
DOI: 10.1142/S0217732310032196

March 15, 2010 11:21 WSPC/146-MPLA S0217732310032196

Modern Physics Letters A
Vol. 25, No. 8 (2010) 611–617
c© World Scientific Publishing Company

THE EFFECT OF RANDOM COUPLING COEFFICIENTS ON

DECOHERENCE

MARIO CASTAGNINO

CONICET, IAFE, IFIR, Universidad de Buenos Aires, Argentina

SEBASTIAN FORTIN

CONICET, IAFE, Universidad de Buenos Aires, Argentina

sfortin@gmx.net

OLIMPIA LOMBARDI

CONICET, Universidad de Buenos Aires, Argentina

Received 28 September 2009

The aim of this letter is to analyze the effect on decoherence of the randomness of the
coupling coefficients involved in the interaction Hamiltonian. By studying the spin-bath
model with computer simulations, we show that such randomness greatly improves the
“efficiency” of decoherence and, then, its physical meaning deserves to be considered.
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1. Introduction

Environment induced decoherence (EID) is usually tested by means of computer

simulations on models whose coefficients are, in general, taken as random with

the idea of simulating a generic situation (see, for example, Refs. 1–6). This widely

spread strategy is reasonable for the coefficients of the particles’ states, but it is not

natural for the coupling coefficients involved in the interaction Hamiltonian: there

is no reason to assume that particles of the same nature interact with each other

with different strengths. The point would be irrelevant if the randomness of the

coupling coefficients did not affect the overall phenomenon. The aim of this letter is

to show that this is not the case: the randomness of the coupling coefficients greatly

improves the “efficiency” of decoherence. This result has to be taken as a warning

against the uncritical use of random coupling coefficients for drawing conclusions

about decoherence. We will argue for this claim by means of the analysis of a

well-known model.

2. The Spin-Bath Model

This is a very simple model that has been exactly solved in previous paper (see

Ref. 1). We will study it from the general theoretical framework for decoherence
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presented in a previous work.7 Let us consider a closed system U = S + E where

(i) the system S is a spin-1/2 particle P represented in the Hilbert space HS , and

(ii) the environment E is composed of N spin-1/2 particles Pi, each one represented

in its own Hilbert space Hi. The complete Hilbert space of the composite system U

is H = HS⊗
(

⊗N
i=1 Hi

)

. In the particle P , the two eigenstates of the spin operator

SS,v in direction v are |⇑〉 and |⇓〉, such that SS,v |⇑〉 =
1
2 |⇑〉 and SS,v |⇓〉 = − 1

2 |⇓〉.

In each particle Pi, the two eigenstates of the corresponding spin operator Si,v in

direction v are |↑i〉 and |↓i〉, such that Si,v |↑i〉 = 1
2 |↑i〉 and Si,v |↓i〉 = − 1

2 |↓i〉.

Therefore, a pure initial state of U reads

|ψ0〉 = (a |⇑〉+ b |⇓〉)⊗

(

N
⊗

i=1

(αi |↑i〉+ βi |↓i〉)

)

, (1)

where the coefficients a, b, αi, βi are such that |a|
2
+ |b|

2
= 1 and |αi|

2
+ |βi|

2
= 1

are satisfied. The self-Hamiltonians HS and HE of S and E, respectively, are taken

to be zero. Then the total Hamiltonian H = HS + HE + HSE of the composite

system U results (see Refs. 1 and 2)

H = HSE = SS,v ⊗
N
∑

i=1

2giSi,v ⊗





N
⊗

j 6=i

Ij



 , (2)

where Ij is the identity operator on the subspace Hj , SS,v = 1
2 (|⇑〉 〈⇑| − |⇓〉 〈⇓|)

and Si,v = 1
2 (|↑i〉 〈↑i| − |↓i〉 〈↓i|). Under the action of H = HSE , the state |ψ0〉

evolves as |ψ(t)〉 = a |⇑〉 |E⇑(t)〉+ b |⇓〉 |E⇓(t)〉 where |E⇑(t)〉 = |E⇓(−t)〉 and

|E⇑(t)〉 =

N
⊗

i=1

(

αi e
−igit/2 |↑i〉+ βi e

igit/2 |↓i〉
)

. (3)

An observable of U , O ∈ O = H⊗H, reads

O =











s⇑⇑ |⇑〉 〈⇑|

+s⇑⇓ |⇑〉 〈⇓|

+s⇓⇑ |⇓〉 〈⇑|

+s⇓⇓ |⇓〉 〈⇓|











⊗















N
⊗

i=1















ǫ
(i)
↑↑ |↑i〉 〈↑i|

+ǫ
(i)
↓↓ |↓i〉 〈↓i|

+ǫ
(i)
↓↑ |↓i〉 〈↑i|

+ǫ
(i)
↑↓ |↑i〉 〈↓i|





























. (4)

