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Abstract
In Born–Infeld theory and other nonlinear electrodynamics, the presence of a
magnetostatic field modifies the dispersion relation and the energy velocity of
waves propagating in a hollow waveguide. As a consequence, the transmitted
power along a waveguide suffers slight changes when a magnetostatic field is
switched on and off. This tiny effect could be better tested by operating the
waveguide at a frequency close to the cutoff frequency.

PACS numbers: 03.50.Kk, 03.65.Pm, 42.82.Et

1. Introduction

Born–Infeld electrodynamics [1–4] was created with the aim of healing the divergence of the
point-like charge self-energy, but nowadays it has become the object of great interest because
of its relation with the low energy dynamics of strings and branes [5–10]. As a nonlinear
extension of Maxwell’s theory, Born–Infeld electrodynamics has the quality of being the sole
extension free of birefringence (i.e. the wave vector of a propagating perturbation results to
be univocally determined) [11–14]. Few exact solutions of Born–Infeld theory are known,
but some issues concerning the wave propagation have been thoroughly studied. Namely, it
is known that the propagation velocity is c for free perturbations traveling in vacuum, but it
is lower than c if an external field is present [11, 13, 15]; in other words, the external fields
affect the dispersion relation. The dispersion relation is also affected by superposition of
free waves. In fact, although the Born–Infeld free waves are identical to those of Maxwell’s
theory, the Born–Infeld nonlinearity causes interactions among free waves that influence the
dispersion relation. This subject was studied in a previous paper by solving the Born–Infeld
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field equations in a cavity where stationary waves are formed [16]. Since a stationary wave is
the superposition of free waves bouncing backward and forward, the interaction between them
leads the wave amplitude to enter the dispersion relation in a waveguide. In this paper we
will show that even a magnetostatic field affects the dispersion relation of waves propagating
in a hollow waveguide by increasing the energy velocity. As a consequence, the transmitted
power along the waveguide could be controlled by means of magnetostatic fields. Although
this nonlinear electrodynamics effect should be very tiny, it has a better chance of being tested
when the waveguide works at a frequency close to the cutoff frequency.

2. Born–Infeld field

As in Maxwell’s electromagnetism, the Born–Infeld field Fμν is derived from a potential:
Fμν = ∂μAν − ∂νAμ (in geometric language, the 2-form F is exact: F = dA). This condition
cancels the curl of the electric field E and the divergence of the magnetic field B:

∂νFλμ + ∂μFνλ + ∂λFμν = 0, (1)

i.e. dF = 0. The Born–Infeld field differs from the Maxwell field in the dynamic equations,
which are written in terms of the tensor

Fμν = Fμν − P
b2

∗Fμν√
1 + 2S

b2 − P 2

b4

, (2)

where S and P are the scalar and pseudoscalar field invariants:

S = 1
4FμνF

μν = 1
2 (|B|2 − |E|2) (3)

P = 1
4

∗
FμνF

μν = E·B (4)

(∗Fμν is the dual field tensor, i.e. the tensor resulting from exchanging the roles of E and −B).
Born–Infeld dynamical equations are

∂νFμν = 0, (5)

(i.e. d ∗F = 0) which is obtained from the Born–Infeld Lagrangian

L[Aμ] = − b2

4π

(
1 −

√
1 +

2S

b2
− P 2

b4

)
. (6)

The constant b in equations (2) and (6) is a new universal constant with units of field that
controls the scale for passing from Maxwell’s theory to the nonlinear Born–Infeld regime,
in the same way as the light speed c is the velocity scale that indicates the range of validity
of Newtonian mechanics. The Maxwell Lagrangian and its related dynamical equations are
recovered in the limit b → ∞, or in regions where the field is small compared with b. Besides,
Born–Infeld solutions having S = 0 = P (‘free waves’) also solve Maxwell’s equations.

3. Stationary waves

For our purposes, we will concentrate in those Born–Infeld waves that can be written as
F = d[u(t, x)] ∧ dy, i.e.

