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Abstract

Characterizations of the star, minus and diamond orders of operators are given in various

contexts and the relationship between these orders is made more transparent. Moreover, we

introduce a new partial order of operators which provides a unified scenario for studying the

other three orders.

1 Introduction

This article presents a study of partial orders on the set L(H,K) of bounded linear operators between

Hilbert spaces H and K. It focuses on three partial orders: the star order (
∗
≤), the minus order

(
−
≤) and the diamond order (

⋄
≤). All these orders emerged as generalizations, in different senses,

of the well-known Löwner partial order. Recall that, given A,B ∈ L(H), A ≤ B with respect
to the Löwner partial order if and only if B − A is a positive semi-definite operator. The star
order, defined by Drazin in [9], then coincides with the Löwner order when restricted to the set of
orthogonal projections. It emerged as a natural generalization of this fact for L(H). On the other
side, the minus order was introduced independently by Hartwig [14] and by Nambooripad [19]. It
replaces the adjoints operations involved in the star order by inner inverses. Finally, another natural
generalization of the star order is the diamond partial order, introduced on Cn×n by Baksalary and
Hauke [5] when studying a new version of Cochran’s theorem. The diamond order was later extended
in a natural way to operators acting on Hilbert spaces.

Several characterizations of the previous orders are scattered in the literature. However, a unified
overview of this topic affording a clearer understanding of the behaviour of these orders and their
relationship is missing. Our purpose here is to, in a clear and orderly way, characterize these orders
in the contexts of matrix representations, inner inverses, operators ranges and operator equations.

Moreover, we introduce a new partial order for operators, the plus order (
+
≤), which connects the

three orders:

A
−
≤ B⇐

= ⇐=

A
∗
≤ B A

+
≤ B

⇐=
⇐

=

A
⋄
≤ B
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The plus order then provides a unified scenario for the study of the three orders. Characteri-
zations of this order are given in terms of matrix representations and inner inverses. Moreover, we
observe that the previous orders can also be related to the notion of the bilateral shorted operator,
a concept introduced in [3] with the aim of extending to arbitrary operators in Hilbert spaces and
pair of subspaces, the Schur complement which was initially defined for positive operators and fixed
subspace by Krein in [15]. The bilateral shorted operator plays a role with operators related by the
minus and diamond orders. This overview is concluded by studying the relation of the diamond and
plus orders to certain factorizations of operators, including the polar decomposition and products of
projections. If A,B are subsets of L(H,K), AB = {AB : A ∈ A and B ∈ B}, then partial orderings
on A and B induce a partial ordering on the whole set. With this approach we observe, among
other results, that the plus order on products of projections is equivalent to the minus order on the
factors.

The paper is ordered as follows. Section 2 is devoted to recalling the definitions of the star,
minus and diamond orders of operators, as well as some other concepts used throughout the paper.
In Section 3 we present an exhaustive description of these orders by means of matrix representations.
Here, we explore the relationship between the minus and diamond orders with the bilateral shorted
operator. Then, we introduce the plus order and describe it through matrix representations. Section
4 is entirely devoted to studying the relationship between all of these orders and inner inverses,
while Section 5 studies their relationship with ranges and operator equations. Finally, in Section
6 we investigate the behaviour of the diamond and plus orders on certain factorizations involving
projections and the polar decomposition.

2 Preliminaries

In this article H,K denote complex Hilbert spaces and L(H,K) the set of bounded linear operators
from H to K. When H = K we write, for short, L(H). By L(H)+ we mean the set of positive
semi-definite operators; i.e., T ∈ L(H)+ if 〈Tx, x〉 ≥ 0 for all x ∈ H. By |T | we denote the modulus
of T ; i.e., |T | = (T ∗T )1/2. The range of T ∈ L(H,K) is written R(T ) and its nullspace N(T ). In
addition, T † is the (possibly unbounded) Moore-Penrose inverse of T ∈ L(H,K). The direct sum of
two subspaces S and T of H is expressed by S

.
+T , and S⊕T means that the sum is orthogonal. We

write Q = {Q ∈ L(H) : Q2 = Q} for the set of projections and P = {P ∈ L(H) : P 2 = P ∗ = P} for
the set of orthogonal projections. Given T ∈ L(H,K), PT stands for the orthogonal projection onto

R(T ). Throughout, we write A
s
≤ B whenever R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗). The relationship

s
≤ defines a pre-order on L(H,K), known as the space pre-order on L(H,K).

