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Abstract: The Receiver Operating Characteristic (ROC) curve is a use-
ful tool to measure the classification capability of a continuous variable to
assess the accuracy of a medical test that distinguishes between two condi-
tions. Sometimes, covariates related to the diagnostic variable may increase
the discriminating power of the ROC curve. Due to the lack of stability of
classical ROC curves estimators to outliers, we introduce a procedure to
obtain robust estimators in presence of covariates. The considered proposal
focusses on a semiparametric approach which robustly fits a location-scale
regression model to the diagnostic variable and considers robust adaptive
empirical estimators of the regression residuals. The uniform consistency
of the proposal is derived under mild assumptions. A Monte Carlo study is
carried out to compare the performance of the robust proposed estimators
with the classical ones both, in clean and contaminated samples. A real
data set is also analysed.
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1. Introduction

The Receiver Operating Characteristic (ROC) curve is a useful tool to size up
the capability of a continuous variable or the accuracy of a pharmaceutical
or medical test to distinguish between two conditions. ROC curves are a very
well known technique in medical studies where a continuous variable or marker
(biomarker) is used to diagnose a disease or to evaluate the progression of a
disease. The use of ROC curves has become more and more popular in medicine
from the early 60’s due to their applications in classification or discrimination
(see Gonçalves et al., 2014, for a historical note and Krzanowski and Hand,
2009 for further details). Thinking of this scenario, we assume that we deal with
two populations, henceforth, identified as diseased (D) and healthy (H) and
that a continuous score usually called biomarker or diagnostic variable, Y , is
considered for the assignment purpose and whose rule is based on a cut–off value
c. Thus, according to this assignment rule, an individual is classified as diseased
if Y ≥ c and as healthy when Y < c. Let FD be the distribution of the marker on
the diseased population and FH the distribution of Y in the healthy one. From
now on, for practical reasons, we denote as YD ∼ FD the marker in the diseased
population and YH ∼ FH the score in the healthy one. It is worth mentioning
that the decision of classifying an individual as diseased when the biomarker is
larger or equal than c, is a natural one when YD is stochastically greater than YH ,
that is, when P(YD ≤ c) ≤ P(YH ≤ c) for all c. It is clear that the classification
errors depend on the threshold c. Therefore, it becomes of interest to study the
pairs {(1−FH(c), 1−FD(c)), c ∈ R}, which describe a geometrical object called
ROC curve that reflects the discriminatory capability of the biomarker. This
suggests a different parametrization of this curve in terms of the false positive
rate, 1 − FH(c), leading to {(p, 1 − FD(F−1

H (1 − p))), p ∈ (0, 1)} and therefore,
to ROC(p) = 1−FD(F−1

H (1− p))), p ∈ (0, 1). In this manner, the ROC curve
is a complete picture of the performance of the assignment procedure over all
possible threshold values. As it is well known, when YD is stochastically greater
than YH , then ROC(p) ≥ p, for any 0 < p < 1 and the discriminatory capability
of the biomarker may be reflected on how far above from the identity function
is the ROC curve.

In practical situations, the discriminatory effectiveness of the biomarker may
be improved by several factors. Thus, when for each individual there is additional
information contained in measured covariates, it is sensible to include them in
the ROC analysis. Pepe (2003) illustrates how the discriminatory capability of
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a test is improved by the presence of covariates, through several examples. For
an overview on this topic, we refer to Pardo-Fernández et al. (2014). In brief,
we may say that the information registered all along the covariates may impact
the discrimination capability of the marker. In this situation, in order to have
a deeper comprehension of the effect of the covariates, it would be advisable to
incorporate to the ROC curve the additional information they provide instead
of considering a joint ROC curve, that may lead to oversimplification. This issue
can be accomplished in different ways. In the direct methodology, the ROC curve
is directly regressed onto the covariates by means of a generalized linear model.
Among others, Alonzo and Pepe (2002), Pepe (2003) and Cai (2004) follow this
approach. In contrast, in the induced methodology, the markers distribution in
each population is modelled separately in terms of the covariates and just after,
the induced ROC curve is computed. The papers by Pepe (1998), Faraggi (2003),
González-Manteiga et al. (2011) and Rodríguez-Álvarez et al. (2011a) go in this
direction, while Rodríguez-Álvarez et al. (2011b) perform a comparative study
of the direct and induced methodologies. From now on, we denote as XD and
XH the covariates for the disease and healthy populations and we assume that
they have the same dimension. In such case, for any x in the common support
of XD and XH , the conditional ROC curve is defined as

ROCx(p) = 1 − FD(F−1
H (1 − p|x)|x) , (1)

where Fj(·|x) stands for conditional distribution of Yj |Xj = x, j = H,D. In this
paper, we focus on the induced approach through a general regression model.

The general methodology to estimate the conditional ROC curve consists
in a plug–in procedure, where estimators of the regression and of the variance
functions together with empirical distribution and quantile function estimators
based on the residuals are plugged into the general expression of the conditional
ROC curve. Pepe (1997, 1998, 2003), Faraggi (2003), González-Manteiga et
al. (2011) propose estimators that implement these ideas. Since most of these
estimators are based on classical least squares procedures or local averages,
they may be influenced by anomalous data or small deviations from the model
assumptions. The bi–normal model, in which both populations are assumed to
be normal, is a very popular choice to fit a ROC curve and one justification
for its broad use is its robustness, meaning that the estimator based on a bi–
normal model produces valid inferences in circumstances where the observations
are not normal. In fact, Gonçalves et al. (2014) discuss the scope of the so–called
robustness in the ROC curve scenario. Walsh (1997) performs a simulation study
that shows that the bi–normal estimator is affected by model misspecifications
and by the location of the decision thresholds.

In this paper, we focus on robustness, in the sense, that we seek for pro-
cedures resistant to deviations from the underlying model and highly efficient
when this central model holds. During the last decades, robust statistics has
pursued the aim of developing procedures that enable reliable inference results,
even if small deviations from the model assumptions occur or in the presence
of a moderate percentage of outliers. Even when these efforts have been sus-
tained over time across different statistical areas, up to our knowledge, ROC
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Fig 1. Estimated ROC surfaces for the Diabetes Data using Age (X) as covariate: (a) Clas-
sical estimator, (b) Classical estimator without the detected outliers and (c) Naive estimator.

curves have received little attention from this robustness point of view. When
no covariates are available, robust estimators of the area under the ROC curve
were given in Greco and Ventura (2011) assuming that the distribution func-
tions are known up to a finite–dimensional parameter (see also Farcomeni and
Ventura, 2012). In this sense, when covariates are recorded to improve the dis-
crimination power of the biomarker, the main contribution of our paper is to
bridge the gap between ROC curves and robustness. We achieve this goal by
fitting a location-scale regression model to the diagnostic variable and consid-
ering weighted empirical estimators of the regression residuals distributions. In
this respect, our proposal is semiparametric since the errors distribution is not
assumed to be known, for example, as in the bi–normal model and may be easily
implemented in R through the functions available in the library robustbase.

Our motivating example consists of the real dataset of a marker for diabetes
previously analysed in Faraggi (2003) and Pardo-Fernández et al. (2014), in
which we add to their analysis a robust perspective focussing on the potential
effect of influential data. The observations, that come from a population-based
pilot survey of diabetes mellitus in Cairo, Egypt, consist of postprandial blood
glucose measurements (Y ) from a fingerstick in 286 subjects who were divided
into healthy (198) and diseased (88) groups according to gold standard criteria
of the World Health Organization (1985). It is believed that the aging process
may be associated with resistance or relative insulin deficiency among healthy
people, therefore postprandial fingerstick glucose levels would be expected to
be higher for older persons who do not have diabetes. According to this belief,
Smith and Thompson (1996) adjust the ROC curve analysis for covariate infor-
mation using age (X). The obtained ROC curve of the transformed biomarker
is given in Figure 1 together with the ROC curve obtained after removing the 6
outliers detected in the healthy sample through a robust regression fit. Figure 1
also displays the ROC curve built using the naive approach of using robust re-
gression estimators combined with the usual empirical distribution and quantile
function estimators based on the residuals. These plots illustrate that the use
of robust regression and variance estimators are not enough to protect the es-
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Fig 2. Estimated ROC for the Diabetes Data for three values of p using Age (X) as covariate.
The solid red line corresponds to the classical estimator, the dark red dotted-dashed one to
the classical estimator without the detected outliers and the dashed grey to the naive one.

timation of the ROC curve from the influence of atypical data. This effect may
be explained by the fact that large residuals are still present when empirical
distribution estimators are computed affecting, in particular, extreme quantiles
and producing a distorted ROC surface for values of p close to 0 and 1, which is
better appreciated in Figure 2. This motivates the need of defining appropriate
robust estimators of the ROC curve.

