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The fringe pattern obtained when a divergent (or convergent) beam goes through a sample of birefringent
crystal between two crossed polarizers contains information that is inherent to the crystalline sample
under study. The formation of fringe patterns is analyzed from distinct approaches and with different
degrees of approximation considering cones of light of large numerical aperture. We obtain analytic
explicit formulas of the phase shift on the screen and compare them with the exact numerical solution.
The results obtained are valid for arbitrary orientation of the optical axis and are not restricted either to
low birefringence or to small angles of incidence. Moreover, they enable the extraction of the main fea-
tures related to the characterization of uniaxial crystal slabs, such as the optical axis tilt angle and the
principal refractive indices. © 2012 Optical Society of America
OCIS codes: 100.2650, 160.1190, 230.5440, 260.1180, 260.1440, 260.3160.

1. Introduction

The characterization of uniaxial crystals has been ex-
tensively studied since long ago. However, its current
importance in diverse fields of science and technol-
ogy has reencouraged this challenge. Nowadays, high
quality liquid crystal displays, spatial light modula-
tors, and birefringent devices demand better char-
acterization [1–4] and modeling [5,6]. Moreover,
current trends in technology and science require
wide angle illumination systems. The first step deals
with the accurate determination of the directions of
the optical axis and themeasurement of the principal
indices: ne (extraordinary index) and no (ordinary
index). Several methods have been proposed to mea-
sure these characteristics. The measurement meth-
ods are generally divided into two types: reflection
and transmission. It has been shown in a previous
communication [4] that a conoscopic measurement

by transmission provides information about a crystal
sample. As a starting point, plane-parallel uniaxial
crystal samples are studied. Plane-parallel uni-
axial plates are quite simple and have been widely
used in many devices (e.g., wave retarders). They
also constitute the building blocks of more complex
devices (e.g., twisted nematic LCDs) [7]. We consider
the particular case where the birefringent element
only consists of a plane-parallel plate of uniaxial
crystal with arbitrary orientation of the optical axis
(i.e., arbitrary optical axis tilt angle). The conoscopic
measurements are based on the interference be-
tween ordinary waves and extraordinary waves due
to a crystal plate sandwiched between crossed polar-
izers when it is illuminated by a cone of light (conver-
gent or divergent). Experimental fringe patterns
corresponding to uniaxial crystals [8,9] show a strong
dependence on the direction of the optical axis. More-
over, a large numerical aperture (NA) cone of light
gives more information about the sample under
study [10]. This deviation from the paraxial situation
leads us to analyze the differences between paraxial
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and nonparaxial approximations. First, we explain
the experimental setup and the models that allow for
the description of its results. Second, we analyze the
difference between the distinct approximations, their
validity, and how to easily extract information on the
sample under study.

2. Experimental Setup

There are diverse ways of obtaining a conoscopic
interference pattern. We analyze one of themost sim-
ple experimental setups that allows us to obtain a
wide angle conoscopic interference pattern. It con-
sists of a source of monochromatic linearly polarized
light (HeNe laser λ � 632.8 nm). Then a diffuser
(grounded glass) is placed following the beam axis
(x axis) in order to expand the beam divergence
and generate a smooth speckle pattern of high NA
[11–14]. After that, we place a crystal sample of
thickness H sandwiched between a polarizer and
an analyzer. Then a fringe pattern is collected on a
projecting screen that is placed at a distance xD from
the first interface of the crystal (Fig. 1). However,
more complex experimental setups can be arranged.
For instance, it is also possible to use high NA lenses
to get a converging beam and reduce the size of the
screen (recording medium).

The intensity of the light on the screen (plane
�y; z�) can be calculated as the resulting interference
of waves

I � Io � Ie � 2�IoIe�12 cos Δϕ; (1)

where the intensities Io and Ie correspond to the or-
dinary and the extraordinary beams, respectively,
and Δϕ corresponds to the phase shift between the
ordinary and the extraordinary waves. We do not
consider differences between the intensities of both
beams. Moreover, the intensities of ordinary and ex-
traordinary beams are considered uniform on the
surface of the screen.

