panel shows the corresponding velocity
profile, also with blue dots. The blue solid line is the prediction

of Eq. (6), which works remarkably well at all scales. We will ex-
plain the meaning of the remaining profiles displayed in the figure
(represented with green diamonds) in Section 5.2.

4 REDSHIFT-SPACE EFFECTS IN VOIDS

In Paper I, we carried out a thorough investigation of the z-space
effects that affect void properties, namely, their number, size and
spatial distribution. Particularly, we focused on the impact that these
effects have on the void size function taken as a cosmological test.
We continue the analysis in this paper, focusing now on the void-
galaxy cross-correlation function. Before that, in this section, we
review the main aspects of the physical description of these effects
with the aim to provide the framework to analyse the anisotropic
patterns observed on the correlation measurements, and in this way,
to figure out all the sources that cause them. This analysis is funda-
mental to obtain unbiased cosmological constraints. But besides this
practical importance, it will also shed light on important features of
the nature of cosmic voids regarding their structure and dynamics.

The pillar of the analysis resides in the one-to-one relation-
ship between z-space and r-space voids above the shot-noise level.
Incidentally, this means that the conservation of void-tracer pairs
is a good assumption when modelling RSD around voids. In view
of this, any systematic difference in the statistical properties be-
tween both void populations can only be attributed to some physical
transformation that voids suffer when they are mapped from r-space
into z-space, and hence, such transformation must be associated
to the distortions in the observed spatial distribution of the galax-
ies. Consequently, a physical description of the phenomenon must
find its bases on the large-scale dynamics and from cosmological
considerations.

4.1 Expansion effect

In Paper I, we showed that z-space voids are systematically bigger
than their r-space counterparts. The reason is that voids expandwhen
they are mapped from r-space into z-space. This is the expansion
effect, a consequence of the RSD induced by tracer dynamics at
scales around the void radius. We refer to this effect, particularly to
the type of distortions that it generates, with the acronym t-RSD.

A description of this effect is possible from the basis of Eq. (6),
from which a linear relation is found between both radii, 𝑅rsv and
𝑅zsv :

𝑅zsv = 𝑞RSD𝑅
rs
v , 𝑞RSD = 1 − 1

3
𝛿𝑅v𝛽(𝑧)Δid. (8)

Here, 𝛿𝑅v is a parameter that quantifies variation in radius, andΔid is
the threshold value for void identification introduced in Section 2.2.
In Paper I, we showed that voids above the shot noise level favor
the value 𝛿𝑅v = 0.5. Then, the explicit value of the proportionality
factor corresponding to the MXXL simulation is 𝑞RSD = 1.092.
Note that 𝑞RSD > 1, hence 𝑅zsv > 𝑅rsv , in agreement with our
assumption that voids expand in z-space.

4.2 Off-centring effect

In Paper I, we showed that z-space void centres are systematically
shifted along the LOS. This is the off-centring effect, a consequence
of a different class of RSD induced by large scale flows in the matter
distribution. Interpreting voids as whole entities that move in space
with a net velocity (Lambas et al. 2016; Ceccarelli et al. 2016; Lares
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Figure 3. Void-centric density contrast (left panel) and peculiar velocity (right panel) profiles in 𝑟×𝑟 -space. The blue dots correspond to the r-space counterpart
of the original sample, whereas the green diamonds, to subsample N2. They are almost identical, which shows the potential of the t-RSD correction. The solid
curves in the velocity analysis show the predictions of Eq. (6), which works remarkably well at all scales.

et al. 2017), this effect can be considered as a by-product of the RSD
induced by void dynamics. We refer to this effect, particularly to the
type of distortions that it generates, with the acronym v-RSD.

An analytical prediction of this effect can be obtained from an
expression equivalent to Eq. (1) for the case of voids:

𝑋̃v3 = 𝑋v3 +𝑉v3
(1 + 𝑧)
𝐻 (𝑧) , (9)

where 𝑋̃v3 denotes the shifted 𝑋v3-coordinate. In Paper I, we also
showed that, although the t-RSD and v-RSD effects manifest to-
gether in observations, they can be considered independent with
each other.