F = ∂u(t, x)

∂t
dt ∧ dy +

∂u(t, x)

∂x
dx ∧ dy, (7)

where the symbol ∧ is the antisymmetrized tensor product. Expression (7) means
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cEy = Fty = ∂u/∂t = −Fyt (8)

Bz = −Fxy = −∂u/∂x = Fyx, (9)

the rest of the components Fμν being zero. So the pseudoscalar invariant P vanishes for the
proposed solution. The field (7) accomplishes equation (1), since dF is identically null. We
will choose the function u(t, x) to satisfy boundary conditions suitable for a rectangular box:

Ey(t, x = 0) = 0 = Ey(t, x = d). (10)

By substituting the field (7) in equation (5), one obtains the dynamical equation for u(t, x):

BIu(t, x) ≡
[

1 +
1

b2

(
∂u

∂x

)2
]

∂2u

∂t2
− 2

b2

∂u

∂t

∂u

∂x

∂2u

∂t∂x
− c2

[
1 − 1

c2b2

(
∂u

∂t

)2
]

∂2u

∂x2
= 0.

(11)

This is the so-called Born–Infeld equation, which can be independently derived from the scalar
field Lagrangian L[u] ∝ (1 − b−2ημν∂μu∂νu)1/2.

4. BI-guided waves in the presence of a magnetostatic field

In [16] we have used the scheme of section 3 to study waves propagating in a rectangular
waveguide along the z-axis. Although the field (7) does not depend on z—so the field (7)
would be just a stationary wave bouncing backward and forward between two opposite walls
of the guide—the propagation along the guide can be introduced by transforming the field
with a Lorentz boost in the z-direction. This procedure would convert the solution (7) into a
transverse electric propagating mode (note that a boost along z does not modify the boundary
conditions (10)). In this paper we will study the nonlinear effects produced by the presence of
a magnetostatic field B� along the waveguide. Equipped with the knowledge of the solution
for a stationary wave between parallel plates with B� = 0 [16], we prepare the solution with
three free parameters—α, β and 
—that will allow us to fit equation (11):

u(t, x) = E

κ

[
cos(
t) +

E2

32b2
cos(3
t)

] [
sin(κx) +

E2

32b2
sin(3κx)

]

−B�

[
x + α

E2

κb2
sin(βκx)

]
+ O(b−4), (12)

where 
 = κc(1 + εb−2). In the Maxwellian limit, (b → ∞) u(t, x) represents a stationary
wave plus a uniform magnetostatic field B�. The boundary condition (10) implies κ = nπ/d.
The α-term is a modulation of the magnetic field caused by the stationary wave. By replacing
this solution in the Born–Infeld equation (11), one obtains

BIu(t, x) = −c2κE

2b2

[(
E2 + 2B2

� + 4ε
)

cos(κct) sin(κx)

− 2B�E(sin(2κx) − αβ2 sin(βκx))
]

+ O(b−4). (13)

Therefore, in order that u(t, x) in equation (12) be a solution of equation (11) at the considered
order, the values of 
, α and β should be


 = κc

(
1 − E2 + 2B2

�

4b2

)
, α = 1

4
, β = 2. (14)

As mentioned, a Lorentz boost along z will transform this field in a transversal electric mode
propagating in the waveguide. Since the solution does not depend on y, the wave will result
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in a TEn0 mode. The Lorentz boost will not modify x and y in equation (7), but dt will be
replaced by γ (V )(dt ′ − V c−2 dz′):

F = ∂u(t, x)

∂t
γ (V ) dt ′ ∧ dy − ∂u(t, x)

∂t
γ (V )V c−2 dz′ ∧ dy +

∂u(t, x)

∂x
dx ∧ dy. (15)

Besides, the phase 
t will change to 
γ (V )(t ′ − V c−2z′), which means that the components
of the wave vector are

kt ′ = ω = 
γ (V ), kz′ = 
γ (V )V c−2, (16)

so the dispersion relation is

ω2 = k2
z′c

2 + 
2 (17)

The energy velocity V can be recovered from equations (16) and (17)) as

V = c2kz′

ω
= ∂ω

∂kz′
. (18)