3. Ray Tracing for Conical Beams

As known, ray tracing is widely used in optics, due to
the fact that it is a fundamental tool for the design of
optical instruments. Moreover, it has been used to
analyze the first order geometrical deformations that

a limited beam suffers when it propagates, reflects,
or transmits through an optical device for isotropic or
anisotropic media [15–20]. The paraxial or the non-
paraxial approaches are used in accordance with the
characteristics of the device (material, shape, use,
etc.) and the difficulty of ray-tracing formulas. When
dealing with anisotropic media, ray tracing for the
ordinary wave is the same as in isotropic media,
but it is more difficult for the extraordinary wave. In
this case, the directions of the normal to the wave-
front and the ray direction are generally nonidentical
and the ray may not be contained in the plane of
incidence. These complex characteristics have stimu-
lated the use of paraxial approximations. Neverthe-
less, when considering a conic cylindrical beam
normally impinging on an arbitrary plane-parallel
plate of uniaxial crystal, it is relatively simple to ob-
tain nonparaxial formulas [21–24]. We analyze the
transmitted extraordinary rays that correspond to
different separate surfaces of impinging rays for dis-
tinct apertures. Each ray diverges from (or converges
to) point P, which is located along the x axis at x � xP
and impinges on the first interface at an angle of in-
cidence α. The angle δ is the angle between the plane
of incidence and the optical axis projection on the in-
terface (Fig. 2). The principal refractive indices of the
crystal are no and ne, and the surrounding medium
index is n.

Fig. 1. (Color online) Scheme of the experience. Light propagates in the direction of the x axis, while the screen is placed perpendicular to
it. θ is the angle between the optical axis and the interface, �x; y; z�, is the lab frame fixed to the first interface of the crystal where z is the
projection of the optical axis on the interface of the plate. The diffuser is located at xP and the screen at xD.

Fig. 2. (Color online) A ray impinging on the first interface �x �
0� of a plane-parallel uniaxial plate. �x; σ; t� is the coordinate sys-
tem associated to the incident wave. x, t is the plane of incidence.
As in Fig. 1(b), �x; y; z� is the lab frame. θ is the angle between the
optical axis and the interface.
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By means of exact geometrical ray tracing, it is
possible to determine the location of the points of in-
tersection (either real or virtual) of both ordinary and
extraordinary rays (Fig. 3). The points of intersection
for ordinary rays can be found along the x axis

Xo�α� � xP �H
�
1 −

n cos α
�n2

o − n2 sin2 α�12

�
(2)

resulting in a different point on the x axis for each
impinging conical surface of rays of aperture α con-
sidered. If xP < 0, the beam considered is diverging
from a point source P, whereas if xP > 0, it is conver-
ging to a point P. Here xP is the distance between the
first interface and the point P. If xP > 0, then P is the
point of convergence of a converging beam that is im-
pinging on the plate. On the other hand, if xP < 0,
then P is the point of divergence of a diverging beam.
In both cases, spherically shaped beams impinge on
the first interface.

The convergence of extraordinary rays is quite dis-
similar. Because of the astigmatism, the points of
intersection are located on two principal planes.
One of them corresponds to the plane z � Δz [9,25]

Δz � −
H�n2

e − n2
o� sin θ cos θ

n2
o cos2 θ� n2

e sin2 θ . (3)

On this plane, we find the intersection of the pairs
of rays corresponding to δ and �π − δ�. The x coordi-
nate of the points of intersection on this plane
XeZ�α; δ� is

XeZ�α;δ��xP�H
�
1

−
nn2

eno cosα
hx�n2

ehx−�n2
e cos2δ�hxsin2δ�n2sin2α�12

�
; (4)

where hx � n2
o cos2 θ� n2

e sin2 θ has been defined as
an auxiliary parameter in [23]. For the same imping-
ing conical surface of rays, we also find the intersec-
tion of the pairs of extraordinary rays corresponding
to δ and −δ. In this case, this intersection takes place

on the other principal plane corresponding to y � 0,
where the x coordinate XeY �α; δ� of the points of inter-
section is given by

XeY �α;δ�� xP�H
�
1

−
nno cos α

�n2
ehx − �n2

e cos2 δ�hx sin2 δ�n2 sin2α�12

�
. (5)

These exact ray tracing formulas allow us to depict
the location of the intersection points of both ordin-
ary and extraordinary rays (Fig. 3). We consider
quartz plates (no � 1.5426 and ne � 1.5516) in two
distinguishable cases of special symmetry. One of
them corresponds to the optical axis parallel to the
interfaces, i.e., tilt angle θ � 0 [Fig. 3(a)]. In this case,
the displacement Δz is zero [Eq. (3)] and both ordin-
ary and extraordinary beams are coaxial. The other
one corresponds to a tilt angle of θ � 45° [Fig. 3(b)].
This value of θ makes the displacement Δz approxi-
mate to its maximum. The absolute value of this dis-
placement reaches a maximum when the angle
between the optical axis and the interfaces is