4.3 Alcock-Paczynski volume effect

The AP effect introduce additional distortion patterns in the spatial
distribution of the galaxies surrounding voids. As a consequence,
the volume of voids is also altered by this effect. This is because the
discrepancies between the fiducial and true cosmologies generate
deviations between the POS and LOS dimensions of voids, which
must be spherical in r-space. This is the Alcock-Paczynski volume
effect.

Following a similar approach to that used for the expansion
effect, it is possible to relate the true and fiducial radii, 𝑅rsv and 𝑅fidv :

𝑅fidv = 𝑞AP𝑅
rs
v , 𝑞AP =

3
√︃
(𝑞⊥AP)

2𝑞 ‖AP, (10)

where

𝑞⊥AP =
𝐷fidM (𝑧)
𝐷trueM (𝑧)

, 𝑞
‖
AP =

𝐻true (𝑧)
𝐻fid (𝑧)

. (11)

Here, 𝐷M denotes the comoving angular diameter distance. The
indices "fid" and "true" refer to fiducial and true quantities, respec-
tively. Unlike the expansion effect, the net result of the AP volume

effect is not necessary an expansion, it can also be a contraction.
This is because 𝑞AP can be less or greater than one, depending on
the fiducial cosmological parameters chosen.

Note that the RSD and AP factors are simply two constants of
proportionality, independent of the scale, and strongly dependent on
the cosmological parameters. Furthermore, there is an interesting
difference between them. On the one hand, 𝑞AP depends only on the
background cosmological parameters, such as Ω𝑚 and 𝐻0, hence
it is related to the expansion history and geometry of the Universe.
On the other hand, 𝑞RSD depends only on 𝛽, so it is a dynamical
parameter related to the growth rate of cosmic structures.

Actually, the volume of voids is affected by the combined
contribution of the t-RSD and AP effects. In Paper I, we showed
that both of them can be considered as independent effects, hence,
void radii can be related by combining Eqs. (8) and (10), resulting
in the following two-step correction:

𝑅zsv = 𝑞AP 𝑞RSD 𝑅rsv . (12)

This is all it takes to correct an observational void size function.

5 IMPACT ON THE CORRELATION FUNCTION

The goal of this section is to understand all the factors that contribute
to the final anisotropic shape of the projected correlation functions
measured on the 𝑧 × 𝑧-space configuration, the red solid curves of
Fig. 2, which represent a possible observational measurement from
a survey. This analysis is based on the framework developed on the
previous section. Although we analyse the projected version of the
correlation function, the main conclusions we reach are general.
Moreover, we have checked that the following results are qualita-
tively independent of the projection range. Here, we show the case
PR = 40 ℎ−1Mpc, as this constitutes a realistic case applicable to
data (see C19 for more details).
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Figure 4. Impact of the impurity of a sample regarding non-bĳective voids
quantified by means of the fractional differences of correlation between the
measurements made with the original sample, obtained from the bĳective
catalogue, and with an analogous sample taken from the full catalogue. The
differences are very small, less than 0.2%, allowing us to treat both samples
as statistically equivalent.

5.1 Impact of the impurity of a sample

In Section 2.3, we mentioned that the full and bĳective void cata-
logues are statistically equivalent at the scales of interest, hence we
were not going to distinguish between them. We make an exception
here to reinforce this concept concerning the correlation function.

In Section 2.4, we selected the void sample to use through-
out the work. It is composed of z-space voids in the range
20 ≤ 𝑅zsv /ℎ−1Mpc ≤ 25. Technically, this cut was applied to
the bĳective catalogue. We repeated the analysis applying the same
cut, but this time to the full catalogue. Fig. 4 shows the fractional
differences between the correlations measured with these two sam-
ples. The upper panel corresponds to the differences between the
POS projections, whereas the lower panel, to the LOS projections.
Note that the scale was augmented with respect to the scale shown
in Fig. 2 in order to highlight the magnitude of the differences.
They are very small, less than 0.2% at all scales. In view of this,
the impurity of a sample regarding non-bĳective voids produces a
negligible impact on correlation measurements.