In the rest of the paper we will introduce a robust proposal and we will study
some of its properties. The paper is organized as follows. Section 2 reviews
some general concepts regarding the conditional ROC curve and introduces the
robust proposal to estimate the ROC curve. Section 3 presents some consistency
results. In Section 4, a numerical study is conducted to examine the small sample
properties of the proposed procedures under a non–linear regression model, while
the results under a linear model are given in the supplementary file available
online. The advantages of the proposed methodology are illustrated in Section
5 on a real data set, while some final comments are presented in Section 6.
Assumptions and proofs of the main results are relegated to the Appendix,
while the convergence of a proposal to choose the tuning constants involved is
studied in the supplementary file (Bianco et al., 2022).

2. Proposal

2.1. Preliminaries

In this section, we recall the approach considered to model the induced ROC
curve when covariates are measured. For that purpose, denote as YD and XD

the biomarker and the covariates measured in the diseased population and as
YH and XH the corresponding ones in the healthy individuals. Even though in
many situations the same covariates are measured in both populations, in this
paper, we will only assume that XD and XH have the same dimension and we
will call S their common support.
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A general way to include covariates is through a general location–scale re-
gression model which, for simplicity of presentation, we assume homoscedastic
in both populations, that is,

YD = μ0,D(XD) + σ0,D εD , (2)
YH = μ0,H(XH) + σ0,H εH , (3)

where, for j = D,H, μ0,j is the true regression function and σ0,j corresponds
to the model dispersion, respectively. It is also assumed that the errors εj ∼ Gj

are independent of Xj , for j = D,H and have scale 1 to properly identify σ0,j .
Furthermore, to identify the regression function in the classical framework it is
assumed that Eεj = 0, for j = D,H. Instead, in the robust setting it is usual
to avoid the existence of moments. For that reason, to ensure consistency of
the robust estimators to the target regression function μ0,j , it is standard to
assume that Gj has a symmetric distribution. Otherwise, Fisher–consistency of
the related regression functionals should be required. It is worth noticing that
since the errors and the covariates are independent, for a given x ∈ S, we have
that

FD(y|x) = FYD|XD
(y|x) = P(YD ≤ y|XD = x)

= P(μ0,D(XD) + σ0,D εD ≤ y|XD = x) = GD

(
y − μ0,D(x)

σ0,D

)
.

Analogously, we get that the conditional distribution in the healthy distribution
satisfies

FH(y|x) = FYH |XH
(y|x) = GH

(
y − μ0,H(x)

σ0,H

)
.

As a consequence, the quantiles of the conditional distributions are related to
those of the errors through F−1

j (p|x) = σ0,j G
−1
j (p) + μ0,j(x), for j = D,H,

where G−1
j (·) denotes the quantile function of the errors εj . Thus, the conditional

ROC curve given x ∈ S defined in (1) can be computed as

ROCx(p) = 1 −GD

(
μ0,H(x) − μ0,D(x)

σ0,D
+ σ0,H

σ0,D
G−1

H (1 − p)
)

. (4)

One advantage of this approach is that it enables a very general modelling of the
regression functions μ0,j , for j = D,H, since this task can be accomplished from
different perspectives. This means that according to the information about the
relationship between the biomarker and the covariates and the user’s preferences,
the regression functions may be modelled parametrically, nonparametrically or
partly parametrically.

Different summary measures of the ROC curve are useful to sum up particular
features of the curve. One of the most popular indices is the conditional area
under the curve (AUCx), which is computed as AUCx =

∫ 1
0 ROCx(p)dp.

Suppose that we have a sample from the diseased population, (yD,i,xD,i), 1 ≤
i ≤ nD, that verifies model (2) and one from the healthy population, (yH,i,xH,i),
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1 ≤ i ≤ nH , verifying model (3). Furthermore, assume that the samples are
independent from each other. As mentioned in the Introduction, expression (4)
of the conditional ROC curve suggests a natural estimation procedure which
may be described through the following steps

Step 1. For j = D,H and from the sample (yj,1,xj,1), . . . , (yj,nj ,xj,nj )
estimate μ0,j(x) and σ0,j . Denote the resulting estimators by μ̃j(x) and
σ̃j , for j = D,H.
Step 2. Compute for each sample the standardized regression residuals

rH,i = yH,i − μ̃H(xH,i)
σ̃H

and rD,i = yD,i − μ̃D(xD,i)
σ̃D

.

On the basis of these residuals, the empirical distribution function es-
timator can be computed as Ĝj,emp(r) = (1/nj)

∑nj

i=1 Irj,i≤r, for j =
D,H, leading in the healthy population, to the quantile function estimator
Ĝ−1

H,emp
.

Step 3. Plug–in the estimators computed in the first two steps into equa-
tion (4) to obtain the estimated conditional ROC function

R̃OCx(p) = 1 − ĜD,emp

(
μ̃H(x) − μ̃D(x)

σ̃D
+ σ̃H

σ̃D
Ĝ−1

H,emp
(1 − p)

)
.

2.2. The general procedure

From now on, we consider the regression models given in (2) and (3), however
the arguments given below may be easily extended to the heteroscedastic case.

Our goal is to introduce a procedure to get reliable and stable ROCx esti-
mators, even when a moderate percentage of outliers arise in one sample or in
both of them. As it is well known, the regression and scale estimators computed
in Step 1 may be affected by outliers if classical methods, such as least squares
estimators, are considered. A naive approach could be to compute robust es-
timators of μ0,j(x) and σ0,j , for j = D,H, instead of classical ones. However,
as shown with the diabetes data set considered in the Introduction, this is not
enough to provide final robust estimators of the ROC curve, since the presence of
large residuals may still affect Steps 2 and 3. In fact, even when robust estima-
tors are considered for the estimation of the regression and variance functions,
large residuals would influence the classical empirical distribution and quantile
function estimators wasting the efforts made in the first step to get robustness.

Note that large values of |rj,i| suggest that the corresponding pairs (yj,i,xj,i)
may be outliers. In that case, under a normal error model, it seems wise to con-
sider as atypical those points whose residuals are larger than a certain cut–off
value c, that is, such that |rj,i| > c. Typically, c is chosen as 2.5 by taking the
standard normal distribution as a benchmark. For that reason, for j = D,H,
once the residuals rj,i from a robust fit have been computed, we have to down-
weight large residual values, as it is done when computing robust regression
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estimators. Unlike the empirical distribution estimators, where all the observa-
tions have the same weight, downweighting in the second step atypical points,
i.e., those values that lie far away from the bulk of the data, may result in a
more resistant procedure. More precisely, in Step 2, for j = D,H, we need to
consider a weighted empirical distribution defined as:

Ĝj(r) = 1∑nj

�=1 wj,�

nj∑
i=1

wj,iIrj,i≤r where wj,i = w
(rj,i

c

)
, (5)

where w : R → [0, 1] is an even weight function, non-increasing in [0,+∞),
such that w(0) = 1, w(u) > 0 for 0 < u < 1 and w(u) = 0 for u ≥ 1.
Further assumptions on the weight function will be required in Propositions
1 and 2 to ensure consistency of the resulting weighted empirical distribution.
The fact that w(u) = 0 for u ≥ 1 ensures that wj,i = 0 when |rj,i| is larger
than the selected cut–off value c, so, observations with large residuals will be
completely eliminated in the weighted estimators ensuring robustness of the
final ROC curve. It is worth noting that beneath this criterion to downweight
large residuals lays the idea that the errors distribution Gj is symmetric. If
the practitioner suspects that a skewed distribution underlies, another kind of
weights, such as asymmetric ones, may be preferable.