θ⌊Δz max � � arccos
�

ne

�n2
e � n2

o�12

�
. (6)

For quartz plane-parallel plates, it corresponds to
θ � 44.83°. For Fig. 3 we calculated the intersection
points that correspond to discrete apertures
(α � 0°; 5°; 10°; 15°). Each impinging conical surface
of rays represented by 36 rays (δ in 10° steps) can
be analyzed separately. In the ordinary case, each
surface of rays results in the intersection of all of
its rays in a single point along the x axis. In the ex-
traordinary case, each surface of rays results in the
intersection of rays on two lines where each dot along
these lines consists in the intersection of two rays
(except δ � 0°; 90°; 180°; 270°). One of them is paral-
lel to the z axis, and the other is parallel to the y axis.
Each extraordinary ray intersects both lines and the
screen where the fringe pattern is recovered.

The image of a point object, either real or virtual,
in an ideal aberration-free system, is a point where
every ray arrives in phase. In the case of aberrated
systems, wavefronts are no longer spherical, and con-
sequently rays do not intercept at a single point. For
the extraordinary case, it is possible to see that for
each value of α, all rays belonging to this conical sur-
face converge into a pair of pseudo-straight lines con-
tained in these principal planes. Degeneration from
straight lines, when varying δ, increases as the angle
of incidence becomes larger [Figs. 4(a) and 4(b)].
However, this deformation is almost negligible,
and it is also possible to see that the distance be-
tween these lines and the ordinary points remains
almost unchanged for different values of α (Fig. 5).
This longitudinal displacement affects both the

(a) (b)

Fig. 3. (Color online) Calculated three-dimensional spot diagram.
The blue circles correspond to the points of intersection of ordinary
rays (along the x axis). The red diamonds correspond to the extra-
ordinary points XeZ �α; δ� (on the plane z � Δz), and the green
squares correspond to the extraordinary points XeY �α; δ� (on the
plane y � 0) for α � 0°; 5°; 10°; 15° and δ � 0°; 10°;…; 360°.
λ � 632.8 nm, no � 1.5426, ne � 1.5516, xP � 0, H � 3 mm.
(a) θ � 0°. (b) θ � 45°.
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ordinary and the extraordinary wavefronts in a simi-
lar way (i.e., we have approximately the same
amount of defocus for ordinary and extraordin-
ary waves).

If we take the limit as α → 0° on Eqs. (2), (4), and
(5) (i.e., small angle or paraxial approach), we obtain
the location of a point image for the ordinary case
and an astigmatic image for the extraordinary case
[9]. This way, the ordinary image is located in

xord � xP �H
�
1 −

n
no

�
; (7)

and the extraordinary image is determined by the
localization of the two foci lines

xeZ � xP �H
�
1 −

nneno

�n2
o cos2 θ� n2

e sin2 θ�32

�
; (8)

xeY � xP �H
�
1 −

nno

ne�n2
o cos2 θ� n2

e sin2 θ�12

�
. (9)

4. Phase Shift Calculation

In this section, we calculate the phase shift by dif-
ferent approaches. We obtain the formulas of the
phase shift between waves on the screen of coordi-
nates �xD; y; z�.
A. Image formation approach

This approach is based on previous works [9,25] and
relies on the calculation of the position of the geome-
trical images by paraxial ray tracing. This way, the
interference fringes are obtained by superposing
the wavefronts emerging from the ordinary image
and the extraordinary image. The ordinary image
can be found as in isotropic plane-parallel plates
[Eq. (7)] resulting in a point image (under paraxial
considerations). For the extraordinary image, the
three-dimensional distribution of extraordinary rays
is such that they all pass through two orthogonal
lines. It gives rise to an astigmatic image consisting
in two foci lines (Fig. 6). One is parallel to the z axis
[Eq. (9)], and the other is perpendicular to it [Eq. (8)].
The ordinary wavefronts are spherically shaped,
whereas the extraordinary wavefronts may be writ-
ten to first order as the superposition of two crossed
cylindrical wavefronts.