5.2 Impact of the expansion effect

We can now make a first model prediction. As was explained in
Section 3.3, the model needs the 𝑟 ×𝑟-space density profile, 𝜉 (𝑟), as
input. As a first and naive ansatz, one could imagine that the correct
profile is that corresponding to the r-space voids with radii in the
same range as the z-space sample: 20 ≤ 𝑅rsv /ℎ−1Mpc ≤ 25.
The model prediction using this profile is shown in Fig. 2 with a
black dashed line. It is clear that it completely fails to reproduce the
𝑧 × 𝑧-space correlations: compare the black dashed curves with the
red solid ones. This failure of the model was expected, since it is
defined to operate in the hybrid 𝑟 × 𝑧-space configuration, as it does

not take into account the global dynamics of voids. However, it also
fails to reproduce the measurements in this configuration too, as
evident in the figure comparing now the black dashed curves with
the blue dashed ones. The relative differences can be as high as 8%,
specially near the void walls.

The inefficiency of the model highlights the importance of
relating to the correct 𝑟×𝑟-space statistical properties of the sample.
Themistake is to assume that the r-space counterparts of the z-space
voids in the sample fall in the same range of the radius distribution.
The right panel of Fig. 1 shows that the corresponding r-space
distribution is more complex, covering an extended range of scales.
In view of this, we repeated the analysis using exactly all the r-space
counterparts of the z-space voids in the sample to measure the 𝑟 ×𝑟-
space density profile. This is the profile that we have shown in Fig. 3
(left panel) with blue dots. The corresponding model prediction for
the projected correlations is shown in Fig. 2 with a black solid line.
Note that the deviations have been noticeably reduced, although not
completely: compare the black solid curves with the blue dashed
ones. There is a remaining deviation of order 2% at scales near the
void walls.

The immediate question that arises now is how to describe this
complex r-space sample. The answer lies in Eq. (8), namely, in the
expansion effect. According to this effect, the r-space sample should
fall in the range 20/𝑞RSD ≤ 𝑅rsv /ℎ−1Mpc ≤ 25/𝑞RSD. This is
shown at the right panel of Fig.1 with green vertical lines. Note that
the range thus delimited captures the bulk of the voids that constitute
the sample. Let us call all the r-space voids inside this band with
the name N2, for reasons that will be clarified in Section 5.4. The
sample N2 approximates the true r-space sample with respect to its
statistical properties. This is evident in Fig. 3, where we show the
density and velocity profiles of the sample N2 with green diamonds.
Note that it is almost identical to the profiles corresponding to the
true r-space sample (blue dots). This demonstrates the ability of the
t-RSD correction to recover the 𝑟 × 𝑟-space statistical properties of
voids identified from observational data.

Up to here, we can assert that the most important source of
distortion patterns on the correlation function is the t-RSD expan-
sion effect, which can be accounted for by the GS model combined
with Eq. (8). The remaining deviations between the observations
(red solid curves) and the model prediction (black solid curves) can
be separated into two components. The hybrid 𝑟 × 𝑧-space config-
uration (blue dashed curves) will serve as a mediator between both
of them. We explore this in the following subsections.

Before moving on, a brief comment about the impact of
the AP volume effect on the correlation function. Although we
are not considering this effect in this work, it is completely
analogous to the expansion effect. Concretely, the radius distri-
bution behaves similarly to Fig. 1. The only difference is that
the bulk of r-space voids are found now using Eq. (12) instead
of Eq. (8), which combines the contribution of both the t-RSD
and AP effects. More specifically, they are found in the range
20/(𝑞AP 𝑞RSD) ≤ 𝑅rsv /ℎ−1Mpc ≤ 25/(𝑞AP 𝑞RSD).