For a given frequency ω, the wave number kz′ and the energy velocity V depend on the
wave amplitude E and the magnetostatic field B� through the functional form of 
 (see
equations (14) and (17)). In particular, equation (17) tells us that the minimum frequency that
propagates in the waveguide is

ωcutoff = 
min = 
(n = 1) = πc

d

(
1 − E2 + 2B2

�

4b2

)
+ O(b−4). (19)

The presence of B� in the cutoff frequency (a typical nonlinear effect) offers a way for
controlling the energy flux in the guide. Namely, a given frequency ω could be larger than
ωcutoff when the magnetostatic field B� is on, so the wave propagates. But the same ω could
become lower than ωcutoff if B� is turned off. Thus, one could allow the wave propagate or not
by switching on and off the magnetostatic field along the waveguide.

5. The transmitted power

We will calculate the energy flux in the waveguide. The energy flux per unit of time and area
along the z-direction is the component T z′

t ′ of the energy–momentum tensor. The non-diagonal
components of T μν in Born–Infeld electrodynamics are particularly simple (see for instance
[17]):

T z′
t ′ = − 1

4π
Ft ′μF z′μ. (20)

In the case under study, it is

T z′
t ′ = − 1

4π

Ft ′μF z′μ√
1 + 2S

b2

= − 1

4π

Ft ′yFz′y√
1 + 2S

b2

= γ (V )2V

4πc2

(∂u/∂t)2√
1 + 2S

b2

= ωkz′

4π
2

(∂u/∂t)2√
1 + 2S

b2

. (21)

Therefore, the time-averaged transmitted power in the waveguide is

P =
∫

dx dy
〈
T z′

t ′
〉 = ωkz′ Area E2

16πκ2

(
1 +

3E2

32b2
+ O(b−4)

)
, (22)

where 〈 〉 means the integration in a period divided by the period. If the Born–Infeld constant
b goes to infinity, then the Maxwellian result for the transmitted power is recovered. The
Born–Infeld correction is expected to be very weak. However, if one manages to operate
the waveguide near the cutoff frequency, then one could benefit from the fact that ∂kz′/∂ω
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diverges at ωcutoff . This implies that the nonlinear contributions to kz′ are amplified near the
cutoff frequency. In fact, according to equations (17) and (19), kz′ is

kz′ = c−1
√

ω2 − 
2
min = c−1

√
ω2 −

(πc

d

)2
+

π2c

4d2b2

E2 + 2B2
�√

ω2 − (
πc
d

)2
+ O(b−4). (23)

Thus, the slight change in the transmitted power along the waveguide caused by switching on
and off the longitudinal magnetostatic field B� can be approximated as

�P
P

= �kz′

kz′
= 1

2

B2
�

/
b2(

ωd
πc

)2 − 1
+ O(b−4), (24)

the approximation being valid if expression (24) is much smaller than 1.

6. Conclusion

According to equation (24), by tuning the wave frequency ω very close to the cutoff frequency
ωcutoff � πc/d, one could improve the chance of revealing the tiny nonlinear effect on the
transmitted power and thus determining the Born–Infeld constant b. This fine tuning could be
achieved by moving the power sensor in search of the frame where the wave number is nearly
zero (so the energy velocity V is nearly zero). The detection of the effect (24) on the transmitted
power would constitute a clear manifestation of the nonlinear behavior in the propagation of
electromagnetic waves in vacuum. Of course, since we have solved the Born–Infeld theory
at the order b−2, the obtained results are also valid for any nonlinear electrodynamics having
the same form at that order: L = (1/4π)[S − b−2(S2 + P 2)/2] + O(b−4). In particular, since
the pseudoscalar P vanishes for solution (7), our results are shared with the Euler–Heisenberg
Lagrangian, the weak-field limit for the one-loop approximation of QED [18–20],

LEH = 1

4π

[
S − 4μ

(
S2 +

7

4
P 2

)]
, (25)

μ being

μ = 2α2

45mec2

(
h̄

mec

)3

, (26)

where α is the fine-structure constant. In fact, those solutions having P = 0 are common to
both theories provided that the Born–Infeld constant b is identified with 1/

√
4μ, which has a

magnitude of 1020 V m−1 [21].
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