The phase shift between ordinary and extra-
ordinary waves can be obtained by the resulting
interference of these wavefronts. The difference
between the spherically shaped ordinary wavefront

Fig. 4. (Color online)X coordinate of the ordinary and extraordin-
ary intersection points. XeZ (red solid line). XeY (green squares).
Xo�α� (blue circles). 0° < α <� 30° and 0° < δ � 360°;
λ � 632.8 nm, no � 1.5426, ne � 1.5516, xP � 0, H � 3 mm,
D � 10 cm. (a) θ � 0°. (b) θ � 45°

Fig. 5. (Color online) XeZ − Xo (red solid line), XeY − Xo (green
squares), and XeY − XeZ (blue circles). 0° < α <� 30° and
0° < δ � 360°; λ � 632.8 nm, no � 1.5426, ne � 1.5516, xP � 0,
H � 3 mm, D � 10 cm. (a) θ � 0°. (b) θ � 45°.

(a) (b)

Fig. 6. (Color online) Images and wavefronts. For the ordinary case, there is a point image that originates spherical wavefronts, and for
the extraordinary case, there is an astigmatic image that originates cylindrical wavefronts. Once the images are located, it is possible to
construct the fringe patterns by superposing the wavefronts that emerge from them. (a) θ � 0°. (b) θ � 45°.
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and the astigmatically aberrated extraordinary
wavefront gives rise to an optical path difference
(OPD) on a plane parallel to the plate of coordinates
�xD; y; z�

Δϕaberra � 2πn
λv

�
y2

xo − xeY
2�xD − xo��xD − xeY �

� z2
xo − xeZ

2�xD − xo��xD − xeZ�
� z

Δz

xD − xeZ

�
. (10)

Under the assumptions we made, this phase shift
takes into account the difference between the aberra-
tion-free ordinary wavefront and the aberrated
extraordinary wavefront. Higher order aberrations
have not been considered in this approach. The aber-
rations considered are the lateral shift Δz and the
astigmatism, whereas longitudinal defocus has not
been considered, since it has poor influence, as it
affects both ordinary and extraordinary wavefronts
in a similar way. In order to obtain the total amount
of phase shift on the screen, we have to add the OPD
between the ordinary and extraordinary waves for
normal incidence to Δϕaberra�y; z�,

Δϕimage�y; z� � Δϕaberra�y; z� �Δϕα�0; (11)

where Δϕα�0 (Eq. (19) in [5]) is the phase difference
between the ordinary and extraordinary waves in the
center of the screen

Δϕα�0 � 2π
λv

H�no − n00
α�0� (12)

with n00
α�0,

n00
α�0 � none

�n2
o cos2 θ� n2

e sin2 θ�12
�13�

being the index of refraction associated to the extra-
ordinary wave for normal incidence.

If the distance between the localization of the para-
xial images and the screen is such that xD − xo≃
xD − xeZ ≃ xD − xeY , we can approximate all of these
quantities by ρ≐xD − xo. Thus, by replacing Eqs. (10),
(12), and (13) in Eq. (11), we recover the result ob-
tained in [9], where it is shown that the phase shift
Δϕ between the ordinary and the extraordinary

waves on the screen is given by a conic formula
(Eqs. (42)–(44) in [9])

Δϕimage�xD; y; z�

≃
2πH
λv

�
A� n

B
jρj z� n2 CY

ρ2 y2 � n2 CZ

ρ2 z2
�
; (14)

where for A, B, CY , and CZ,

A � no −
none

�n2
o cos2 θ� n2

e sin2 θ�12
; (15)

B � �n2
o − n2

e � sin θ cos θ
�n2

o cos2 θ� n2
e sin2 θ� ; (16)

CY � n2
o − ne�n2

o cos2 θ� n2
e sin2 θ�12

2none�n2
o cos2 θ� n2

e sin2 θ�12
; (17)

CZ � n2
one − �n2

o cos2 θ� n2
e sin2 θ�32

2no�n2
o cos2 θ� n2

e sin2 θ�32
. (18)

On the one hand, the whole expression correspond-
ing toΔϕimage�xD; y; z� depends on the characteristics
of both the uniaxial crystal sample (refractive in-
dices, orientation of the optical axis, and thickness)
and the design of the experience (Fig. 1). On the other
hand, A, B, CY , and CZ only depend on the principal
refractive indices no and ne, and the angle θ between
the optical axis and the interfaces.

