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Abstract
A variational principle governing nanoscale water configurations at biological
interfaces is derived. The underlying functional determines a scalar field
g = g(r) indicating the expected hydrogen-bond coordination of water at
position r, and includes an elastic term to penalize local coordination losses.
The minimization of interfacial free energy implies that g must obey a Poisson-
type equation with Dirichlet boundary conditions. The equation is integrated
and the specialization of the treatment to protein–water interfaces enables the
determination of protein complexation propensities and the identification of
protein binding sites and binding hot spots.

PACS numbers: 87.15.Aa, 61.20.Qg, 41.20.Cv

1. Introduction

In spite of significant progress [1–4], the physical underpinnings of biological-water interfaces
remain elusive, hindering our understanding of biomolecular associations [5–9]. The partial
confinement of interfacial water within inhomogeneous nanoscale cavities makes it difficult to
define thermodynamic concepts such as interfacial tension, useful to describe homogeneous
phase separation [10, 11]. In aqueous biological contexts, the interfacial physics is complex, as
solutes associate forming complexes but do not precipitate. The only known phase separations
for natural soluble proteins under physiological conditions are neurodegenerative fibrillogenic
aggregates, involving misfolded prions [9].

This work addresses the problem of computing interfacial tension in biomolecular contexts
and validates the results by identifying protein binding sites without resorting to information on
homologous proteins or knowledge-based potentials [12]. Strikingly, the treatment singles out
the soluble prion protein structure as possessing the highest protein–water (P–W) interfacial
tension. Befitting a nanoscale description, the theoretical derivation introduces an elastic term
that penalizes local changes in hydrogen-bonding coordination and allows for compensations
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to this elastic penalization as water dipoles interact with pre-existing or induced electrostatic
fields yielding a more or less restricted polarization depending on their local coordination
environments.

2. Variational mechanics of water at the biological interface

To compute interfacial tension, we adopt the field g = g(r), a descriptor that assigns to each
position vector r the expected value of hydrogen-bond coordination of a water molecule
situated within a sphere centered at position r with radius 2.5 Å (the thickness of a single
water layer [13, 14]). This radius spans a van der Waals radius plus half a hydrogen-bond
distance. The g(r) value is computed as time average over solvent configurations determined
by molecular dynamics over a 100 ns period after the protein structure is equilibrated with the
solvent, thus allowing for breathing motions of exposed atoms [13].

Within this representation, the minimization of interfacial tension requires a variational
principle, whereby the extremal of the surface integral �Gif = ∫

�(g(r),∇g(r)) dr represents
the free-energy cost of spanning the P–W interface. Thus, �(g(r),∇g(r)) dr gives the free-
energy cost of transferring water from bulk to volume dr at position r. A hydrogen bond is
defined by the geometric constraints: O–O distance <3.2 Å and O–H–O angle aHB satisfying
120◦ � aHB � 180◦. Compared with bulk water, interfacial water has reduced hydrogen-
bonding opportunities (g < gbulk = 4) and may counterbalance such losses by interacting
with polar groups on the protein surface. Thus, the term �Gif incorporates unfavorable local
decreases in g and favorable polarization contributions.

Exploiting the analogy with Lagrangian mechanics [10], we write �Gif =∫
1
2{λ|∇g|2 − |P(g(r))|2} dr, where the elastic term 1

2λ|∇g|2 accounts for tension-generating
reductions in water coordination and the polarization P(g(r)) accounts for dipole–electrostatic
field interactions. Bulk water properties are incorporated since the scaling parameter λ is
obtained from the interfacial tension of a large nonpolar sphere with radius θ in the macroscopic
limit θ /1 nm → ∞. We obtain λ = 9.0 mJ m−1 = limθ /1 nm→∞ γ (4πθ2)/

∫
1
2 |∇g|2 dr, where

γ = 72 mJ m−2 is the macroscopic surface tension of water at 298 K, and
∫ |∇g|2 dr =