Let us define the partial orders on L(H,K) that we shall study in the article.

Definition 2.1. Let A,B ∈ L(H,K). Write

1. A ∗≤ B if A∗A = A∗B and R(A) ⊆ R(B); the left star order. A similar definition for the
right star order (≤∗).

2. A
∗
≤ B if A∗A = A∗B and AA∗ = BA∗; the star order.

3. A
⋄
≤ B if A

s
≤ B and AA∗A = AB∗A; the diamond order.

4. A
−
≤ B if there are projections Q̃ and Q such that A = Q̃B = BQ; the minus order.

The following lemma collects some basic well-known properties of these orders. The proof is
straightforward.
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Lemma 2.2. Let A,B ∈ L(H,K). The following statements hold:

1. A∗≤ B if and only if A = PAB and R(A) ⊆ R(B). Similarly, A ≤∗ B if and only if A = BPA∗

and R(A∗) ⊆ R(B∗).

2. A
∗
≤ B if and only A = PAB = BPA∗ .

3. AA∗A = AB∗A if and only if and PABPA∗ = A.

4. If A
−
≤ B then the ranges of the projections Q̃ and Q∗ such that A = Q̃B = BQ can be fixed

so that R(Q̃) = R(A) and R(Q∗) = R(A∗).

We also consider the notion of bilateral shorted operator which relies on the condition of weak
complementability introduced in [3]: Given A ∈ L(H,K) and S and T two closed subspaces of H
and K, respectively, consider the matrix representation of A with respect to the decompositions
H = S ⊕ S⊥ and K = T ⊕ T ⊥:

A =

(

b c
d e

)

(1)

Definition 2.3. An operator A ∈ L(H,K) with the matrix decomposition as in (1) is called
(S,T )−weakly complementable if R(c∗) ⊆ R(|e|1/2) and R(d) ⊆ R(|e∗|1/2). In this case, the bi-
lateral shorted operator of A to the subspaces S,T is defined as:

A/S,T =

(

b− g∗f 0
0 0

)

, (2)

where f = (|e∗|1/2u)†d, g = (|e|1/2)†c∗, and e = |e∗|u is the polar decomposition of e.

The weak complementability condition emerges as a generalization for arbitrary operators in
Hilbert spaces of the fact that if A is a positive operator and S = T then R(d) ⊆ R(e1/2). If the
stronger conditions R(c∗) ⊆ R(e∗) and R(d) ⊆ R(e) hold, then A is (S,T )−complementable. If A
is (S,T )−complementable then the matrix representation of A with respect to the decompositions
H = S ⊕ S⊥ and K = T ⊕ T ⊥ is:

A =

(

b ye
ex e

)

, (3)

for some x ∈ L(S,S⊥) and y ∈ L(T ⊥,T ). For details we refer the reader to [3].

Lemma 2.4. Let A ∈ L(H,K) and S and T be two closed subspaces of H and K, respectively. If
A is (S,T )−complementable and the matrix representation of A with respect to the decompositions
H = S ⊕ S⊥ and K = T ⊕ T ⊥ is as in (3), then

A/S,T =

(

b− yex 0
0 0

)

. (4)

Proof. Assume that A is (S,T )−complementable and let A =

(

b ye
ex e

)

be the matrix representa-

tion of A with respect to the decompositions H = S ⊕ S⊥ and K = T ⊕ T ⊥. Then:

c∗ = e∗y∗ = |e|u∗y∗ = |e|1/2|e|1/2u∗y∗.

3



That is, g := |e|1/2u∗y∗ = (|e|1/2)†c∗, and d = ex = |e∗|ux = |e∗|1/2|e∗|1/2ux = |e∗|1/2u|e|1/2x.
That is f := |e|1/2x = (|e∗|1/2u)†d. Therefore, b − g∗f = b − yu|e|1/2|e|1/2x = b − yex and so

A/S,T =

(

b− yex 0
0 0

)

.