B. Nonapproximated approach

In a previous communication [5], we obtained an
explicit formula for the phase shift introduced by
an anisotropic uniaxial plane–parallel plate with
arbitrary orientation of the optical axis when the in-
cident plane wave has an arbitrary direction

Δϕexact�α; δ� �
2πH
λv

�
�n2

o − n2 sin2 α�12 � n�n2
o − n2

e � sin θ cos θ cos δ sin α
n2
e sin2 θ� n2

o cos2 θ

� −nofn2
e �n2

e sin2 θ� n2
o cos2 θ� − �n2

e − �n2
e − n2

o�cos2 θ sin2 δ�n2 sin2 αg12
n2
e sin2 θ� n2

o cos2 θ

�
. (19)

This expression is also suitable for calculating the
phase shift on the screen as long as we place it at the
Fraunhofer zone. If the screen is far enough, the dis-
tance between the emerging ordinary and extraor-
dinary wavefronts remains almost unchanged, and
it is possible to calculate the phase shift by means
of Eq. (19). In order to obtain the resulting interfer-
ence between waves as a function of the coordinates
of the screen �xD; y; z�, we have to calculate the phase
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shift between them on this surface. Because of its
simplicity, we follow the ordinary rays instead of
the extraordinary ones that are a bit more difficult.
The incident rays impinge with a direction given by
�α; δ�, and we follow the ordinary ones from the first
interface of the plate up to the screen. This way, the
coordinates of the screen and the angle of incidence α
are exactly related by

�y2 � z2�12 � �xD −H − xP� tan α�H
n sin α

�n2
o − n2 sin2 α�12

.

(20)

It is not possible to obtain an exact explicit analytic
expression for α as a function of y, z. However, it is
possible to numerically solve Eq. (20) and find for
each point of the screen �xD; y; z� the corresponding
value of sin α. For the azimuth angle, δ, it is easy
to find the relationship with the screen coordinates

cos δ � z

�y2 � z2�12
; sin2 δ � y2

y2 � z2
. (21)

By means of Eqs. (20) and (21), it is possible to nu-
merically obtain the exact phase shiftΔϕexact�xD; y; z�
as a function of the coordinates of the screen and
then the corresponding interference pattern. By
making approximations, it is possible to obtain expli-
cit expressions of the phase shift as a function of the
coordinates of the screen.

1. Different approximations on the exact phase
shift formulas
The first approximation we proposed is based on a
geometry relation between sin α, the points of inter-
section of the ordinary rays Xo�α� [Eq. (2)], and the
coordinates of the screen

sin α �
�

y2 � z2

�xD − Xo�α��2 � y2 � z2

�1
2

. (22)

If xD ≫ Xo�α� for every value of α considered, it is
possible to estimate

sin α≃

�
y2 � z2

�xD − xo�2 � y2 � z2

�1
2

. (23)

For small angles, we can see that if α tends to zero,
Xo�α� tends to xo. On the other hand, for large values
of α (i.e., large values of y2 � z2), the differences be-
tween xD − Xo�α� and xD − xo are minimal in compar-
ison to the value of y2 � z2. This first approximation
allows us to obtain a quasi nonparaxial but explicit
and analytic expression ΔϕQNP�xD; y; z� by replacing
Eqs. (21) and (23) in Eq. (19). In order to reduce the
complexity of ΔϕQNP�xD; y; z�, several approxima-

tions could be proposed. Even though higher order
expansions could be made, we propose another
approximation by developingΔϕexact�α; δ� to a second
order expansion in sin α

Δϕsec�α; δ� �
2πH
λv

�A� B cos δn sin α

� �CY sin2 δ� CZ cos2 δ�n2 sin2 α�; (24)

where A, B, CY , and CZ coincide with those obtained
in Eqs. (15), (16), (17), and (18). If we replace Eqs. (21)
and (23) in Eq. (24), we obtain an explicit approxima-
tion of the phase shift Δϕsec�xD; y; z� (less accurate
than ΔϕQNP�xD; y; z�).

Finally, if we expand ΔϕQNP�xD; y; z� to second or-
der in y, z, we recover the expression corresponding
to Δϕimage�xD; y; z� [Eq. (14)]. Even though it is also
possible to develop higher order expansions and find
higher order terms, we will thoroughly investigate
this expression due to its simplicity.