5.3 Impact of the off-centring effect

The first component of the remaining deviations is related to the
differences between the correlations in the 𝑧 × 𝑧- and 𝑟 × 𝑧-space
configurations (red solid and blue dashed curves in Fig. 2). In the
context of the bĳective mapping between voids, these differences
can only be attributed to the displacements of centres when they
are mapped from r-space into z-space, i.e. to the off-centring effect.
We highlight the fact that this effect is responsible for an additional
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Figure 5. Impact of the off-centring effect quantified by means of the frac-
tional differences of correlation between the measurements made on the
𝑧 × 𝑧-space (red solid lines) and 𝑟 × 𝑧-space (blue dashed lines) configu-
rations. In the context of the bĳective mapping, these differences can only
be attributed to the displacements of void centres under this mapping. They
represent an additional distortion pattern not previously taken into account,
which is due to the global dynamics of the regions containing the voids
(v-RSD). Note that these deviations diminish notably after correcting the
position of the z-space centres with Eq. (9) (purple solid lines).

distortion pattern that is different from the classic RSD due to tracer
dynamics (t-RSD), but it is due to void dynamics (v-RSD). It is also
true that these deviations are smaller than those corresponding to
the expansion effect, being at most of the order 3% at scales near
the void walls.

We can quantify physically the v-RSDdistortions using Eq. (9).
Fig. 5 shows what happens if the z-space centre positions are cor-
rected with this equation (purple solid lines). The deviations dimin-
ish notably, with differences well bellow 1%, thus recovering the
correlation function in the hybrid 𝑟 × 𝑧-space configuration remark-
ably well at all scales of interest. This is the first time that this type of
distortions on the correlation function are detected and quantified.

The correction performed here was possible because we are
working with a simulation. The void finder can compute the velocity
of voids from the individual velocity of tracers, hence Eq. (9) can
be applied to correct the centres. Nevertheless, this is not possible
in practice. One feasible solution is to incorporate a void velocity
distribution (see Fig. 6 of Paper I and its description) into the GS
model. We leave this topic for a future investigation.

5.4 Impact of void ellipticity

The second component of the remaining deviations is related to the
differences between the measurements in the 𝑟 × 𝑧-space configura-
tion and the model prediction (blue dashed and black solid curves
in Fig. 2), which are of order 2% at scales near the void walls, as
was noticed in Section 5.2.

Given the fact that the sample N2 (obtained with the t-RSD

correction) approximates well the true r-space sample, it is reason-
able to expect that the correlation functions measured with both
of them (in the 𝑟 × 𝑧-space configuration) will be almost identical.
However, this does not happen. In Fig. 2, the projected correlations
corresponding to the sample N2 are shown with a green dot-dashed
line. A comparison with the blue dashed curves shows that there
are appreciable deviations, specially in the LOS projection. This
is a completely unexpected result, since both samples have almost
identical 𝑟 × 𝑟-space density and velocity profiles, as we showed
in the analysis of Fig. 3. Evidently, the tails of the r-space sample
have an appreciable effect on correlations. Note however, that the
model predicts remarkably well the N2 correlations, finding neg-
ligible differences between them: compare the black solid curves
with the green dot-dashed ones. This result ratifies the methodol-
ogy developed in C19.

To find an explanation, we need to go back to the right panel
of Fig. 1 and define some subsamples of voids. We have already
defined one of them: the subsample N2, with all voids inside the
band delimited by the t-RSD correction with the factor 𝑞RSD (green
vertical lines). Analogously, the subset of voids that also fall inside
this band, but under the distribution of the overall r-space sample
(blue solid curve), will constitute the subsample C. Note that these
two subsamples are very similar in view of the t-RSD correction.
Now, the voids from the left tail will constitute the subsample OE,
whereas the voids from the right tail, the subsample UE. In the
same manner, all voids that fall at the left of the band, but in the
same range as the subsample OE, will constitute the subsample N1.
Similarly, all voids at the right of the band, but in the same range as
the subsample UE, will constitute the subsample N3. Note that the
subsamples N1, N2 and N3 contain the subsamples OE, C and UE,
respectively.