1
2 42 m−1(4πθ2), since ∇g �= 0 only close to the interface and the associated g-jump is
4 units in magnitude. Thus, unfavorable P–W hydrophobic interactions are accounted for
through the positive elastic contribution

∫
1
2λ|∇g|2 dr which extrapolates to macroscopic

dimensions.
To determine the g-dependence of polarization P = P(r), we adopt the Fourier-conjugate

wavenumber space (ω-space) and represent the dipole correlation kernel Kp(ω) and the
electrostatic field E = E(r) in this space. This representation is required to capture the
entire dielectric loss spectrum occurring mostly within the microwave range (10−3 m �
ω−1 � 0.3 m) [15, 16]. The biophysical experimental data analyzed required examining
results at bulk wavelengths spanning several orders of magnitude and are best reproduced at
bulk wavelength ω−1 ≈ 0.03 m (figure 1, inset). At fixed wavelength, P and E are proportional
[17, 18], but the proportionality constant is generally ω dependent [18], which introduces a
significant departure from the Poisson–Boltzmann electrostatics (see below). In ω-space, we
obtain

F(P)(ω) = Kp(ω)F (E)(ω), (1)

where F denotes the 3D-Fourier transform F(f)(w) = (2π )−3/2
∫

eiω.r f(r) dr, and the kernel
Kp(ω) is the Lorentzian Kp(ω) = (εb−εo)/[1+(τ (r)c)2|ω|2], with τ (r)c the local dielectric
relaxation length, c the speed of light, εb the bulk permittivity constant and εo the vacuum
permittivity. For bulk water, we obtain τ = τ b ≈ 100 ps, and the relaxation length
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Figure 1. Protein–water interfacial tension promotes biomolecular associations. The total area of
surfaces generating protein–water (P–W) interfacial tension in free subunits (uncomplexed state)
plotted against the total protein–protein (P–P) interfacial area for 28 protein complexes (table 1).
Datapoints with ordinates given by the areas A1, A2 and solvent-exposed surface area (SESA)
are represented with diamonds, triangles and squares, respectively. The linear fit with correlation
coefficient R2 = 0.871 for A2-(P–P interface) points was obtained by linear regression. Inset:
correlation coefficient R2 as a function of the bulk wavelength parameter τ bc. The correlations
were examined at bulk wavelengths over various orders of magnitude spanning the microwave
range (wavelengths 10−3–0.3 m). The data are best correlated at τ = τ b = 100 ps, with the
wavelength ≈ 0.03 m, the adopted parameter value.

τ bc = ωb
−1 ≈ 0.03 m, the microwave wavelength yielding the best fit with experimental

data (figure 1, inset containing sensitivity analysis). Through the Lorentzian, the
frequency dependence of bulk permittivity is subsumed into the normal distribution factor
[1 + (τ (r)c)2|ω|2]−1 with τ (r) ≡ τ b. Since P(r) satisfies ∇ · (εoE + P)(r) = ρ(r) (ρ(r) is the
charge density distribution) [17], equation (1) yields the following equation in r-space:

∇ ·
[∫

F−1(K)(r − r′)E(r′) dr′)
]

= ρ(r), (2)

with K(ω) = εo + Kp(ω). The convolution
∫

F−1(K)(r−r′)E(r′) dr′ captures the correlation of
the dipoles with the electrostatic field. Equation (2) is not the Poisson–Boltzmann equation,
which requires ad hoc proportionality between E and P.

Upon water confinement, the dielectric relaxation undergoes a frequency redshift arising
from the reduction in hydrogen-bond partnerships that translates in a reduction in dipole
orientation possibilities (g(r) < 4, τ (r) > τ b) [18]. Thus, at position r, the relaxation time is
τ = τ b exp(B(g(r))/kBT), where the kinetic barrier B(g(r)) = −kBT ln(g(r)/4) yields τ (r) =
τ b(g(r)/4)−1.