In the following section, we will compare the differ-
ent approximations we obtained, ΔϕQNP�xD; y; z�,
Δϕsec�xD; y; z�, andΔϕimage�xD; y; z�, by means of com-
puter generated interferograms. We will analyze the
fringe formation by means of these three different
explicit formulas of the phase shift, and we will com-
pare them to the exact formulas.

5. Computer Generated Interferograms

The intensity of the light on the screen can be calcu-
lated as the resulting interference of waves by repla-
cing the considered value ofΔϕ�xD; y; z� in Eq. (1). By
means of this formula and the proper parameters, we
generate computer intensity images of the fringe pat-
terns that are similar to those that can be experimen-
tally obtained [9]. Since approximations were made
around normal incidence, it will be expectable to ob-
tain differences for high NA conoscopic figures. From
Eqs. (14), (19), and (24), we can observe that differ-
ences between approximations are sensible to large
apertures and are also amplified by a factor H∕λv.
In order to make comparisons, we set experimen-
tally achievable practical values of both param-
eters, which allow us to see the differences due to
their corresponding amplification factor: H � 3 mm
and λ � 632.8 nm. We placed the point source at
xP � 0, just on the first interface of a quartz slab.
The screen is placed at xD � 10 cm, and it is a
10 cm × 10 cm square surface.

In order to illustrate the behavior of the crystals,
we arbitrarily select three distinct tilt angles of the
optical axis, θ (45°; 85°, and θ � 5°), which are ex-
amples of the different fringe shapes that uniaxial
plane-parallel plates can provide. Figures 7(a),
7(b), and 8(a) were calculated with the exact
formulas.

For the case of θ � 5°, fringes are hyperbolas. In
Figs. 8(a) and 8(b), we show the results of calcula-
tions with the exact formulas and with the less accu-
rate one (Δϕimage�xD; y; z�). Since disparities cannot
be fully appreciated, we calculate the subtraction
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between the interference patterns generated (data
matrices of the intensity images) with the exact for-
mulas and the ones obtained with different approx-
imations. Figure 9 shows the modulus of the
subtraction of the interference pattern generated
with Δϕexact from the patterns generated with the
three different approximations of Δϕ that corre-
spond to the three approximations proposed. It is
possible to appreciate some dissimilarities in the per-
iphery. However, the levels of approximation are
notably different according to the graduations of
the color bars. We establish the following criterion

in order to compare the images obtained with the
different approximations:

M −N% �
PA

i�1

PB
j�1 jmij − nijj
AB

100; (25)

wheremij (nij) corresponds to the intensity of the pix-
el located in ith row and jth column of the image M
(N), whose pixel size is A × B. This criterion gives an
idea of the relative difference between images.

For the case of θ � 5°, we can observe some mini-
mal dissimilitudes due to paraxial approximation in
the peripheral region of Fig. 9. The percentage differ-
ence obtained withΔϕimage according to the proposed
criterion is approximately 22%. This value corre-
sponds to the double summation of the pixels of
the whole image from Fig. 9(c) divided by the number
of pixels of the image and multiplied by 100
[Eq. (25)]. However, it is possible to note that the hy-
perbola asymptotes coincide, even for large angles.
Instead, if the summation is circumscribed to the
center of Fig. 9(c), more precisely to an area of
5 cm × 5 cm, we obtain a percentage difference of ap-
proximately 3%. We compare the results obtained
with the three different approximations for every tilt
angle (θ) of the optical axis. We analyze the results
for two cases of different NA, one corresponding to
the interference patterns collected by a screen sur-
face of 10 cm × 10 cm (NA ≃ 0.58), and the other
one corresponding to the cropped section around
the center of 5 cm × 5 cm (NA ≃ 0.33).

In the case of higher NA [Fig. 10(a)], we obtain lar-
ger differences due to weakness of the approxima-
tions on the periphery of the fringe patterns.
However, in the case of the fringe patterns obtained
with ΔϕQNP�xD; y; z�, the percentage differences are
minimal for both considered NA [Figs. 10(a) and
10(b)]. In the case of lower NA [Fig. 10(b)], the inter-
ference pattern obtained with Δϕimage�xD; y; z� seems
to reveal some lack of approximation according to our
criterion, particularly for θ ≃ 45°, where there is a
maximum discrepancy. It is related to the dis-
placement Δz of the extraordinary beam in the z di-
rection. As this displacement increases, higher order

Fig. 9. (Color online) Subtraction (absolute value) of fringe patterns generated with different approximations (exact-approximated).
λ � 632.8 nm, no � 1.5426, ne � 1.5516, θ � 5°, xP � 0, H � 3 mm, xD � 10 cm. (a) ΔϕQNP�xD; y; z�, M −N% � 0.3%. (b) Δϕsec�xD; y; z�,
M −N% � 6.43%. (c) Δϕimage�xD; y; z�, M −N% � 22.4%.

