
January 28, 2010 18:30 WSPC/INSTRUCTION FILE bejarano˙2

International Journal of Modern Physics D
c© World Scientific Publishing Company

ROLE OF THE HALL EFFECT ON THE MAGNETOROTATIONAL

INSTABILITY

CECILIA BEJARANO∗

Instituto de Astronomı́a y F́ısica del Espacio (CONICET-UBA)
C.C. 67, Suc. 28, 1428, C.A.B.A, Buenos Aires, Argentina

DANIEL GÓMEZ†
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Within the framework of magnetohydrodynamics, the Hall effect might become non-
negligible either in fully ionized low density plasmas or in cold plasmas with a low
ionization fraction . We address the role of the Hall current in the development of the
magnetorotational instability. The instability criterion and the instability growth rate
are derived from a one-dimensional model.
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1. Introduction

Accretion disks are formed by matter containing a significant amount of angular

momentum being gravitationally attracted by compact objects. There is consid-

erable interest in studying these astrophysical flows, since accretion is a powerful

mechanism of conversion of gravitational energy into kinetic energy and radiation.

Theoretical models of accretion require the generation of small-scale turbulence to

enhance the effective viscosity of the flow, although the origin of turbulence is still

not well understood. However if the accretion disk displays differential rotation in

the presence of magnetic fields, the magnetorotational instability (MRI) appears

as the most promising candidate.1–3 The magnetorotational instability has been

widely tested with numerical simulations which show that the strong turbulence

generated efficiently enhances angular momentum transport.4–6

∗cbejarano@iafe.uba.ar
†dgomez@df.uba.ar

1



January 28, 2010 18:30 WSPC/INSTRUCTION FILE bejarano˙2

2 Bejarano & Gómez

Nevertheless, it seems very restrictive to assume that the generation of turbu-

lence relies on just one single instability, with a rather specific instability condition.

Therefore, it seems appropriate to continue exploring other potential sources of

small-scale turbulence. In this regard, the growth of purely hydrodynamic fluctua-

tions (even though not exponentially fast) cannot be ruled out.7–14

Within the framework of magnetohydrodynamics, the Hall effect might be non-

negligible whenever the ion density of the plasma becomes sufficiently low. This

situation can arise either in hot, fully ionized low density plasmas (e.g. Refs. 15–16

for magnetic reconnection and for dynamo mechanisms, respectively), or in cold

plasmas with a low ionization fraction (e.g. Ref. 17 for protoplanetary disks). The

influence of the Hall effect on the magnetorotational instability has been considered

in the linear17–18 as well as in the nonlinear regimes19–20 (see also Refs. 22–23).

An interesting feature of the Hall effect that has not been properly addressed

in the literature, is the fact that it breaks the MHD symmetry B ↔ −B. A direct

consequence of this symmetry break is a strong change in the stability region in

the parameter space depending on the relative alignment of the external magnetic

field and the angular velocity of the disk. Also, the Hall effect qualitatively changes

the criterion leading to instability in cases where the angular velocity increases

outward18–21, which esentially means that the Hall effect can destabilize any system

with differential rotation. In the present paper we analyze the potential relevance

of the Hall effect in a one-dimensional theoretical model. The set of equations as

well as the simplifying assumptions that we make, are listed in §2. The dispersion

relation that is obtained in the linear regime is shown in §3, and the role of the

Hall effect on the magnetorotational instability is discussed in §4. Finally, in §5 we

summarize the main conclusions of the present study.

2. General Equations

Below we list the dimensionless Hall-MHD equations in a rotating reference frame

with angular velocity Ω = Ω0ẑ. We use Ω−1
0 as our time unit, and velocities are in

units of the Alfvén velocity vA. For a fully ionized hydrogen plasma, the continuity

equation is

∂n

∂t
+ ∇ · (nu) = 0 , (1)

where n is the particle density (ne = ni = n to guarantee charge neutrality). The

equation of motion for this plasma is

Du

Dt
= −∇h +

∇× B × B

n
− 2ẑ × u , (2)

where h is the enthalpy density (for a barotropic flow). The induction equation is

∂A

∂t
= ε∇h −∇Φ +

(

u− ε
∇× B

n

)

× B , (3)
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where A is the vector potential, Φ is the electrostatic potential and ε = c/ωpiL0 (c:

speed of the light, ωpi: ion plasma frequency, L0 = vA/Ω0) is the Hall parameter.

The expresion for the enthalpy density for an ideal and isothermal gas is

h =
c2
0

v2
A

ln(n) , (4)

where c0 is the sound speed. An important feature to keep in mind, is the fact that

the relative orientation of the disk angular velocity Ω0 and the external magnetic

field B0 is related to the sign of the Hall parameter ε (ε > 0: aligned, and ε < 0:

anti-aligned).

We introduce the effect of differential rotation by externally applying a linear

shear flow to a small parcel of disk located at a radial distance r0. For simplicity we

also assume all fields to depend only on the ẑ-direction, i.e. ∇ = ẑ∂z. The external

magnetic field B0ẑ is distorted by the applied shear flow, developing perpendicular

components on both the velocity and magnetic vector fields, i.e.

B = B0ẑ +





bx(z, t)

by(z, t)

bz(z, t)



 , u = −axŷ +





ux(z, t)

uy(z, t)

uz(z, t)



 , (5)

where the parameter a locally describes the differential rotation profile Ω(r) =

Ω0(r/r0)
−a in a co-rotating Cartesian reference frame centered at r = r0, with x

oriented in the radial direction and y along the azimuthal direction. The case of

keplerian differential rotation corresponds to a = 3/2.