To obtain the g-dependent polarization term P(r), we introduce the electrostatic potential
� = −�(r), with E = ∇�. Thus, equation (2) reads in ω-space

F(�)(ω) = F(ρ)(ω)/[|ω|2K(ω)], (3)
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where |ω|2 is the Fourier conjugate of ∇2. Thus, E is obtained from the inverse Fourier
transform of equation (3):

E(r) = ∇F−1{F(ρ)(ω)/[|ω|2K(ω)]}(r)
= (2π)−3/2∇

∫
dω e−iω · r F(ρ)(ω)/[|ω|2K(ω)]. (4)

The negative potential �(r) is determined for a generic charge distribution:

ρ(r) =
∑
m∈L

4πqmδ(r − rm), (5)

with L the set of charges on the protein surface labeled by index m, which in ω-space reads

F(ρ)(ω) = (2π)−3/2
∑
m∈L

4πqm exp(iω.rm). (6)

Thus, we obtain

�(r) = (2π)−3/2
∑
m∈L

∫
dω e−iω·(r−rm)4πqm/[|ω|2K(ω)]. (7)

Now the g-dependent polarization term P(r) is obtained from equation (7) and the definition
E = ∇�:

P(r) =
∫

F−1(Kp)(r − r′)E(r′) dr′

= (2π)−3
∑
m∈L

∫
dr′F−1(Kp)(r − r′)∇r′

∫
dω e−iω · (r′−rm)4πqm/[|ω|2K(ω)]. (8)

The field (g, ∇g) is extremal of �Gif = ∫
�(g(r), ∇g(r)) dr = ∫

1
2{λ|∇g|2−|P(g(r))|2} dr if

the spatial version of the Euler–Lagrange equation [10] holds:

∇[∂�/∂∇g] = ∂�/∂g, (9)

with the Dirichlet boundary condition g(r) ≡ 4 for ‖r‖ = R. This condition is defined with R
sufficiently large so the protein molecule is contained in the ball {‖r‖ < R′, R′� R − 5d},
with d = 2.5 Å ≈ thickness of a water layer. Thus, g(r) satisfies the Poisson-type equation

∇2g = −h(r), h(r) = (1/λ)∂P/∂g, with g(r) ≡ 4 for ‖r‖ = R, (10)

which is numerically integrated [19, 20] to yield g(r).

3. Protein–water interfacial tension determining association propensities

The solvent-accessible envelope of the protein surface [21, 22] may be covered by a minimal
set W of water-confining osculating spheres Dj, j ∈ W . These spheres make first-order contact
with the envelope obtained by sliding a water molecule along the surface, thus smoothening
out its singularities [21]. As a minimal covering, W contains all interfacial water molecules
and this property no longer holds if any osculating sphere is excluded from the set, even
though the osculating spheres may intersect. Interfacial tension arises in Dj when �Gj > 0,
where �Gj = 1

2

∫
Dj{λ|∇g|2−|P(g(r))|2} dr is the interfacial surface tension associated with

the spanning contact region j .
To support the claim that �Gif is a determinant of the propensity of the protein to associate,

we examined free subunits in 28 protein complexes (table 1) with defined contact topologies
[5]. The total area of the protein–protein (P–P) interfaces for each complex is computed after
identification of the subunit residues engaged in intermolecular contacts. Separately, �Gif
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Table 1. Representative topologies of inter-subunit contacts for 28 protein complexes reported
in the Protein Data Bank (PDB). The dataset is used to unravel the role of protein–water
(P–W) interfacial tension patches as promoters of protein associations. In the topological
representation of a complex, a ball represents a protein subunit and a stick between two balls
represents a protein–protein (P–P) interface. The numbers in brackets denote % decrease in overall
interfacial tension upon complexation starting with free subunits.