Fig. 8. Interference patterns generated with different phase shift
formulas Δϕ�xD; y; z�. λ � 632.8 nm, no � 1.5426, ne � 1.5516,
θ � 5°, xP � 0, H � 3 mm, xD � 10 cm. (a) Δϕexact�xD; y; z�.
(b) Δϕimage�xD; y; z�.

Fig. 7. Interference patterns generated with the exact phase shift
formulas. λ � 632.8 nm, no � 1.5426, ne � 1.5516, xP � 0,
H � 3 mm, xD � 10 cm. (a) θ � 45°. (b) θ � 85°.
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aberrations (particularly, comma) associated with
third order expansions become of significance. For
larger NAs, higher order aberrations (even higher
than comma) also became of comparable significance,
and this maximum is not appreciable.

For both of the apertures considered, the results
obtained with Δϕsec present a similar behavior:
the percentage difference increments with θ.
Δϕimage�xD; y; z� is the less accurate formula we pro-
pose. Besides its simplicity, it still predicts the behav-
ior of the interference figures, and its applicability
will be suitable depending on the NA and the factor
of amplification H∕λv considered.

6. Fringe Shape Analysis

We will analyze the information on a crystal sample
that we can get from the shape of the fringes by
means of the formula given by Eq. (14). Despite the
discrepancies with the more accurate formulas we
proposed, this one provides easy-to-read information
about the crystal sample. By means of Eq. (14), we
can see that equal phase contour lines are conics.
The term A [Eq. (15)] is related to the phase shift
at normal incidence. It is the phase shift correspond-
ing to the center of the screen, where y � z � 0. The

dependence on θ is monotonic (monotonically in-
creasing or monotonically decreasing). The absolute
value of A [26] reaches its maximum at θ � 0°, i.e.,
when the optical axis is parallel to the interfaces
[Fig. 11(a)]. It is always zero for θ � 90°, i.e., when
the optical axis is perpendicular to the interfaces, de-
spite the value of the principal refractive indices. If
the incidence is not strictly normal or the optical axis
is not perfectly perpendicular to the interfaces, the
phase shift introduced will correspond to a zero order
OPD; i.e., the OPD will correspond to a fraction of λv
(commercial devices with such behavior are com-
monly addressed as true-zero-order). The coefficient
accompanying the linear term B∕jρj is associated
to the displacement of the extraordinary beam Δz
[Eq (3)]. This displacement is zero when θ equals
0° or 90° [Figs. 11(b) and 12(b)], and its maximum
depends on the principal refractive indices
[Eq. (6)]. The coefficients CY∕ρ2 and CZ∕ρ2 [Fig. 11(c)]
that accompany the quadratic terms (y2 and z2) are
those that determine what type of conic we are deal-
ing with [Eqs. (17) and (18)]. When one of them is po-
sitive and the other one is negative, we are dealing
with hyperbolas. For CZ � 0, we have the particular
case of parabolic contours

θ⌋CZ�0 � arcsin
���n2

one�23 − n2
o

n2
e − n2

o

�1
2
�
. (26)

When both coefficients have the same sign, we obtain
ellipses. The case of θ � 90° is the particular one of
CY � CZ, and it results in circles.

By looking at the quadratic coefficients, we can
recognize two distinct zones where the fringes have
different behaviors: hyperbolic and elliptical. It is
possible to extract information regarding the crystal
by simply calculating the quotient of the coefficients
CZ∕CY [Fig. 12(a)]. In the hyperbolic region, the slope
of the asymptotes is equal to �−CZ∕CY�12, whereas in
the elliptical region �CZ∕CY�12 corresponds to the quo-
tient between the axis of the ellipses. It is interesting
to note that these quotients

Fig. 11. (Color online) Coefficient analysis. (a) Phase shift for normal incidenceA. (b) Linear coefficientB∕jρj. (c)CY (red solid line) andCZ

(green squares). λ � 632.8 nm, no � 1.5426, ne � 1.5516, xP � 0, H � 3 mm, xD � 10 cm.