Fig. 6 shows the two-dimensional 𝑟 × 𝑟-space density field,
𝜉 (𝑟⊥, 𝑟 ‖), for each of the subsamples defined above. On each map,
the blue areas describe the emptiest regions. All maps were colour-
coded using the same scale. The first relevant feature to be outlined
is that the subsamples N1, N2 and N3 (upper panels) behave as ex-
pected: they exhibit circular contours with no signs of anisotropies.
The only difference among them is in the size of the empty regions,
in agreement with the fact that, from N1 to N3, they are composed
of voids of increasing radii. For this reason, these subsamples have
been labelled with the letter N, accounting for normal. Note that
the subsample C (lower-mid panel) also behaves normally, and in
particular, very similarly to subsample N2. Note however, that the
subsamples OE and UE (lower-left and lower-right panels) behave
unexpectedly. They exhibit prominent anisotropic patterns. This is
an interesting result, since we are analysing the density field in 𝑟×𝑟-
space, and hence, expecting spherical symmetry. Furthermore, the
anisotropies are opposite: OE voids are elongated along the POS
axis, whereas UE voids are elongated along the LOS axis.

Fig. 7 shows the associated 𝑟×𝑟-space velocity field, 𝑣(𝑟⊥, 𝑟 ‖),
for each of the subsamples. As in the case of the density, each
map was colour-coded using the same scale. The same results are
found: the subsamples N1, N2 and N3 exhibit circular contours,
the subsample C behaves similarly to subsample N2, whereas the
subsamples OE and UE exhibit prominent and opposite anisotropic
patterns.

We interpret these results in the followingway. Individual voids
are typically ellipsoidal, but oriented randomly in space. Therefore,
this ellipticity has no significant impact on the statistical properties
of a stacking of a complete sample of voids. This is the case of the
subsamples N1, N2 and N3. This is also the case of the subsample
C, since it is very similar to subsample N2. This is a feature of the t-
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Figure 6. Density contrast maps in 𝑟 × 𝑟 -space corresponding to the subsamples defined in Fig. 1. The normal subsamples (upper panels) exhibit circular
contours with no signs of anisotropies, as expected. The only difference between them is in the size of the empty regions, in agreement with the fact that, from
N1 to N3, they are composed of voids of increasing radii. Subsample C (lower-mid panel), in addition, behaves similarly to subsample N2. This highlights the
power of the t-RSD correction. The remaining subsamples, OE and UE, by contrast, exhibit prominent and opposite anisotropic patterns. This is a manifestation
of the ellipsoidal nature of voids.

RSD correction: it predicts a completeness region in the void radius
distribution. For this reason, this subsample has been labelled with
the letter C, accounting for complete. Voids from the subsamples
OE and UE, however, are not complete, but constitute a special
selection of voids. They do not follow the velocity and expansion
predictions of Eqs. (6) and (8), respectively. On the one hand, OE
voids are over-expanding voids, since they fall in the selection range
when they are identified in z-space, but their radii are grater than
the prediction given by the factor 𝑞RSD. Conversely, UE voids are
under-expanding voids, since they also fall in the selection range,
but their radii are lower than the corresponding prediction.

Fig. 8 shows the 𝑟 × 𝑟-space density (left panel) and veloc-
ity (right panel) fields corresponding to the overall r-space sample.
Note that the anisotropies are still present, the opposite behaviour
of the tails does not cancel. Particularly, the behaviour of the left tail
prevails over the right tail. This is because the former contains many
more voids than the latter. Therefore, although the spherical aver-
aged statistics erase the ellipsoidal nature of voids when estimating
the density and velocity profiles, as Fig. 3 shows, it manifests when
we calculate correlations. This is the reason why the model cannot
reproduce correctly the correlation measurements. We arrive at an
important conclusion here: besides the t-RSD and v-RSD effects,
the intrinsic ellipticity of voids is another source of distortions in
the correlation function. We refer to this effect, particularly to the
type of distortions that it generates, with the acronym e-RSD.

5.5 Towards an improved model

In order to match appropriately the observations, current models
for the void-galaxy cross-correlation function must be improved by
taking into account the z-space effects studied in this work. By far,
the most important aspect is the t-RSD+AP correction, i.e. the use
of Eq. (12) to relate to the correct 𝑟 × 𝑟-space statistical properties
of the sample, namely, the density and velocity fields.