2af7(63)
1fr3(61)

2siv(59) 1ub4(53)
2a1b(51) 2c5r(40) 

4otc(57)

1qoh(54)
1dvz(57)

1jtk(55)
1hho(64) 1nys(39)

1uo5(54)

1vwe(53)
1fvu(50) 1zij(52) 

1ufy(51)

    1wud(42) 

1u4j(48) 1hpo(56)

1htg(50) 1lve(47) 

       2oqq(60) 1v2z(51) 

       1btn(62) 2ien(59)

       1ihb(57) 1p6z(72)

  3orc 1b8x 2gfh 

      1goc 2b65 1h5m 

1may 1uga 1quz 

for each free protein subunit is computed by the numerical integration of equation (10) with
charge and atomic radii (equation (5)) assigned using the program PDB2PQR [23]. We define
filtered sets Wn = {j ∈ W : �Gj � nkBT} (n = 1,2, . . . ) of contributors to the P–W interfacial
tension in the free subunits (Wn ⊂ Wn′ for n > n′), with Sn the total P–W interface associated
with Wn and An the surface area of Sn. In all 28 complexes examined, the total P–P interface
distributed among the subunits within the complex is 100% contained in S2, and it is only
60 ± 7% contained in S3.

These results suggest that interfacial solvent cavities spanned at a thermodynamic cost
�G � 2kBT are the promoters of protein associations. This conclusion is corroborated by the
tight correlation (R2 = 0.87) between A2 and the total P–P interfacial area of each complex
(figure 1). This correlation becomes weaker for S1 with area A1 (R2 = 0.62) and becomes
negligible (R2 = 0.19) when we consider the total solvent-exposed surface area (SESA) [21, 22]
of free protein subunits. The correlation between the areas of surface patches that significantly
destabilize the P–W interface (A2) and those of binding sites reveals that proteins associate to
reduce P–W interfacial tension.

The interfacial tension γ if =�Gif/(SESA) of soluble nonhomologous monomeric proteins
with structures reported in the Protein Data Bank (PDB) has been computed for an exhaustive
dataset of 11 964 uncomplexed monomeric proteins or peptides and varies in the range
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Figure 2. The protein–protein (P–P) interface between the human growth hormone (hGH, ribbon)
and its receptor (backbone line) in the 1:1 complex [6].

(This figure is in colour only in the electronic version)

1.25 mJ m−2 � γ if � 9.90 mJ m−2. The list of proteins or peptides with a sustainable structure
is compiled in the supporting information of [24]. The computation follows exactly the same
operational premises adopted for free protein subunits from the complexes indicated in table
1: the P–W interface is decomposed into a minimal covering of osculating spheres making
first-order contact with the solvent-accessible envelope, and the free energy cost of spanning
each interfacial sphere, �Gj, is computed as described above with the field g determined for
each protein structure by the numerical integration of equation (10). Strikingly, the maximum
γ if value corresponds to the cellular metastable fold of a prion protein (PDB.1qm0), capable
of promoting phase separation through fibrillogenic aggregation [25].

Hot spots in P–P associations were identified by scanning the interface through the site-
specific substitution of amino acids for alanine (effectively a side-chain truncation) [6]. An
extensively scanned interface corresponds to the human growth hormone (hGH)-receptor
complex (figure 2). To validate our molecular marker, the hot spots obtained by alanine
scanning were contrasted with an in silico side-chain truncation procedure (side-chain groups
beyond β-carbon are removed) that determines a reduction in interfacial tension, ��Gif =
�Gif(m) − �Gif(0), caused by a site-directed mutation (0 = wild type → m = mutation).
The side-chain truncation at the β-carbon is equivalent to the alanine substitution in the
experimental dissection of the interfacial hot spots. A strong correlation exists between the
terms −��Gif and the association free-energy difference ��Ga experimentally obtained
from the substitution of interfacial residues (figure 3). Thus, inferred tension patches coincide
with hot spots at complex interfaces identified by mutational scanning.
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Figure 3. Comparison with experimental alanine scanning of the protein–protein (P–P) interface
of the human growth hormone (hGH) receptor validates the interfacial tension computation.
Correlation between the association free-energy differences ��Ga between mutant (m) and wild
type (0) for the alanine substitution of each residue from the hGH receptor at the P–P interface
and the interfacial free-energy difference between wild type and mutant for the free protein
subunit (uncomplexed hGH receptor). The association free energy is computed as �Ga = −RT
lnKa = RT ln(Kd), where Ka and Kd are respectively the association and dissociation equilibrium
constants. Inset: correlation coefficient R2 as a function of the bulk wavelength parameter τ bc.
The dependence was examined over several orders of magnitude spanning the microwave range
(wavelengths 10−3–0.3 m). Optimal correlation is achieved at τ = τ b = 100 ps, wavelength ≈
0.03 m, the adopted parameter value.