In the typical situation studied by the EID approach, the system of interest S is

simply the particle P . Therefore, the relevant observables OR are obtained from

Eq. (4) by making ǫ
(i)
↑↑ = ǫ

(i)
↓↓ = 1 and ǫ

(i)
↑↓ = 0:

OR =

(

∑

s,s′=⇑,⇓

sss′ |s〉〈s
′|

)

⊗

(

N
⊗

i=1

Ii

)

= OS ⊗ IE . (5)

The expectation value of these observables in the state |ψ(t)〉 is given by

〈OR〉ψ(t) = |a|2s⇑⇑ + |b|2s⇓⇓ + 2Re[ab∗s⇓⇑ r(t)] , (6)
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where (see Ref. 2)

r(t) = 〈E⇓(t) |E⇑(t)〉 =

N
∏

i=1

[

|αi|
2e−igit + |βi|

2eigit
]

. (7)

It is clear that the time-behavior of 〈OR〉ψ(t) depends on the behavior of r(t). In

order to know such a behavior, we performed numerical simulations for

|r(t)|2 =

N
∏

i=1

(|αi|
4 + |βi|

4 + 2|αi|
2|βi|

2 cos 2git)

=

N
∏

i=1

fi(t) , (8)

where the |αi|
2
were obtained from a random-number generator, and the |βi|

2
were

computed as |βi|
2
= 1− |αi|

2
. But before presenting the computer simulations, we

will study the Poincaré time for this model.

3. Analyzing the Poincaré Time

Each fi(t) of Eq. (8) comes back to its initial value for the first time at a time tPi,

such that 2gitPi = 2π ⇒ tPi = π/gi. In turn, |r(t)|2 comes back to its initial value

when all the fi(t) do it. Therefore, the Poincaré time tP of this model is the time

when all the fi(t) come back to their initial values for the first time. Let us consider

three cases:

(a) All the gi have the same value: gi = g, for all i. So, the mean value is

gi = g. In this case, all the fi(t) come back to their initial values at the same time

tPi = π/g. Therefore, the Poincaré time is tP = π/g = π/gi, and it does not depend

on the number of particles N .

(b) All the gi are such that gi = nigmin, with ni ∈ N. In this case, tP is the

largest tPi, corresponding to the smallest gi, gmin: tP = π/gmin. So, given a gmin,

the Poincaré time tP does not depend on N . Since the mean value is gi > gmin,

then tP > π/gi.

(c) All the gi are random. Since in the computations the gi are rational numbers,

we can express them as gi = pi/qi, with pi, qi ∈ N. If we make tP = πQ, the number

Q has to be such that Q = niqi/pi for all i, with ni ∈ N. Then, ni = Qpi/qi. Since

the pi and qi are random natural numbers, the least Q that guarantees that ni is a

natural number for all i is Q =
∏N
i=1 qi. Therefore,

tP = πQ = π

N
∏

i=1

qi . (9)

In turn, Q is larger than any qi, larger as N increases. Then, for N large and for

any gi = pi/qi, the Poincaré time is tP = πQ ≫ πqi > πqi/pi = π/gi = tPi,

and also tP ≫ π/gi. Moreover, the order to magnitude of tP can be estimated
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Fig. 1. Plot of |r(t)|2 given by Eq. (8), for N = 100 and gi = g = 0.5.
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Fig. 2. Plot of |r(t)|2 given by Eq. (8), for N = 100 and random gi ∈ [0.4, 0.6].

as tP = πQ ∼ πqi
N ≫ (π/gi)

N : when the coupling coefficients are random, the

Poincaré time increases exponentially with the number of particles.

Case 1. Homogeneous environment. Let us consider the case where all the

particles of the environment are of the same kind. In this case, the reasonable as-

sumption is that the particle P interacts in the same way with all the environmental

particles and, as a consequence, gi = g for all i (Case (a)). The time-behavior of

|r(t)|2 of Eq. (8), for N = 100 and gi = g = 0.5, is plotted in Fig. 1: we can see

that the Poincaré time tP = π/g = π/0.5 ≃ 6.28 is not sufficiently larger than the

decoherence time to consider the result as an effective decoherence that may lead

to classicality.

Now let us consider the case that P does not interact in the same way with

all the environmental particles. In particular, we will assume that the coupling

coefficients are random in an interval [gi −∆g, gi +∆g] around the mean value gi.

The time-behavior of |r(t)|2 of Eq. (8), for N = 100 and gi random, with gi = 0.5

and ∆g = 0.1, is plotted in Fig. 2. In this case, the Poincaré time is much larger

than (π/gi)
N = (6.28)100 (Case (c)), a value that can be considered infinite for

all practical purposes. Therefore, as Fig. 2 shows, it can be legitimately mentioned

that the particle P decoheres and may become classical.
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Fig. 3. Plot of |r(t)|2 given by Eq. (10), for N = 100, N1 = 91, N2 = N3 = N4 = 3, g1 = 2.4,
g2 = 1.2, g3 = 0.6 and g4 = 0.3.