3. Dispersion Relation

After linearizing the Hall MHD equations in the geometric setup described in the

previous section, the system splits into two subsystems. One of them corresponds

to sound waves propagating along the magnetic field (z-modes), i.e.

∂tδn = −∂zuz (6)

∂tuz = −∂zδn . (7)

The other subsystem corresponds to perpendicular degrees of freedom described

by

∂tu⊥ = ∂zb⊥ +

(

0 2

(a − 2) 0

)

u⊥ (8)

∂tb⊥ = ∂zu⊥ +

(

0 0

a 0

)

b⊥ + ε

(

0 1

−1 0

)

∂2
zzb⊥ , (9)



January 28, 2010 18:30 WSPC/INSTRUCTION FILE bejarano˙2

4 Bejarano & Gómez

which shows that this perpendicular part of the linear dynamics remains fully un-

coupled from the (δn, uz) part, which is entertained in the propagation of acoustic

waves.

Assuming: u⊥, b⊥ ∼ ei(kz−ωt) this set of equations leads to the following dispersion

relation:

ω4 − 2C2ω
2 + C0 = 0 , (10)

where

C2(k) =
ε2

2
k4 +

(

1 −
εa

2

)

k2 + (2 − a) (11)

C0(k) = k2 (1 + ε(2 − a))
(

k2(1 + 2ε) − 2a
)

. (12)

4. Hall magnetorotational instability

The solutions of the dispersion relation can be written as

ω2
± = C2 ±

√

C2
2 − C0 (13)

Fig. 1. Growth rate of the unstable branch as a function of the Hall parameter and wavenumber
(i.e. γ−(ε, k2)) for a keplerian rotation profile. A contour plot is overlaid at the top and a grey
scale image is at the bottom.
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After exploring the solution branches ω2
+ and ω2

− as a function of parameters

ε and k2 (for a given value of the differential rotation index a), we find that only

ω2
− can lead to instability whenever ω2

− = −γ2
− < 0 while ω2

+ allways corresponds

to oscillations. The growth rate γ−(ε, k2) is shown in Fig. 1, for the keplerian case

(i.e. a = 3/2). Contour levels of this function are also overlaid at the top.

In Fig. 2 we present the corresponding contour plots for the following three cases:

sub-keplerian, keplerian, and super-keplerian. In all of them, note the asymptotic

behavior of γ− when k2 → ∞. This implies that all modes are unstable for a specific

range of the Hall parameter. Also, the whole unstable region becomes appreciably

larger when differential rotation goes from sub-keplerian to super-keplerian regimes.

The instability region can be approximately described through a range of negative

values of ε, therefore corresponding to disks where the angular velocity and mag-

netic field vectors are anti-aligned. For the cases where these two vectors are aligned,

instability only arises in a narrow region at the very smallest wavenumbers allowed

in the shearing box.

The well studied magnetorotational instability in these plots corresponds to the

particular case ε = 0, for which the classical results are of course recovered 3. For

instance, the range of unstable wavenumbers corresponds to 0 < k2 < 3, and the

largest growth rate in this interval is attained at k2 = 15/16.

5. Conclusions

The main goal of the present study has been to address the role of the Hall effect

on the magnetorotational stability of low density accretion disks. We obtained the

Fig. 2. Contour levels of the instability growth rate γ− on the (ε, k2) plane for sub-keplerian(a =
1.25), keplerian (a = 1.5) and super-keplerian (a = 1.75) cases. Note the asymptotic behavior for
k2 → ∞ in all these cases.
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instability regions in the (ε, k2) parameter space for sub-keplerian, keplerian and

super-keplerian differential rotation profiles. The standard conditions for MRI are

recovered in the particular case ε = 0. More importantly, in cases where the disk

angular velocity and the external magnetic field are anti-aligned (i.e. for ε < 0),

there is always a range of values of the Hall parameter ε for which all wavenumbers

are unstable.

Acknowledgments

We would like to thank the anonymous referee for his/her constructive and fruitfull

comments. This work has been supported by the University of Buenos Aires through

grant UBACyT X092/2008 and by the ANPCyT through grant PICT 33370/2005.

6. References

References

1. E. P. Velikhov, Sov. Phys. JETP 9 (1959) 995.
2. S. Chandrasekhar, Hydrodynamic and hydromagnetic stability (Oxford University Press,

Oxford, 1961).
3. S. A. Balbus and J. F. Hawley, Astrophys. Journal 376 (1991) 214.
4. A. Brandenburg, A. Nordlund, R. F. Stein and U. Torkelsson, Astrophys. Journal 446

(1995) 741.
5. J. F Hawley, C. F. Gammie and S. A Balbus, Astrophys. Journal 440 (1995) 742.
6. R. Matsumoto and T. Tajima, Astrophys. Journal 445 (1995) 767.
7. V. Urpin, Astron. Astrophys. 404 (2003) 397.
8. O. M. Umurhan and O. Regev, Astron. Astrophys. 427 (2004) 855.
9. P. A. Yecko, Astron. Astrophys. 425 (2004) 385.
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16. P. D. Mininni, D. O. Gómez and S. M. Mahajan, Astrophys. Journal Lett. 567 (2002)

L81.
17. M. Wardle, Mon. Not. R. Astron. Soc. 307 (1999) 849.
18. S. A. Balbus and C. Terquem, Astrophys. Journal 552 (2001) 235.
19. T.Sano and J. M. Stone, Astrophys. Journal 570 (2002) 314.
20. T. Sano and J. M. Stone, Astrophys. Journal 577 (2002) 534.
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