Fig. 10. (Color online) Percentage difference between the inter-
ference patterns generated with different phase shift formulas
Δϕ�xD; y; z� and the exact formulas.ΔϕQNP�xD; y; z� (red solid line),
Δϕsec�xD; y; z� (green squares), and Δϕimage�xD; y; z� (blue circles).
λ � 632.8 nm, no � 1.5426, ne � 1.5516, θ � 5°, xP � 0,
H � 3 mm, xD � 10 cm. (a) 10 cm × 10 cm (NA ≃ 0.58).
(b) 5 cm × 5 cm (NA ≃ 0.33).
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depend only on the principal indices no and ne, and
the angle between the optical axis and the interfaces
(θ). If θ � 90°, it corresponds to circle shaped fringes,
and jCZ∕CY j12 � 1. This indicates that both axes
of the ellipse are equal. For θ � 0, jCZ∕CY j12 �
�ne∕no�12. In the case of quartz for λ � 632.8 nm, this
quotient is approximately 1.003 and corresponds to
an angle between the asymptotes and the z axis of
45.08°. For the planes of incidence correspon-
ding to δ � �45.08°, the phase shift will remain
unchanged.

It is worth noting that as the optical axis tilt angle
θ increases from 0° to 90°, different effects co-occur.
On the one hand, the order of phase shift for normal
incidence decreases (i.e., the phase difference in
number of waves is smaller). On the other hand,
the kind of conic changes from hyperbola to circle as
the center of the conics moves along the z axis. This
latter effect is the reason we do not see the whole
ellipses for θ � 45° [Fig. 7(a)]. The location of the cen-
ter of the conics zC is given by −nBjρj∕�2n2CZ�
[Eq. (14)]

zC �
no�n2

o − n2
e �hx sin θ cos θ

h
xD − xP −H

�
1 −

n
no

	i

n�n2
one − h

3
2
x�

.

(28)

When CZ tends to zero [Eq. (26)], Eq. (28) tends to
infinity and the center of the conic is not visible
on the screen. As CZ crosses the zero level, it also
changes its sign. In Fig. 12(b), we plot jzCj. For θ �
5° [Fig. 8(b)], the center of the hyperbola experi-
ences a positive displacement, whereas for θ � 85°
[Fig. 7(b)], the displacement is negative. If the center
of the conic is in the region of the screen (i.e., if θ is
near 0° or near 90°), it is interesting to note the high
sensibility of this parameter regarding the tilt of the
optical axis.

7. Conclusions

We developed the formulas of the resulting interfer-
ence when a converging or diverging beam goes
through a uniaxial plane-parallel plate. The metho-
dology we developed relies on exact ray tracing. In
this work, we found analytic explicit expressions of
the phase shift as a function of the coordinates of
the screen. We proposed two approaches for calculat-
ing the phase shift: one departs from the paraxial ap-
proximation of image formation, and the other one
departs from the exact phase shift calculation. In
addition to the exact analytical calculation (which re-
quires being numerically solved), we also developed
three distinct approximations that demonstrate dif-
ferent accuracies and complexities. Approximations
made on the exact formulas show the concordance
between the two approaches.

Comparison between the exact solution and the
approximated formulas exhibits different perfor-
mances according to the degree of approximation.
The formulas obtained are not limited either to low
birefringence or to special cases of optical axis tilt.
Moreover, they are applicable for calculating the in-
terference patterns that allow characterization by
cones of light of large NA. Depending on the factor
H∕λv, on the NA considered, and on the optical prop-
erties of the uniaxial plate, some of the approximated
formulas would be more suitable than others. ΔϕQNP
presents the best performance and the highest com-
plexity. It is followed byΔϕsec, whichmakes use of the
same approximation on sin α as ΔϕQNP, but has a
lower complexity. Finally, Δϕimage allows us to ex-
tract information about a uniaxial sample by simple
recognition of features from the conoscopic inter-
ference patterns. The results obtained will enable
us to perform a proper characterization of uniaxial
crystals and are useful for a variety of devices that
demand wide angle illumination through birefrin-
gent crystals.
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Peruilh and two UBACYT grants from Universidad
de Buenos Aires (UBACYT 2010–2012
20020090100136 and UBACYT 2011–2014
20020100100139).
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