The following concept also plays a role in what follows.

Definition 2.5. Let B,C ∈ L(H)+. The geometric mean of B and C is the operator:

B#C := max
≤

{

X ∈ L(H)+ :

(

B X
X C

)

∈ L(H⊕H)+
}

.

For B invertible and T ∈ L(H), the algebraic Riccati equation in X is given by:

X∗B−1X − TX −XT = C. (5)

The next lemma gathers some useful properties of B#C . See [1] and [11] for their proofs.

Lemma 2.6. Let B,C ∈ L(H)+. Then:

1. B#C = C#B.

2. If B is invertible, then B#C = B1/2(B−1/2CB−1/2)1/2B1/2.

3. If B is invertible and BT is selfadjoint, then the selfadjoint solution of the algebraic Riccati
equation (5) is

X = (T ∗BT + C)#B +BT.

3 Operator orders and matrix representations

Consider the following operator block matrices of A and B with respect to the decompositions
H = R(A∗)⊕N(A) and K = R(A)⊕N(A∗) :

A =

(

a 0
0 0

)

and B =

(

b11 b12
b21 b22

)

. (6)

In [8] and [17], the matrix representation of B is described when A
∗
≤ B or A

−
≤ B. However, the

matrix representation of B when A
⋄
≤ B is missing. Here, we study this problem and we relate it

with the notion of bilateral shorted operator.
For completeness of this overview, we include the results for the star and minus orders:

Proposition 3.1. Let A,B ∈ L(H,K).

1. A ∗≤ B if and only if B =

(

a 0
b22x b22

)

for some x ∈ L(R(A∗), N(A)).

2. A ≤∗ B if and only if there exists y ∈ L(N(A∗), R(A)) such that B =

(

a yb22
0 b22

)

.

3. A
∗
≤ B if and only if B =

(

a 0
0 b22

)

.

4



Proof. See [8] and [17].

Proposition 3.2. Let A,B ∈ L(H,K). The following conditions are equivalent:

1. A
−
≤ B;

2. B =

(

a+ yb22x yb22
b22x b22

)

, for some y ∈ L(N(A∗), R(A)) and x ∈ L(R(A∗), N(A)).

Proof. See [17].

Proposition 3.3. Let A,B ∈ L(H,K). The following conditions are equivalent:

1. A
⋄
≤ B.

2. b11 = a, R(b21) ⊆ R(B) and R(b∗12) ⊆ R(B∗).

Proof. Assume that b11 = a. Hence, for any x ∈ R(A∗), Bx = ax + b21x, and so R(A) ⊆ R(B) if
and only if R(b21) ⊆ R(B). In the same way, using that B∗x = a∗x + b∗12x for any x ∈ R(A), we
get that R(A∗) ⊆ R(B∗) if and only if R(b∗12) ⊆ R(B∗).

The matrix representations for the minus and diamond orders are connected to the notion of
bilateral shorted operator.

Theorem 3.4. Let A,B ∈ L(H,K). The following conditions are equivalent:

1. A
−
≤ B;

2. B is (R(A∗), R(A))−complementable and

B
/R(A∗),R(A)

= A.

Proof. By Proposition 3.2, A
−
≤ B if and only if there exist x ∈ L(R(A∗), N(A)) and y ∈

L(N(A∗), R(A)) such that B =

(

a+ yb22x yb22
b22x b22

)

. Then, B is (R(A∗), R(A))−complementable,

and Lemma 2.4 leads to B/R(A∗),R(A) =

(

a 0
0 0

)

.

Conversely, if B is (R(A∗), R(A))−complementable then we can write B =

(

b11 yb22
b22x b22

)

and,

by Lemma 2.4, B/R(A∗),R(A) =

(

b11 − yb22x 0
0 0

)

. But using that B/R(A∗),R(A) = A, we get that

b11 − yb22x = a or, b11 = a + yb22x. Then, B =

(

a+ yb22x yb22
b22x b22

)

and, by Proposition 3.2,

A
−
≤ B.