The remaining deviations are smaller and are attributed to
two sources of distortions: v-RSD and e-RSD. For the former, the
peculiar velocity of voids must be statistically taken into account
in the models, as we mentioned in Section 5.3. For the latter, a
possible solution is to rewrite the GS model by taking into account
the elliptical symmetry that the 𝑟×𝑟-space density and velocity fields
impose, and the connection between them with a generalisation of
Eq. (6). Incidentally, there are previous works about the ellipticity
of voids and its cosmological importance in the literature (Park
& Lee 2007; Bos et al. 2012). We leave these topics for a future
investigation.

In the meantime, and as a first approach, we tested our model
again by incorporating the two-dimensional information of the 𝑟×𝑟-
space density and velocity fields from Fig. 8. We measured again
the 𝑟 × 𝑧-space projected correlations, but using a thinner projection
range: PR = 10 ℎ−1Mpc,which allows us to capturemore effectively
the behaviour along both directions. This is shown in Fig. 9 with
blue dots. Incidentally, the binning step used here is 𝛿𝜎 = 𝛿𝜋 =
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2 ℎ−1Mpc. Instead of using a single 𝑟 × 𝑟-space density profile as
input in the model, we used two profiles: one suitable for the POS
correlation, 𝜉pos (𝑟⊥), and one suitable for the LOS correlation,
𝜉los (𝑟 ‖). Both of them were obtained projecting 𝜉 (𝑟⊥, 𝑟 ‖) towards
the POS and LOS using the same PR, respectively. In the figure, the
model prediction is represented with a blue solid line. Note that it
matches the observed data points very well at all scales.

For completeness, we also performed this analysis applied to
the subsamples defined at the beginning: OE (green up-triangles +
dot-dashed lines), C (light-blue diamonds + long-dashed lines) and
UE (purple down-triangles + dashed lines). This is also shown in
Fig. 9. As before, the model recovers the data points remarkably
well at all scales. These results demonstrate that the GS model is
still robust in this case.

6 CONCLUSIONS

Our standard picture of dynamical and geometrical distortions
around voids is incomplete. Traditionally, we have focused only
on the spatial distribution of galaxies. The truth is that the RSD
and AP effects also have an impact on the void identification pro-
cess itself, affecting intrinsic void properties, such as their number,
size and spatial distribution. This problematic is important when
designing cosmological tests, since these void systematics generate
additional deviations on observations leading to biased cosmolog-
ical constraints if they are not taken into account properly. This is
particularly important in view of the extraordinary precision achiev-
able with modern spectroscopic surveys, such as BOSS, eBOSS and
the future DESI, Euclid and HETDEX, which will cover a volume
and redshift range without precedents.

One approach is to use a reconstruction technique. While this
method has proved to be robust in recovering the real-space statis-
tical properties of voids, such as their density and velocity profiles,
and achieving unbiased cosmological constraints, it also has some
disadvantages. For instance, it is computational expensive, quite re-
dundant and the valuable cosmological and dynamical information
contained in the z-space void systematics is not fully exploited. In
Paper I, we proposed an alternative approach, namely, to find a
physical connection between the identification of voids in real and
redshift space using a spherical void finder. A fundamental aspect
is that voids above the shot-noise level are almost conserved under
the z-space mapping, therefore, it is valid to assume void number
conservation. In this context, the differences between the statisti-
cal properties between both void populations can be explained by
means of three independent effects: the t-RSD expansion effect, the
AP volume effect, and the v-RSD off-centring effect. We provided
a theoretical framework to describe physically these effects from
dynamical and cosmological considerations, and the impact they
have on the void size function as a cosmological test.

This work is the continuation of the analyses presented in Pa-
per I. Here, we focus on the void-galaxy cross-correlation function.
We adopted the methodology of C19 by analysing two perpen-
dicular projections of the correlation function with respect to the
line-of-sight direction. Therefore, the main conclusions of this pa-
per supplement those of C19 and Paper I, and can be summarised
in the following statements.

1. Impurity of the sample. The impurity of a sample regarding
non-bĳective voids has a negligible impact on correlation measure-
ments. This reinforces the fact that void number conservation is a
valid assumption.