At this stage, the choice of the constant c does matter and is a keypoint.
Recall that when considering MM -estimators in linear or non–linear regression
models, the tuning constant is selected to attain a given efficiency ensuring at
the same time robustness. However, in our setting, it is quite intuitive that for
a fixed cut–off value Ĝj(r) will not converge to Gj but to

E

{
w
(εj
c

)
Iεj≤r

}
Ew

(εj
c

) ,

leading to unconsistent estimators of the distribution functions Gj , j = D,H,
and of the ROC function (see Propositions 1 and 2 below). Therefore, cut–off
values cnj , increasing to infinite but at the same time, ensuring good robust-
ness properties for small samples are needed. We refer to Section S.1 in the
supplementary file for a description of a possible procedure to select the cut–off
values.

Taking these ideas into account, we propose the following stepwise procedure:

Step 1R. Estimate μ0,H(x), σ0,H , μ0,D(x), σ0,D in a robust fashion from
the samples (yH,1,xH,1), . . . , (yH,nH

,xH,nH
) and (yD,1,xD,1), . . . ,

(yD,nD
,xD,nD

), respectively. Denote the resulting estimators by μ̂H(x),
σ̂H , μ̂D(x) and σ̂D.
Step 2R. Compute for each sample the standardized regression residuals

rH,i = yH,i − μ̂H(xH,i)
σ̂H

and rD,i = yD,i − μ̂D(xD,i)
σ̂D

.
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From these residuals, evaluate robust adaptive estimators of the distribu-
tion and quantile functions, denoted, ĜD and Ĝ−1

H , respectively as in (5),
using an unbounded increasing sequence of cut–off values cnj , j = D,H.
Step 3R. Plug–in the robust estimators computed in the first two steps
into equation (4) to obtain

R̂OCx(p) = 1 − ĜD

(
μ̂H(x) − μ̂D(x)

σ̂D
+ σ̂H

σ̂D
Ĝ−1

H (1 − p)
)

.

Regarding Step 1R, the considered regression models (2) and (3) may be
either parametric, nonparametric or semiparametric. In each case, suitable ro-
bust estimators must be used. In particular, in the parametric case, linear or
non–linear models may be adequate. To illustrate, assume that, for j = D,H,
the observations satisfy the non–linear regression model

yj,i = fj(xj,i, β0,j) + σ0,jεj,i , i = 1 . . . nj , (6)

with β0,j ∈ Rq, σ0,j the scale parameter and fj a known function. Note that
the dimension of the regression parameter β0,j may be equal or not to that of
the covariates. The errors εj,i are independent and identically distributed (i.i.d.)
with unknown distribution Gj and independent of the covariates xj,i. In such
setting, the MM -estimators introduced in Yohai (1987) are a recommended
option for the linear model, while, under a general non–linear regression model,
the weighted MM -estimators presented in Bianco and Spano (2019) may be
used.

The challenge in Step 2R is to implement a version of the empirical distri-
bution with adaptive weights ensuring at the same time consistency under the
central model and robustness.

As mentioned above, our proposal may be easily implemented when one or
both regression models are heteroscedastic. In this case, if the scale function is
modelled in terms of the covariates, estimators of the scale function need to be
computed in Step 1R. Then, in Step 2R the residuals rj,i, for j = D and/or
H, are obtained using σ̂j(xj,i) instead of σ̂j . At this point different approaches
may be followed. In the nonparametric setting, the local median of the abso-
lute deviations from the median (local mad) considered in Boente and Fraiman
(1989) provides a robust consistent scale estimator. Instead, when the scale func-
tion is parametrically modelled, the robust estimators that have been studied in
Carroll and Ruppert (1982) and Bianco et al. (2000), under an heteroscedatic
linear regression model, may be implemented. The results in Theorem 1 can be
extended to the heteroscedastic setting by requiring to the true scale function
σj(x) to be bounded and bounded from below on any compact set K ⊂ S and
to the estimators σ̂j(x) consistency assumptions analogous to those stated for
μ̂j(x) in A4 and A5.

3. Consistency results

In this section, we derive uniform consistency results for the ROC curve esti-
mators. Theorem 1 and Corollary 1 recall on the uniform consistency of the



4142 A. M. Bianco et al.

distribution function estimators. For the weighted distribution function estima-
tors defined in (5) uniform consistency results are derived in Propositions 1 and
2 under a linear and non–linear regression model, respectively. Extensions to
other settings, such as nonparametric regression models, may be also obtained
but are beyond the scope of this manuscript.

Henceforth, (yj,i,xj,i), 1 ≤ i ≤ nj , for j = D,H, stand for independent ran-
dom samples from the diseased and healthy populations with the same distribu-
tion as (YD,XD) ∈ Rp+1 and (YH ,XH) ∈ Rp+1, respectively, where (YD,XD)
satisfy (2) and (YH ,XH) fulfils (3). The errors εj ∼ Gj are independent of Xj ,
for j = D,H. In this situation, we have that (4) holds. To provide a general
framework, for j = D,H, we will denote as Ĝj an estimator of the errors dis-
tribution function Gj obtained from the sample (yj,i,xj,i), 1 ≤ i ≤ nj using
robust consistent estimators μ̂j and σ̂j of μ0,j and σ2

0,j , respectively. Then, the
estimator of the ROC curve whose uniform consistency we will study is given
by

R̂OCx(p) = 1 − ĜD

(
μ̂H(x) − μ̂D(x)

σ̂D
+ σ̂H

σ̂D
Ĝ−1

H (1 − p)
)

.

Theorem 1. Let (yj,i,xj,i), 1 ≤ i ≤ nj, j = D,H, be independent observations
satisfying (2) and (3), respectively and let μ̂j and σ̂j be estimators of μ0,j and
σ0,j, respectively. Assume that σ̂j

a.s.−→ σ0,j, for j = D,H, and that A1 to A4
in the Appendix hold. Then,

(i) sup0<p<1 |R̂OCx(p) − ROCx(p)| a.s.−→ 0, for each fixed x ∈ S.
(ii) If, in addition, assumptions A5 and A6 in the Appendix hold and GD has

a bounded density gD, we have that, for any δ > 0

sup
δ<p<1−δ

sup
x∈K

|R̂OCx(p) − ROCx(p)| a.s.−→ 0 .

(iii) Furthermore, when assumptions A5 and A6 in the Appendix hold, GD has
a bounded density gD and the conditional ROC function is such that, for
any ε > 0, there exists 0 < η < 1 such that, for any x ∈ K, ROCx(η) < ε

and 1−ROCx(1−η) < ε, then sup0<p<1 supx∈K |R̂OCx(p)−ROCx(p)| a.s.−→
0.

As a consequence of Theorem 1, we immediately get the following result for
parametric regression.

Corollary 1. For j = D,H, let (yj,i,xj,i), 1 ≤ i ≤ nj, be independent observa-
tions satisfying (6), where the errors εj,i ∼ Gj are independent of the covariates
xj,i and assume that β̂j and σ̂j are strongly consistent estimators of β0,j and
σ0,j, respectively. Then, under assumptions A1 to A3 and A7 in the Appendix,

(i) sup0<p<1 |R̂OCx(p) − ROCx(p)| a.s.−→ 0, for each fixed x ∈ S.
(ii) If, in addition, GD has a bounded density gD and the regression func-

tions fj satisfy, for j = D,H, assumption A8 in the Appendix, then
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supx∈K |R̂OCx(p) − ROCx(p)| a.s.−→ 0. Moreover, for any δ > 0

sup
δ<p<1−δ

sup
x∈K

|R̂OCx(p) − ROCx(p)| a.s.−→ 0 .

(iii) Furthermore, assume that GD has a bounded density gD, the regression
functions fj satisfy assumption A8 in the Appendix, for j = D,H, and
the conditional ROC function is such that, for any ε > 0, there exists
0 < η < 1 such that, for any x ∈ K, ROCx(η) < ε and 1−ROCx(1−η) < ε,
then sup0<p<1 supx∈K |R̂OCx(p) − ROCx(p)| a.s.−→ 0.

It is worth noticing that the requirement supx∈K ROCx(η) < ε and
supx∈K {1 − ROCx(1 − η)} < ε in (iii) is satisfied when A8 holds and GH

has support on the whole line as stated in A1.
Propositions 1 and 2 below show that, under mild assumptions, when cnj

a.s.−→
∞ assumption A3 is fulfilled for the weighted empirical distribution function
estimators defined in (5), that is, we have that ‖Ĝj − Gj‖∞ a.s.−→ 0, j = D,H.
Note that these results allow for random cut–off values to include the adaptive
procedure described in Section S.1 and whose convergence is analysed in the
supplementary file. In particular, from Propositions 1 and 2, we also obtain
the uniform consistency of the empirical residuals distribution Ĝj,emp which
correspond to the choice w(t) ≡ 1.