When A
⋄
≤ B, the next corollary gives a more explicit formula for B than in Proposition 3.3

under an additional compatibility condition which, in particular, holds when A has closed range.
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Proposition 3.5. Let A,B ∈ L(H,K) be such that B is (N(A), N(A∗))−complementable, and let
S := B/N(A),N(A∗). The following conditions are equivalent:

1. A
⋄
≤ B.

2. B =

(

a xS
Sy b22

)

for some y ∈ L(R(A∗), N(A)) and x ∈ L(N(A∗), R(A)).

Proof. Since B is (N(A), N(A∗))−complementable, by [3, Corollary 4.9], R(S) = R(B) ∩ N(A∗).

Assume that A
⋄
≤ B. Then, b11 = a. Furthermore, by Proposition 3.3, R(b21) ⊆ R(S). By Douglas’

lemma there exists y ∈ L(R(A∗), N(A)) such that b21 = Sy. In a similar way, b∗12 = B∗
/N(A∗),N(A)x

∗

or, b12 = xS for some x ∈ L(R(A), N(A∗)), where we used that B∗
/N(A∗),N(A) = (B/N(A),N(A∗))

∗ =
S∗.

The converse follows using again that R(S) = R(B) ∩N(A∗) and Proposition 3.3.

For fixed operators A,B, the previous result provides a criterion for A
⋄
≤ B in terms of S :=

B/N(A),N(A∗). We next describe all the positive operators B such that A
⋄
≤ B, for a fixed A ∈ L(H)+.

Theorem 3.6. Let A,B ∈ L(H)+, such that A has closed range. Then, the following conditions
are equivalent:

1. A
⋄
≤ B;

2. B =

(

a G−1y∗b22
b22yG

−1 b22

)

,

for y ∈ L(R(A), N(A)), b22 ∈ L(N(A))+ and G = 1
2 + [(y∗b22y +

a
4 )#a]a−1.

Proof. Assume that A
⋄
≤ B. Then, b11 = a and the operator S := B/N(A),N(A) is well-defined.

In fact, in this case, a is invertible and B is trivially (N(A), N(A))−complementable. Moreover,
S = b22 − b∗12a

−1b12 and, by Proposition 3.5, b∗12 = Sy for some y ∈ L(R(A), N(A)). Hence,

b22y = b∗12 + b∗12a
−1b12y, (7)

and multiplying both sides by y∗ we get

y∗b22y = y∗b∗12 + y∗b∗12a
−1b12y.

Renaming z := b12y and c′ := y∗b22y and noting that z = z∗, the last equality turns into the Riccati
equation:

c′ = z∗a−1z +
z + z∗

2
.

Therefore, applying Lemma 2.6 , we obtain that b12y = (a4 + y∗b22y)#a − a
2 . Simple calculations

show that b12 = (12 + [(y∗b22y +
a
4 )#a]a−1)−1y∗b22.

Conversely, suppose that item 2 holds. Then, from Gb12 = y∗b22, it can be easily deduced that

b∗12 + b∗12a
−1((y∗b22y +

a

4
)#a− a

2
) = b22y, (8)

6



and so y∗b∗12 + y∗b∗12a
−1((y∗b22y + a

4 )#a − a
2 ) = y∗b22y. If D := (y∗b22y + a

4 ), we claim that
D#a− a

2 = b12y. In fact,

(
1

2
+ (D#a)a−1)b12y = y∗b22y = −a

4
+D

= −a

4
+ a1/2(a−1/2Da−1/2)1/2a1/2a−1a1/2(a−1/2Da−1/2)1/2a1/2

= −a

4
+ (D#a)a−1(D#a)

= (
1

2
+ (D#a)a−1)(D#a− a

2
),

and so D#a− a
2 = b12y as desired. Hence, from (8) we get that b∗12 = b22y − b∗12a

−1b12y. Now, if

X :=

(

1 + a−1b12y 0
−y 0

)

, then BX = A. Hence, R(A) ⊆ R(B) and so A
⋄
≤ B.