2. Configurations.Wemeasured correlations in different config-
urations of the spatial distribution of haloes and voids. Measure-
ments made with z-space voids and z-space haloes constitute the
𝑧 × 𝑧-space configuration, which represent possible observational
measurements. Similarly, measurements made with r-space voids
and z-space haloes constitute the hybrid 𝑟 × 𝑧-space configuration,
where current RSD models are defined to work. Finally, measure-
ments made with r-space voids and r-space haloes constitute the
𝑟 × 𝑟-space configuration, free of RSD and AP distortions.
3. Expansion and AP volume effects. It is fundamental to pro-

vide models with the correct 𝑟 × 𝑟-space statistics of a void sample,
namely, the density and velocity fields. This can be largely achieved
by means of a t-RSD+AP correction of void radii with Eq. (12). The
remaining deviations between observations and the model predic-
tion are smaller and caused by the following two sources.
4. Off-centring effect. This effect is responsible for an additional

distortion pattern due to void dynamics (v-RSD), which can be
largely reduced by correcting the centre positions with Eq. (9). This
is the first time that this type of distortions is detected and quantified.
5. Void ellipticity. Voids are typically ellipsoidal, but oriented

randomly in space. Therefore, this ellipticity has no significant im-
pact on the statistical properties of a stacking of a complete sample
of voids. However, when a sample is selected in z-space, the r-space
radius of their counterparts distribute in a complex way, covering
an extended range of scales. The t-RSD correction predicts the
region of completeness, where the ellipticity is not important. Nev-
ertheless, the tails of the distribution have an appreciable effect on
correlations. They are composed of special voids: over-expanding
voids elongated along the POS direction, and under-expanding voids
elongated along the LOS direction, responsible for an additional dis-
tortion pattern not previously taken into account (e-RSD).
6. Towards an improved model. The AP+t-RSD correction is

the most important modification needed in models. Although the
remaining deviations are smaller, they have a significant impact.
The v-RSD effect can be corrected for by incorporating information
about the void velocity distribution. This is the connection needed
between the 𝑟 × 𝑧- and 𝑧 × 𝑧-space configurations. Regarding the
e-RSD effect, a possible solution is to rewrite the Gaussian stream-
ing model by taking into account the elliptical symmetry that the
𝑟 × 𝑟-space density and velocity fields impose, and deepening our
understanding about the connection between them. We leave these
topics for a future investigation. With a simplified test, we showed
that the GS model can still be robust even in this case.
7. Comparing the void size function and the void-galaxy cross-

correlation function. From C19, Paper I and this work, we can
conclude that the void size function is affected by two types of
distortions: t-RSD and AP, whereas the correlation function, on
the other hand, by five types of distortions: t-RSD, AP, mixture of
scales, v-RSD and e-RSD.
8. Potential of the spherical void finder. The simplicity of the

spherical void finder allows us to explain naturally the redshift-
space effects in voids. This is because the method finds the largest
non-overlapping sphere in each void region, leading to awell defined
centre and radius that describe the scale size at a given underdensity
threshold.

As a final reflection, we want to highlight that, in addition to
the cosmological importance of considering the void systematics
to obtain unbiased constrains, they are also important for large-
scale structure studies per se, since they encode valuable infor-
mation about the nature of cosmic voids regarding their structure
and dynamics, and more generally, of the Universe at the largest
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Figure 9. Testing the validity of the model by incorporating the elliptical information of the density and velocity maps in 𝑟 × 𝑟 -space from Figs. 6 to 8 as
inputs. The 𝑟 × 𝑧-space projected correlations were measured again using a thinner projection range of 10 ℎ−1Mpc. The measurements are represented with
data points, whereas the model predictions with lines. Specifically, the samples involved are the following: overall r-space sample (blue dots + solid lines),
subsample OE (green up-triangles + dot-dashed lines), subsample C (light-blue diamonds + long-dashed lines) and subsample UE (purple down-triangles +
dashed lines).

scales. Furthermore, some of these effects can constitute cosmolog-
ical probes by themselves. For instance, Park & Lee (2007) show
that the ellipticity distribution of voids constitutes a cosmological
test.
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