We will consider linear and non–linear models separately, since weaker as-
sumptions are required for the former one. In particular, for the linear regression
model we also obtain uniform consistency of the weighted empirical distribution
function estimators for the hard rejection weight function w(t) = I[−1,1](t). The
approach allows to fit different models for the healthy and diseased populations.

From now on, we fix j = D or H and we assume that the observations
(yj,i,xj,i), 1 ≤ i ≤ nj , satisfy the regression model (6) and that β̂j and σ̂j are
estimators of β0,j and σ0,j , respectively.

Consider the functions

hj,∞(c) = EGjw
(εj
c

)
(7)

hj,0(c, s) = EGjw
(εj
c

)
Iεj≤s . (8)

Proposition 1. Let j = D or H and assume that the observations (yj,i,xj,i),
1 ≤ i ≤ nj, satisfy a linear regression model, that is, (6) holds with fj(x, β) =
xtβ, and that w(t) = I[−1,1](t) or w satisfies assumption C1 in the Appendix.
Let

Ĝj(r) = 1∑n
�=1 wj,�

n∑
i=1

wj,iIrj,i≤r with wj,i = w

(
rj,i
cnj

)
, (9)

where cnj

a.s.−→ cj,0. If assumptions C2 to C3 in the Appendix hold, we have that

a) if cj,0 < ∞,

sup
s∈R

∣∣∣∣Ĝj(s) −
hj,0(cj,0, s)
hj,∞(cj,0)

∣∣∣∣ a.s.−→ 0 ,
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with hj,∞(cj,0) and hj,0(cj,0, s) defined in (7) and (8), respectively.
b) if cj,0 = ∞, ‖Ĝj −Gj‖∞ a.s.−→ 0.

Proposition 2. Let j = D or H and assume that the observations (yj,i,xj,i),
1 ≤ i ≤ nj, satisfy the non–linear regression model (6) and let Ĝj be as in (9)
with cnj

a.s.−→ cj,0. If assumptions C1 and C3 to C5 in the Appendix hold, we
have that

a) if cj,0 < ∞,

sup
s∈R

∣∣∣∣Ĝj(s) −
hj,0(cj,0, s)
hj,∞(cj,0)

∣∣∣∣ a.s.−→ 0 ,

with hj,∞(cj,0) and hj,0(cj,0, s) defined in (7) and (8), respectively.
b) if cj,0 = ∞, ‖Ĝj −Gj‖∞ a.s.−→ 0.

Note that the results in Propositions 1 and 2 entail that, unlike the tuning
constant in robust regression estimators, fixed cut–off values for the empirical
weighted distribution functions given in (5) are not a sensible choice, since they
do not lead to consistent estimators of the residuals distribution function. Sec-
tion S.1 in the supplementary file discusses a possible adaptive procedure for the
selection of the cut–off values that will ensure consistency under the assumed
errors model Gj,0.

4. Monte Carlo study

In this section, we summarize the results of a simulation study conducted to have
an insight on the finite sample performance of the proposal given in Section 2.
The goal of this numerical experiment is two–fold. On the one hand, we want to
illustrate the lack of stability of the classical methods when deviations from the
central model arise. On the other hand, we want to evaluate the performance of
our robust proposal under different contamination schemes and to compare it
with the classical one. For that purpose, we considered different scenarios and
contaminations schemes. In all cases, we generate Nrep = 1000 datasets of size
nD = nH = n = 100 and nD = nH = n = 200. We considered two regression
models, a linear and a non–linear one. The results for the linear model, relegated
to the supplementary file available online, also include the performance of the
naive approach which uses robust regression estimators combined with the usual
empirical distribution and quantile function estimators based on the residuals.
Through this numerical experiment, we illustrate the necessity of using robust
estimators in all the stages of the stepwise procedure. In both cases, different
contaminating schemes are analysed either contaminating just one population
or both of them.

To summarize the discrepancy between the estimator and the true ROC sur-
face, we consider two grids of points: Gp = {pj}Np

j=1 corresponding to equidistant
values between 0.01 and 0.99 with step 0.01 and Gx = {xi}Nx

i=1, where the net has
step 0.05 within the interval [a, b] with a = −0.5 and b = 0.5 for the non–linear
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model considered. The estimators performance is then evaluated using the mean
over replications of

• the Mean Squared Error (MSE) given by

MSE = 1
NxNp

Nx∑
i=1

Np∑
j=1

(
R̂OCxi(pj) − ROCxi(pj)

)2
,

• a measure inspired on the Kolmogorov–Smirnov distance (KS) calculated
as

KS = sup
1≤i≤Nx

sup
1≤j≤Np

∣∣∣R̂OCxi(pj) − ROCxi(pj)
∣∣∣ ,

that give global summaries of the mismatch between the estimated ROC curve
and the true one.

We consider an exponential model, that is, we assume that the observations
follow the non–linear regression models

yD,i = βD,1 exp(βD,2 xD,i) + εD,i , (10)
yH,i = βH,1 exp(βH,2 xH,i) + εH,i , (11)

with (βD,1, βD,2)t = (5, 2), (βH,1, βH,2)t = (3, 1) for all i = 1, . . . , n εj,i ∼
N(0, 1) are independent and independent from xj,i ∼ U(−0.5, 0.5), for j = D,H.
Besides, the sample from one population was generated independently from that
of the other one.

We evaluate the performance of the classical procedure which uses in Step
1 the usual least squares estimators for non–linear regression models and the
empirical distribution function with the robust method proposed in Section 2.2.
More precisely, in Step 1R the robust regression estimators correspond to the
weighted MM -estimators defined in Bianco and Spano (2019), while in Step 2R
we used the weighted empirical distribution defined in (5). The weight function
was taken as w(t) = I[−1,1](t) and the cut–off values as described in Section S.1
of the supplementary file with η = 2.5 and Gj,0 = Φ the normal distribution.

To assess the impact of anomalous data on the estimation of the conditional
ROC curve, we introduce shift outliers in both populations and to explore the
influence of the shift size, we vary its magnitude on a grid of fixed values. To
this end, the first m observations of each sample were replaced by observations
following the models

yD,i = βD,1 exp(βD,2 xD,i) + S + 0.01εD,i , (12)
yH,i = βH,1 exp(βH,2 xH,i) + S + 0.01εH,i , (13)

where xj,i ∼ U(0.49, 0.5) and εj,i are as above, for j = D,H. The level shift
S is a fixed number taking values equal to 2.5, 5, 7.5, 10, 12.5 or 15. The aim
of this contamination scheme is to introduce bad leverage points, that is, high
leverage covariates with vertical outliers. As it is well known, including several
repeated points (x, y) may lead to numerical instability of the algorithms used
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to compute both estimators. To avoid this problem, we randomly choose high
leverage values of the covariates uniformly distributed in (0.49, 0.5), combined
with a level shift S. The Gaussian errors with standard deviation 0.01 ensure
that the responses vary close enough to the level shift.

We consider a 5% or a 10% proportion of anomalous points, that is, we replace
m = nδ points, δ = 0.05 and 0.10 by observations generated as in (12) and (13).
We denote this contamination Cδ,S , while C0 stands for the situation of clean
samples.

For the sake of brevity, Table 1 summarizes the discrepancy between the true
and estimated ROC curves in terms of the mean over replications of the MSE.
In the supplementary file, when considering a linear model, the results regarding
the Kolmogorov–Smirnov distance are also given. The damage of shift outliers
on the conditional ROC curve is striking, since the MSE increases more than
10 times for n = 100 and more than 20 times if n = 200 when S takes the
largest values.

Table 1

Influence of the shift size S on the MSE, when n = 100 and 200, under the
non–linear model (10) and (11), when considering the contamination scheme Cδ,S.