4. Conclusions

The aqueous biological interface is physically heterogeneous and geometrically confined at
multiple scales. For these reasons, no generic thermodynamic concept such as interfacial
tension, broadly used in the context of homogeneous phase separation, can be directly
determined without a surface integration procedure. This work provides the theoretical
framework to enable such integration. The biological interfacial tension is unique in that
biological solutes may form obligatory, ephemeral or adventitious complexes but never
precipitate under physiological conditions. The only distinct phase separation encountered
in biology appears to be the amyloidogenic aggregation of prions [9, 25], which as noted in
this work are endowed with a soluble structure generating the highest protein–water (P–W)
interfacial tension.

Since P–W interfaces are highly heterogeneous both physically and geometrically,
broad classifications of proteins into hydrophilic, amphiphilic and hydrophobic classes are
not very helpful to understand biomolecular interactivity and the fact that complexation
(and not precipitation) is always the evolutionary solution to the need for functional
regulation and cooperativity. In broad terms we could say that, for identical local
curvature, a hydrophilic patch is more likely to reduce interfacial tension than a hydrophobic
patch since the latter curtails the hydrogen bonding opportunities of interfacial water
(g < 4). However, interfacial tension is also defined by local curvature: a hydrophilic
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patch introducing favorable polarization may be partially hindered from hydration due to local
geometric constraints and thus, the local interfacial g-value may be lower than the bulk value
g = 4, contributing to the interfacial tension.

The P–W interfacial tension may be modulated by the cellular machinery to alter
complexation propensities, and hence the degree of functional cooperativity and regulation,
in a purposely choreographed manner. Thus, glycoslation and phosphorylation are two
ubiquitous post-translational modifications of proteins that increase hydrophilicity by the
transesterification of solvent-accessible specific side chains (serine, threonine and tyrosine).
These processes generally decrease the P–W interfacial tension by increasing the number of
favorable interactions with interfacial water.

The results presented in figures 1–3 uphold the variational treatment of biological water
and highlight the relevance of P–W interfacial tension as a determinant of protein associations.
The polarization and elastic terms are defined respectively by a sub-microscopic (τ b) and a
macroscopic (λ) parameter. While the latter is fixed, the former is adjustable, since dielectric
loss spreads over the microwave range; yet the adopted value τ b = 100 ps (wavelength ≈ 0.03
m) yields the optimum prediction of binding sites (figures 1 and 3).

The variational principle derived incorporates an elastic term to penalize local losses in
water hydrogen-bond coordination and was shown to govern nanoscale configurations of water
at biological interfaces. In consonance with a nanoscale description, the treatment allows for
compensations to the elastic penalization as water dipoles interact with the electrostatic field
in a more or less restricted manner depending on their individual coordination environments.
The extremal of the functional that underlies the variational principle determines the expected
hydrogen-bond coordination g(r) of water at a given position r in space. This scalar field g
is easily determined numerically once it is shown that it obeys a Poisson-type equation with
Dirichlet boundary conditions.

These findings may impact the field of biomaterial self-assembling, since molecular
fabrication is determined by the structural compatibility of subunits that confers noncovalent
interactions [26]. These organizing interactions are promoted by the propensity to reduce P–W
interfacial tension. While the charge distribution will be altered upon protein association and
the interfacial tension will change accordingly, such interactions can be in principle engineered
by introducing patches of high P–W interfacial tension in the basic subunits.
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