Case 2. Nonhomogeneous environment. In this case we will consider an envi-

ronment where particles are not all of the same kind, and the particles of each kind

j interact with P through their own coupling coefficient gj : N1 particles through g1,

N2 particles through g2, . . . and Np particles through gp, such that
∑p

j=1Nj = N .

Then, the |r(t)|2 of Eq. (8) can be rewritten as:

|r(t)|2 =

N
∏

i=1

fi(t)

=

(

N1
∏

i=1

fi,g1(t)

)(

N2
∏

i=1

fi,g2(t)

)

· · ·





Np
∏

i=1

fi,gp(t)



 , (10)

where each particular product is the contribution of each kind of particles. In partic-

ular, we will consider a situation where the environment is composed of N particles

that are almost all of the same kind, with the exception of a slight “contamination”

of particles of different kinds. The time-behavior of |r(t)|2 of Eq. (10), for N = 100,

N1 = 91, N2 = N3 = N4 = 3, g1 = 2.4, g2 = 1.2, g3 = 0.6 and g4 = 0.3, is

plotted in Fig. 3. Since all the gi are such that gi = nigmin = ni g4, this situa-

tion corresponds to Case (b). Then, the Poincaré time can be easily computed as

tP = π/gmin = π/0.3 ≃ 10.43. Therefore, in Fig. 3, the peak in 10.43 is the Poincaré

time, but the peaks around it are not due to the recurrence of |r(t)|2. This means

that the particle P in interaction with this ’“contaminated” environment does not

decohere.

Now we will consider that P does not interact in the same way with the particles

of the same kind j, but the coupling coefficients gji are random in the intervals

[gji −∆gj , gji +∆gj ] around the corresponding mean value gji: N1 particles with

g1i ∈ [g1i−∆g1, g1i+∆g1], N2 particles with g2i ∈ [g2i−∆g2, g2i+∆g2], . . . and Np
particles with gpi ∈ [gpi −∆gp, gpi + ∆gp], such that

∑p
j=1Nj = N . Then, |r(t)|2

of Eq. (8) can be rewritten as:
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|r(t)|2 =

N
∏

i=1

fi(t)

=

(

N1
∏

i=1

fi,g1i(t)

)(

N2
∏

i=1

fi,g2i(t)

)

· · ·





Np
∏

i=1

fi,gpi(t)



 . (11)

In particular, we will study a situation similar to the previous one with respect

to the values of N and of the Nj, and where the gj used there become the mean

values gji. Moreover, in all the cases the ∆gj were selected as approximately 30%

of the corresponding mean value gji. The time-behavior of |r(t)|2 of Eq. (11), for

N = 100, N1 = 91, N2 = N3 = N4 = 3, g1i = 2.4, g2i = 1.2, g3i = 0.6, g4i = 0.3,

∆g1 = 0.8, ∆g2 = 0.4, ∆g3 = 0.2 and ∆g4 = 0.1, is plotted in Fig. 4, where we can

see the drastic decoherence of the model and the decoherence time.
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Fig. 4. Plot of |r(t)|2 given by Eq. (11), for N = 100, N1 = 91, N2 = N3 = N4 = 3, and random
g1i ∈ [1.6, 3.2], g2i ∈ [0.8, 1.6], g3i ∈ [0.4, 0.8], and g4i ∈ [0.2, 0.4].

4. Conclusions

By means of computer simulations we have proved the great influence that the

randomness of the coupling coefficients exerts on decoherence. Such an influence

appears under two forms: (i) the huge increasing of the Poincaré time, and (ii) the

strong damping off of the peaks that preclude decoherence. Then, in both cases

the change from constant coefficients to random coefficients greatly improves the

“efficiency”of decoherence. It is worth stressing that, through the first effect may

be expected, the second effect is not foreseeable: it is not easy to explain a priori

why the randomness of the coupling coefficients washes off the high peaks present

in the non-random case.

On the other hand, a realistic environment is usually composed by a limited

number of different kinds of particles, and it is reasonable to assume that the

particle of interest P interacts with all the particles of the same kind with the same

strength. So, the models with random coupling coefficients are not realistic. As we

have pointed out in the Introduction, this would not be relevant if the randomness

of the coefficients had no significant effect. But now we know that such randomness

has a dramatic influence on decoherence, whether it is expected or not. Therefore,
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the criterion for the selection of the coupling coefficients has to be carefully analyzed

in each model, in order to avoid conclusions drawn from unphysical results.
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