S
δ n C0 2.5 5 7.5 10 12.5 15

0.05 100 Robust 0.0023 0.0028 0.0023 0.0023 0.0024 0.0024 0.0024
Classical 0.0019 0.0023 0.0066 0.0127 0.0183 0.0231 0.0269

0.10 100 Robust 0.0023 0.0032 0.0031 0.0024 0.0024 0.0024 0.0024
Classical 0.0019 0.0029 0.0092 0.0180 0.0240 0.0248 0.0268

0.05 200 Robust 0.0011 0.0018 0.0011 0.0011 0.0011 0.0011 0.0011
Classical 0.0010 0.0015 0.0062 0.0124 0.0181 0.0229 0.0267

0.10 200 Robust 0.0011 0.0022 0.0014 0.0011 0.0011 0.0011 0.0011
Classical 0.0010 0.0021 0.0088 0.0178 0.0239 0.0242 0.0249

Table 2

Mean of MSE and KS over replications for clean and contaminated samples, under the
non–linear model (10) and (11).

n C0 C0.05,10 C0.10,10
Classical Robust Classical Robust Classical Robust

100 MSE 0.0019 0.0023 0.0183 0.0024 0.0240 0.0024
KS 0.1881 0.1944 0.9334 0.2001 0.6893 0.2048

200 MSE 0.0010 0.0011 0.0181 0.0011 0.0239 0.0011
KS 0.1352 0.1367 0.9364 0.1395 0.7102 0.1445

Henceforth, we focus on the particular case of outliers with shift value S = 10,
a mild value among those considered, so as to have a deeper comprehension of
the effect of the introduced anomalous points. Table 2 summarizes the results
through the mean of the measures MSE and KS. Note that the mean of the
summary measures are distorted for the classical procedure. In particular, when
considering the measure KS based on the Kolmogorov–Smirnov distance, the
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Fig 3. Surface plot of Δ(x, p) =
∣∣R̂OCx(p) − ROCx(p)

∣∣ for the samples generated in one of
the considered replications, under two contamination schemes.

mean is enlarged almost 7 times, under C0.05,S when n = 200. It is worth
mentioning that, when considering the classical procedure, the Kolmogorov–
Smirnov distance decreases when moving from the contaminated model C0.05,10
to C0.10,10, although the former scenario contains a higher proportion of contam-
inated data. Figure 3 where we plot the surface Δ(x, p) =

∣∣∣R̂OCx(p) − ROCx(p)
∣∣∣

for the samples generated in one of the considered replications, explains this
unexpected effect. The left panel corresponds to C0.05,10 and the right one to
C0.10,10. The decrease in KS is mainly due to the fact that under C0.10,10 the
whole ROC surface is distorted leading to a large area under the surface Δ(x, p),
but with a lower maximum than under C0.05,10. This area is represented by
MSE which approximates

∫ 1
0
∫ 0.5
−0.5 Δ2(x, p)dx dp. In contrast, under C0.05,10,

there is a high peak for values of p close to 0, but in a small region, so this
distortion is not reflected on the MSE but it is well registered by the KS. For
that reason, the two measures are important giving complementary information,
since they capture different effects.

Figures 4 and 5 show the functionals boxplots of the classical and robust
AUCx obtained for n = 100 and n = 200, respectively. Functional boxplots,
introduced by Sun and Genton (2011), are useful to visualize a collection of
curves. The area in purple represents the 50% inner band of curves, the dotted
red lines correspond to outlying curves, the black line indicates the central
(deepest) function, while the green line in the plot corresponds to the true AUCx

curve. Notice that in these boxplots, the estimators of conditional area under
the curve were plotted in the range (−0.5, 0.2), since for this simulation scheme
the AUCx is almost 1 when the covariate takes values from 0.2 to 0.5. Once
again, it becomes evident that the classical estimator suffers from the introduced
contamination and that the classical estimator of AUCx is completely deviated
from the true conditional area under the curve, which is plotted in green, while
the robust AUCx estimator remains very stable.
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Fig 4. Functional boxplots of ÂUCx obtained with the classical and robust estimators for
n = 100 with clean samples and under 5% and 10% of contamination with level shift S = 10,
under the non–linear model (10) and (11). The green line corresponds to the true AUCx and
the dotted red lines to the outlying curves detected by the functional boxplot.

5. Analysis of real data set

In this section, we illustrate the benefits of the robust proposed methodology
by means of the diabetes real dataset described in the Introduction.
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Fig 5. Functional boxplots of ÂUCx obtained with the classical and robust estimators for
n = 200 with clean samples and under 5% and 10% of contamination with level shift S = 10,
under the non–linear model (10) and (11). The green line corresponds to the true AUCx and
the dotted red lines to the outlying curves detected by the functional boxplot.

Following the analysis given in Faraggi (2003), we transform the marker from
both populations using power function f(t) = −t−1/2. After this, we assume a
linear regression model in each population for the transformed marker y, i.e.,
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Fig 6. The left panel corresponds to the boxplots of the residuals obtained after a robust fit
for healthy sample, while the central and right panels to the scatter plots for the healthy and
diseased samples. The red points correspond to the detected outliers.

yD,i = βD,1 + βD,2 xD,i + εD,i , 1 ≤ i ≤ 88 ,
yH,i = βH,1 + βH,2 xH,i + εH,i , 1 ≤ i ≤ 198

and we compute the classical and robust estimators of the conditional ROC
curves, denoted R̂OCx,cl and R̂OCx, respectively. For the robust procedure,
we compute MM -regression estimators using the bi-square loss function and
an initial S-estimator with 50% breakdown point. The tuning constant in the
M -step was set equal to 3.444 to ensure an 85% of efficiency with respect to the
least squares estimator. In Step 2R we choose w(t) = I[−1,1](t), η = 2.5 and
Gj,0 = Φ, as in the simulation study.

Based on the residuals boxplots of a robust fit, 6 outliers were detected in
the healthy sample, labelled as 37, 78, 125, 137, 141 and 150, see the left panel
of Figure 6. Note that Figures 1 and 2 illustrate the damaging effect that these
outliers have on both the classical and naive estimates of the ROC surface.

The filled red points on the central panel of Figure 6 represent the atypical
observations encountered in the healthy sample which correspond to vertical
outliers. After removing them, the classical estimator of the conditional ROC
curves is recomputed with the remaining points, namely R̂OC

(−6)
x,cl

. The upper
panel of Figure 7 displays the estimated surfaces with these three procedures
using equidistant grids of points of size 29 and 28 in p and x, respectively,
p ∈ [0.01, 0.99] and x ∈ [20, 87.5]. In order to facilitate the comparison between
the estimated surfaces, the lower panel in Figure 7 shows the differences between
these estimators. This Figure makes evident that the robust estimator and the
classical one when it is computed without the outliers are very similar all along
the studied range, while the classical estimator computed from the whole sample
shows a different pattern, especially for large values of age (see the left panel of
Figure 7).
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Fig 7. Diabetes Data: (a) Estimated ROC surfaces and (b) Difference between the estimated
ROC surfaces.

6. Final remarks

The ROC curve is a useful graphical tool that measures the discriminating
power of a biomarker to distinguish between two conditions or classes. When the
practitioner is able to measure covariates related to the diagnostic variable which
can increase the discriminating power, it is sensible to incorporate them in the
analysis. To have a deeper comprehension of the effect of the covariates, it would
be advisable to incorporate the covariates information to the ROC analysis
instead of considering the marginal ROC curve. Conditional ROC curves may
be easily estimated using a plug–in procedure. However, the use of classical
regression estimators and empirical distribution and quantile functions may lead
to estimates which may breakdown in the presence of a small amount of atypical
data, as it is illustrated in our numerical experiment.

In this paper, we introduce a procedure to robustly estimate the conditional
ROC curve. The methodology combines robust regression estimators with a
weighted empirical distribution function which downweights the effect of large
residuals. It is worth mentioning that our proposal may be easily implemented in
R using the function weighted.fractile to compute the quantiles of the robust
adaptive distribution function estimators and any function allowing to compute
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robust estimators of the regression functions and scale parameters. When a
linear model is assumed, robust MM -estimators are obtained through the func-
tion lmrob of the library robustbase which, by default, uses a bi-square loss
function and an initial S-estimator with 50% breakdown point. Furthermore,
when fitting a nonlinear model robust MM -estimators may be implemented
through the function nlrob. When considering more complex models, such as
partial linear or partial additive models, the function lmrob also allows an easy
implementation of the estimators when B-splines are used to approximate the
nonparametric components, see for instance, the proposals studied in Boente
and Martínez (2021) or in Boente et al. (2020) who also considered the case of
asymmetric log–Gamma errors.

We prove that the estimators are uniformly strongly consistent under stan-
dard regularity conditions when the sequence of cut-off parameters increases
to infinity. A simulation study shows that our proposed estimators have good
robustness and finite-sample statistical properties. Even though our numeri-
cal studies focus on a parametric regression approach, it should be mentioned
that our proposal could also be implemented when considering nonparametric
or partly parametric regression models simply combining a robust fit with the
weighted empirical procedure. Using similar arguments to those given in Boente
et al. (2020) or Boente and Martínez (2021), the consistency results stated in
Propositions 1 and 2 may be extended to the case in which the biomarker is
fitted by means of a partial linear or partial additive regression model and B-
splines combined with MM -estimators are used in the first step. This interesting
topic and as well as the extension to functional regressors will be object of future
research.

Appendix A: Appendix

A.1. Proof of Theorem 1

To derive consistency results for the ROC curve, we will need the following
assumptions on the errors distributions and on their estimates:

A1 GH : R → (0, 1) has an associated density gH such that gH(y) > 0, for all
y ∈ R.

A2 GD : R → (0, 1) is continuous.
A3 ‖Ĝj −Gj‖∞ a.s.−→ 0, j = D,H.
A4 For each fixed x, |μ̂j(x) − μ0,j(x)| a.s.−→ 0, j = D,H.
A5 For any compact set K ⊂ S, supx∈K |μ̂j(x) − μ0,j(x)| a.s.−→ 0, j = D,H.
A6 The regression functions μ0,j are such that, for any compact set K,

supx∈K |μ0,j(x)| = Aj < ∞.

Remark 1. If we are dealing with parametric regression models for j = D,H, i.e.,
when μ0,j(x) = fj(x, β0,j) and β̂j and σ̂j stand for robust consistent estimators



Robust ROC curves with covariates 4153

of β0,j and σ2
0,j , respectively, the estimator of the ROC curve equals

R̂OCx(p) = 1 − ĜD

(
fH(x, β̂H) − fD(x, β̂D)

σ̂D
+ σ̂H

σ̂D
Ĝ−1

H (1 − p)
)

.

In this framework, conditions under which A3 holds for the linear model
fj(x, β0,j) = xtβ0,j or more generally, for a non–linear model are given in

Propositions 1 and 2.
On the other hand, A4 to A6 hold if the non–linear regression functions

satisfy

A7 For each fixed x, the regression functions fj(x,b) are continuous in b.
A8 The functions fj are such that supx∈K |fj(x, βn) − fj(x, β0,j)| → 0 and

supx∈K |fj(x, βj)| = Aj < ∞, for any compact set K and any sequence
βn → β0,j .

In particular, these assumptions hold if the regression model is a linear one. �
Proof of Theorem 1. We begin by proving (i). Using assumption A3 for j = H
and the continuity of the quantile functionals when A1 holds, we get that, for
the healthy subjects, Ĝ−1

H (p) a.s.−→ G−1
H (p), for each 0 < p < 1. To avoid burden

notation denote as

Δ̂(x, p) = μ̂H(x) − μ̂D(x)
σ̂D

+ σ̂H

σ̂D
Ĝ−1

H (1 − p) ,

Δ(x, p) = μ0,H(x) − μ0,D(x)
σ0,D

+ σ0,H

σ0,D
G−1

H (1 − p) .

Note that the consistency of σ̂j and A4 together with the fact that Ĝ−1
H (p) a.s.−→

G−1
H (p), entail that for each fixed p and x, Δ̂(x, p) a.s.−→ Δ(x, p). Therefore, we

have that,

|R̂OCx(p) − ROCx(p)| =
∣∣∣ĜD

(
Δ̂(x, p)

)
−GD (Δ(x, p))

∣∣∣
≤

∣∣∣ĜD

(
Δ̂(x, p)

)
−GD

(
Δ̂(x, p)

)∣∣∣ +
∣∣∣GD

(
Δ̂(x, p)

)
−GD (Δ(x, p))

∣∣∣
≤

∥∥∥ĜD −GD

∥∥∥
∞

+
∣∣∣GD

(
Δ̂(x, p)

)
−GD (Δ(x, p))

∣∣∣
which together with the continuity of GD lead to R̂OCx(p) a.s.−→ ROCx(p), for
each fixed x and 0 < p < 1. Note that for each fixed x, ROCx(p) satisfies the
conditions in Lemma S.1 in the supplementary file, so sup0<p<1 |R̂OCx(p) −
ROCx(p)| a.s.−→ 0.
(ii) Using that∣∣∣Δ̂(x, p) − Δ(x, p)| ≤ 1

σ̂D
{|μ̂H(x) − μ0,H(x)| + |μ̂D(x) − μ0,D(x)|}

+
∣∣∣∣ 1
σ̂D

− 1
σ0,D

∣∣∣∣ |μ0,H(x) − μ0,D(x)| + σ̂H

σ̂D

∣∣∣Ĝ−1
H (1 − p) −G−1

H (1 − p)
∣∣∣
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+ |G−1
H (1 − p)|

∣∣∣∣ σ̂H

σ̂D
− σ0,H

σ0,D

∣∣∣∣ ,
assumption A6, the consistency of σ̂j and the uniform consistency of μ̂j , we get
easily that supx∈K

∣∣∣Δ̂(x, p) − Δ(x, p)
∣∣∣ a.s.−→ 0. Hence, the inequality

sup
x∈K

|R̂OCx(p) − ROCx(p)| ≤
∥∥∥ĜD −GD

∥∥∥
∞

+ ‖gD‖∞ sup
x∈K

∣∣∣Δ̂(x, p) − Δ(x, p)
∣∣∣

leads to supx∈K |R̂OCx(p) − ROCx(p)| a.s.−→ 0.
Denote B̂ = supδ<p<1−δ supx∈K |R̂OCx(p) − ROCx(p)|. Then, after some

algebra we get that B̂ ≤
∑5

�=1 B̂� where B̂1 = ‖ĜD −GD‖∞,

B̂2 = ‖gD‖∞
∣∣∣∣ 1
σ̂D

− 1
σ0,D

∣∣∣∣ (AH + AD) ,

B̂3 = ‖gD‖∞
1
σ̂D

sup
x∈K

{|μ̂H(x) − μ0,H(x)| + |μ̂D(x) − μ0,D(x)|} ,

B̂4 = σ̂H

σ̂D
sup

δ<p<1−δ

∣∣∣Ĝ−1
H (1 − p) −G−1

H (1 − p)
∣∣∣ ,

B̂5 = sup
δ<p<1−δ

|G−1
H (1 − p)|

∣∣∣∣ σ̂H

σ̂D
− σ0,H

σ0,D

∣∣∣∣ .

Assumptions A1 to A3 together with A5 and the consistency of σ̂j entail
that B̂�

a.s.−→ 0, for � = 1, 2, 3, 5. Note that Ĝ−1
H is a non–decreasing function.

Besides, using that A1 entails that GH is continuous and strictly increasing, we
immediately obtain that the quantile function G−1

H , which in this case equals
the inverse of GH , is also strictly increasing and uniformly continuous over the
compact interval [δ, 1− δ]. Hence, taking into account that Ĝ−1

H (p) a.s.−→ G−1
H (p),

for each 0 < p < 1, analogous arguments to those considered in the proof of
Lemma S.1 in the supplementary file when bounding supa≤t≤b |Fn(t) − F (t)|
allow to derive that supδ≤p≤1−δ

∣∣∣Ĝ−1
H (1 − p) −G−1

H (1 − p)
∣∣∣ a.s.−→ 0, concluding

the proof of (ii).
We now proceed to derive (iii). Let ε > 0 be fixed and choose 0 < η < 1 such

that, supx∈K ROCx(η) < ε/6 and supx∈K(1 − ROCx(1 − η)) < ε/6. Denote as

R̂(η) = sup
η<p<1−η

sup
x∈K

|R̂OCx(p) − ROCx(p)| ,

R̂1(η) = sup
p≤η

sup
x∈K

|R̂OCx(p) − ROCx(p)| ,

R̂2(η) = sup
1−η≤p

sup
x∈K

|R̂OCx(p) − ROCx(p)| .

Hence, sup0<p<1 supx∈K |R̂OCx(p)−ROCx(p)| ≤ R̂(η) + R̂1(η) + R̂2(η), where
R̂(η) a.s.−→ 0 from (ii). Besides, using that ROCx(p) is a distribution function and
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R̂OCx(p) is non-decreasing in p, we get that for any p ≤ η, x ∈ K, |R̂OCx(p)−
ROCx(p)| ≤ max

{
R̂OCx(η),ROCx(η)

}
, so

R̂1(η) ≤ sup
x∈K

max
{

R̂OCx(η),ROCx(η)
}

= Ĉ1(η) .

Similarly, we obtain that

R̂2(η) ≤ sup
x∈K

max
{

1 − R̂OCx(1 − η), 1 − ROCx(1 − η)
}

= Ĉ2(η) .

Taking into account that supx∈K ROCx(η) < ε and supx∈K(1 − ROCx(1 −
η)) < ε and that for any fixed 0 < p < 1, supx∈K |R̂OCx(p) − ROCx(p)| a.s.−→ 0,
we conclude that there exists N such that P(N ) = 0 and for ω /∈ N , R̂(η) → 0,
Ĉ1(η) → supx∈K ROCx(η) < ε/6 and Ĉ2(η) → supx∈K 1 − ROCx(1 − η) < ε/6.
Hence, for nH and nD large enough, we obtain that R̂(η) < ε/3, Ĉ�(η) < ε/3, for
� = 1, 2 which leads to sup0<p<1 supx∈K |R̂OCx(p) − ROCx(p)| ≤ ε, concluding
the proof. �

A.2. Proof of Propositions 1 and 2

The following assumptions are needed to show that ‖Ĝj −Gj‖∞ a.s.−→ 0 under a
linear model

C1 The weight function w : R → [0, 1] is even, non-increasing on [0,+∞),
continuous, w(0) = 1, w(u) > 0 for 0 < u < 1.

C2 Gj is a continuous distribution function.
C3 The estimators β̂j and σ̂j are such that β̂j

a.s.−→ β0,j and σ̂j
a.s.−→ σ0,j .

The following Lemmas are needed to derive Propositions 1 and 2, their proof
can be found in the supplementary file.

Lemma 1. Assume that either w(t) = I[−1,1](t) or w satisfies C1. Let s be a
fixed real number and define the class of functions

F = {fθ, κ,ν(u,x) = w
(
ν(u− xtθ)

)
Iu−xtθ≤κ s for (θ, κ, ν) ∈ Rp×R≥0×R≥0} .

Then, we have that supf∈F |Pnjf − Pf | a.s.−→ 0, where we use the standard no-
tation in empirical processes, i.e., Pnjf = (1/nj)

∑nj

i=1 f(uj,i,xj,i) and Pf =
Ef(Uj ,Xj), with uj,i = σ0,jεj,i and Uj = σ0,jεj, for j = D,H.

Denote ν0 = 1/(c0 σ0), where we understand that if c0 = ∞, ν0 = 0. Further-
more, let J0 be a compact interval with non–empty interior, such that ν0 ∈ J0.

To provide a general framework to deal with non–linear models, we consider
the assumptions

C4 Gj has a bounded density gj .
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C5 fj(x, β) is a continuous function of β for each x. Furthermore, for each x,
sup‖β−β0,j‖≤1 |fj(x, β)| ∈ L1(Pj).

It is clear that C4 entails C2. Lemma 2 is the non–linear counterpart of
Lemma 1. Note that a bounded density is needed when a general non–linear
model is considered, as well as a continuous weight function.

Lemma 2. Assume that the observations (yj,i,xj,i), 1 ≤ i ≤ nj, satisfy the
non–linear regression model (6). Let s be a fixed real number and define the
class of functions

G={gβ, σ, ν(y,x) = w (ν(y − f(x, β))) Iy−f(x,β)≤σ s for (β, σ, ν) ∈ V0×I0×J0} .

Under C1, C4 and C5, we have that supg∈G |Pnjg − Pg| a.s.−→ 0, where Pg =
Eg(Yj ,Xj) and Pnjg = (1/nj)

∑nj

i=1 g(yj,i,xj,i).

Proof of Proposition 1. When cj,0 = ∞, using that Gj is a bounded, monotone
and continuous function and that Ĝj is monotone, according to Lemma S.1 in
the supplementary file, it will be enough to show that for each s ∈ R, Ĝj(s)

a.s.−→
Gj(s). On the other hand, when cj,0 < ∞, standard arguments imply that
F (s) = hj,0(cj,0, s)/hj,∞(cj,0) is a bounded, monotone and continuous function
of s and the uniform convergence also follows from the pointwise one.

To avoid burden notation, we define ui as ui = σ0,jεj,i and U = σ0,jεj . When
there is no confusion, we will omit the subscript j. Hence, for instance, X, σ0,j ,
β̂, σ̂, cn, n, h∞ and h0 will stand for Xj , σ0, β̂j , σ̂j , cnj , nj , hj,∞ and hj,0,
respectively.

Denote as ν̂ = 1/(cn σ̂), ν0 = 1/(c0 σ0), where we understand that if c0 =
+∞, ν0 = 0. Then ν̂

a.s.−→ ν0.
We will begin by showing that for each fixed real number s, we have that

1
n

n∑
i=1

wi I(ri ≤ s) a.s.−→ h0(c0, s) =

⎧⎨⎩ EGjw

(
εj
c0

)
Iεj≤s if c0 < ∞

EGj Iεj≤s = Gj(s) if c0 = ∞ .
(A.1)

For that purpose and noting that ri = (ui −xt

i θ̂)/σ̂ with θ̂ = β̂− β0, define the
class of functions

F = {fθ, κ,ν(u,x) = w
(
ν(u− xtθ)

)
Iu−xtθ≤κ s for (θ, κ, ν) ∈ Rp×R≥0×R≥0} .

Lemma 1 entails that supf∈F |Pnf − Pf | a.s.−→ 0. Then, using that Pnf̂θ, σ̂, ν̂ =
(1/n)

∑n
i=1 wiI(ri ≤ s), we obtain that

1
n

n∑
i=1

wiI(ri ≤ s) − P f̂
θ, σ̂, ν̂

a.s.−→ 0 .

It remains to show that P f̂
θ, σ̂, ν̂

a.s.−→ Pf0, σ0, ν0 = h0(c0, s), which will follow if
we derive that

An = P f̂
θ, σ̂, ν̂

− Ew (ν0U) I
U−Xtθ̂≤σ̂ s

a.s.−→ 0 (A.2)
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Bn = Ew (ν0U) I
U−Xtθ̂≤σ̂ s

− h0(c0, s)
a.s.−→ 0 . (A.3)

We begin by considering the situation where w satisfies C1. Noting that

|An| =
∣∣∣E{

w
(
ν̂(U − Xtθ̂)

)
− w (ν0 U)

}
I
U−Xtθ̂≤σ̂ s

∣∣∣
≤ E

∣∣∣w (
ν̂(U − Xtθ̂)

)
− w (ν0 U)

∣∣∣ ,
using the Dominated Convergence Theorem, the continuity of w and the fact
that ν̂

a.s.−→ ν0 and θ̂
a.s.−→ 0, we obtain that An

a.s.−→ 0, concluding the proof of
(A.2).

When w = I[−1,1], we have that

w
(
ν̂(u− xtθ̂)

)
− w (ν0 u) = I

ν̂(u−xtθ̂)≤1 I−1≤ν̂(u−xtθ̂) − Iν0 u≤1 I−1≤ν0 u

= I
ν̂(u−xtθ̂)≤1

{
I−1≤ν̂(u−xtθ̂) − I−1≤ν0 u

}
−
{
Iν0 u≤1 − I

ν̂(u−xtθ̂)≤1

}
I−1≤ν0 u ,

so

|An| ≤ E

∣∣∣w (
ν̂(U − Xtθ̂)

)
− w (ν0 U)

∣∣∣
≤ E

∣∣∣I−1≤ν̂(U−Xtθ̂) − I−1≤ν0 U

∣∣∣ + E

∣∣∣Iν0 U≤1 − I
ν̂(U−Xtθ̂)≤1

∣∣∣
≤ E

∣∣∣I−ν̂−1+Xtθ̂≤U
− I−ν0−1≤U

∣∣∣ + E

∣∣∣IU≤ν0−1 − I
U≤ν̂−1+Xtθ̂

∣∣∣
≤ E

∣∣∣I
U<−ν̂−1+Xtθ̂

− IU<−ν0−1

∣∣∣ + E

∣∣∣IU≤ν0−1 − I
U≤ν̂−1+Xtθ̂

∣∣∣
≤ E

∣∣∣∣Gj

(
1
σ0

[
−1
ν̂

+ Xtθ̂

])
−Gj

(
− 1
σ0 ν0

)∣∣∣∣
+ E

∣∣∣∣Gj

(
1
σ0

[
1
ν̂

+ Xtθ̂

])
−Gj

(
1

σ0 ν0

)∣∣∣∣ ,
where we understand that Iu<−1/ν0 = 0, Gj (−1/σ0 ν0) = 0, Iu<1/ν0 = 1 and
Gj (1/σ0 ν0) = 1 if ν0 = 0. Now the proof follows from the continuity of Gj if
c0 < ∞ and from the fact that limu→−∞ Gj(u) = 0 while limu→+∞ Gj(u) = 1.

To derive (A.3), note that

|Bn| =
∣∣∣Ew (ν0U) I

U−Xtθ̂≤σ̂ s
− Ew (ν0 U) IU≤σ0 s

∣∣∣ ≤ E

∣∣∣I
U≤Xtθ̂+σ̂ s

− IU≤σ0 s

∣∣∣ .
If xtθ̂ + σ̂ s ≤ σ0 s, then I

u≤xtθ̂+σ̂ s
= 1 implies that Iu≤σ0 s = 1, so that

Δ(u) = I
u≤xtθ̂+σ̂ s

− Iu≤σ0 s = 0. Similarly, if Iu≤σ0 s = 0, then I
u≤xtθ̂+σ̂ s

= 0
and Δ(u) = 0. Therefore, when xtθ̂ + σ̂ s ≤ σ0 s, Δ(u) = 1 if and only if
xtθ̂ + σ̂ s < u ≤ σ0 s.

On the other hand, if xtθ̂ + σ̂ s ≥ σ0 s, then Δ(u) = 1 if and only if σ0 s <

u ≤ xtθ̂ + σ̂ s.
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Note that the fact that θ̂ a.s.−→ 0 and σ̂
a.s.−→ σ0 entails that xtθ̂ + σ̂ s

a.s.−→ σ0 s,
for each x. Let C = {x : xtθ̂ + σ̂ s ≤ σ0 s} and C its complement, then

|Bn| ≤ E IC IXtθ̂+σ̂ s<U≤σ0 s
+ E IC I

σ0 s<U≤Xtθ̂+σ̂ s

≤ E IC

{
Gj( s) −Gj

(
Xtθ̂ + σ̂ s

σ0

)}
+E IC

{
Gj

(
Xtθ̂ + σ̂ s

σ0

)
−Gj( s)

}

≤ E

∣∣∣∣∣Gj

(
Xtθ̂ + σ̂ s

σ0

)
−Gj( s)

∣∣∣∣∣
and (A.3) follows immediately from the continuity of Gj and C3, concluding
the proof of (A.1).

Similar arguments allow to show that

1
n

n∑
i=1

wi
a.s.−→ h∞(c0) =

⎧⎨⎩ EGjw

(
εj
c0

)
if c0 < ∞

1 if c0 = ∞
(A.4)

and the desired result follows now easily combining (A.1) and (A.4). �
Proof of Proposition 2. As in the proof of Proposition 1, when c0,j = ∞, using
that C4 implies that Gj is a bounded, monotone and continuous function and
that Ĝj is monotone, from Lemma S.1, it will be enough to show that for each
s ∈ R, Ĝj(s)

a.s.−→ Gj(s). On the other hand, when c0,j < ∞, standard arguments
allow to show that F (s) = hj,0(cj,0, s)/hj,∞(cj,0) is a bounded, monotone and
continuous function of s and the uniform convergence also follows from the
pointwise one.

The proof follows the same steps as that of Proposition 1 and we will omit
the subscript j to avoid burden notation, when there is no confusion.

Denote ν̂ = 1/(cn σ̂), ν0 = 1/(c0 σ0), where we understand that if c0 = ∞,
ν0 = 0. Furthermore, let J0 be a compact interval with non–empty interior, such
that ν0 ∈ J0. Taking into account that ν̂

a.s.−→ ν0, we have that with probability
1, for n large enough ν̂ ∈ J0.

As in the proof of Proposition 1, we will begin by showing that for each fixed
real number s we have that

1
n

n∑
i=1

wiI(ri ≤ s) a.s.−→ h0(c0, s) =

⎧⎨⎩ EGjw

(
εj
c0

)
Iεj≤s if c0 < ∞ ,

EGj Iεj≤s = Gj(s) if c0 = ∞ .
(A.5)

For that purpose and noting that ri = (yi − f(x, β̂))/σ̂, define the class of
functions

G = {gβ, σ, ν(y,x) = w (ν(y − f(x, β))) Iy−f(x,β)≤σ s for (β, σ, ν) ∈ V0×I0×J0} .

Lemma 2 entails that supg∈G |Png − Pg| a.s.−→ 0, then, using that

1
n

n∑
i=1

wiI(ri ≤ s) = Pngβ̂, σ̂, ν̂ ,
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we obtain that
1
n

n∑
i=1

wiI(ri ≤ s) − Pg
β̂, σ̂, ν̂

a.s.−→ 0 .

It remains to show that Pg
β̂, σ̂, ν̂

a.s.−→ Pgβ0, σ0, ν0 = h0(c0, s), which will follow
if we derive that

An = Pg
β̂, σ̂, ν̂

− Ew (ν0U) I
Y−f(X,β̂)≤σ̂ s

a.s.−→ 0 (A.6)

Bn = Ew (ν0U) I
Y−f(X,β̂)≤σ̂ s

− h0(c0, s)
a.s.−→ 0 . (A.7)

Noting that

|An| =
∣∣∣E{

w
(
ν̂
[
Y − f(X, β̂)

])
− w (ν0 U)

}
I
Y−f(X,β̂)≤σ̂ s

∣∣∣
≤ E

∣∣∣w (
ν̂
[
Y − f(X, β̂)

])
− w (ν0 U)

∣∣∣ ,

using the Dominated Convergence Theorem, the continuity of w and the fact
that ν̂

a.s.−→ ν0 and θ̂
a.s.−→ 0, we obtain that An

a.s.−→ 0, concluding the proof of
(A.6).

To derive (A.7), using that 0 ≤ w(t) ≤ 1, we get that

|Bn| =
∣∣∣Ew (ν0U) I

Y−f(X,β̂)≤σ̂ s
− Ew (ν0 U) IU≤σ0 s

∣∣∣
≤ E

∣∣∣I
U≤f(X,β̂)−f(X,β0)+σ̂ s

− IU≤σ0 s

∣∣∣ .

As in the proof of Proposition 1, we have that, if f(x, β̂)− f(x, β0)+ σ̂ s ≤ σ0 s,
then Δ(u) = I

u≤xtθ̂+σ̂ s
− Iu≤σ0 s = 1 if and only if f(x, β̂) − f(x, β0) + σ̂ s <

u ≤ σ0 s.
On the other hand, if f(x, β̂) − f(x, β0) + σ̂ s ≥ σ0 s, then Δ(u) = 1 if and

only if σ0 s < u ≤ f(x, β̂) − f(x, β0) + σ̂ s.
Note that the fact that β̂ a.s.−→ 0 and σ̂

a.s.−→ σ0 together with the continuity of
f(x, β) entails that f(x, β̂) − f(x, β0) + σ̂ s

a.s.−→ σ0 s, for each x. Let C = {x :
f(x, β̂) − f(x, β0) + σ̂ s ≤ σ0 s} and C its complement, then

|Bn| ≤ E IC I
f(X,β̂)−f(X,β0)+σ̂ s<U≤σ0 s

+ E IC I
σ0 s<U≤f(X,β̂)−f(X,β0)+σ̂ s

≤ E

∣∣∣∣∣Gj

(
f(X, β̂) − f(X, β0) + σ̂ s

σ0

)
−Gj( s)

∣∣∣∣∣
and (A.7) follows immediately from the continuity of Gj and C3, concluding
the proof of (A.5).

Similar arguments allow to show that

1
n

n∑
i=1

wi
a.s.−→ h∞(c0) =

⎧⎨⎩ EGjw

(
εj
c0

)
if c0 < ∞

1 if c0 = ∞
(A.8)

and the desired result follows now easily combining (A.5) and (A.8). �
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