We end this section by introducing a new order relation in L(H,K), called the plus order, which
emerges as a natural generalization of both, the diamond order and the minus order.

Definition 3.7. Let A,B ∈ L(H,K). Write A
+
≤ B if A

s
≤ B and there are projections Q̃ and Q

such that A = Q̃BQ. In such case, without loss of generality we can assume that R(Q̃) = R(A) and
R(Q∗) = R(A∗).

Lemma 3.8. The relationship
+
≤ defines a partial order on L(H,K).

Proof. Clearly,
+
≤ is a reflexive and antisymmetric relation. Let us prove that it is also transitive.

If A
+
≤ B and B

+
≤ C then R(A) ⊆ R(B) ⊆ R(C) and R(A∗) ⊆ R(B∗) ⊆ R(C∗). Moreover, if

A = Q̃BQ and B = Q̃1CQ1 then A = Q̃Q̃1CQ1Q and an easy computation shows that Q̃Q̃1 and

Q1Q are projections. Hence, A
+
≤ C.

Lemma 3.9. Let A,B ∈ L(H,K). The next implications hold:

1. A
∗
≤ B ⇒ A

−
≤ B ⇒ A

+
≤ B ⇒ A

s
≤ B.

2. A
∗
≤ B ⇒ A

⋄
≤ B ⇒ A

+
≤ B ⇒ A

s
≤ B.

Proof. Straightforward.

Theorem 3.10. Let A,B ∈ L(H,K). The following conditions are equivalent:

1. A
+
≤ B.

2. B =

(

a+ yb22x yb22
b22x b22

)

+

(

yw 0
w 0

)

+

(

zx z
0 0

)

,

where y ∈ L(N(A∗), R(A)), x ∈ L(R(A∗), N(A)), w ∈ L(R(A∗), N(A)), and z ∈ L(N(A), R(A))

are such that R

((

yw 0
w 0

))

⊆ R(B) and R

((

x∗z∗ 0
x∗ 0

))

⊆ R(B∗).

3. There exist two projections Q̃,Q such that A = Q̃BQ, R((I−Q̃)BQ) ⊆ R(B) and R((Q̃B(I−
Q))∗) ⊆ R(B∗).

7



Proof. Let Q̃ =

(

1 −y
0 0

)

and Q =

(

1 0
−x 0

)

in the decompositions K = R(A) ⊕ N(A∗) and

H = R(A∗)⊕N(A), respectively. Then, A = Q̃BQ if and only if

B = A+ (I − Q̃)B(I −Q) + (I − Q̃)BQ+ Q̃B(I −Q)

=

(

a+ yb22x yb22
b22x b22

)

+

(

y(b21 − b22x) 0
b21 − b22x 0

)

+

(

(b12 − yb22)x b12 − yb22
0 0

)

.

In addition, R

((

y(b21 − b22x) 0
b21 − b22x 0

))

= R((I − Q̃)BQ)) = R(BQ− Q̃BQ) = R(BQ−A) ⊆ R(B),

if and only if R(A) ⊆ R(B). Similarly, R

((

(b12 − yb22x) b12 − yb22x
0 0

)∗)

⊆ R(B∗) if and only if

R(A∗) ⊆ R(B∗). Therefore, 1 ⇔ 2.
To prove 1 ⇔ 3, assume that there exist two projections Q̃,Q such that A = Q̃BQ. Then

BQ = A + (I − Q̃)BQ, and so R((I − Q̃)BQ) ⊆ R(B) if and only if R(A) ⊆ R(B). In the same
way, B∗Q̃∗ = A∗+(I−Q∗)B∗Q̃∗, and so R((Q̃B(I−Q))∗) ⊆ R(B∗) if and only if R(A∗) ⊆ R(B∗).

4 Operator orders and inner inverses

Throughout, given T ∈ L(H,K), T [1] denotes the set of densely defined operators T− : D(T−) ⊆
K → H satisfying R(T ) ⊆ D(T−) and TT−T = T . The operator T− is called an inner inverse of T .
The subset of T [1] of those operators satisfying T− = T−TT− is denoted by T [1, 2]. Observe that T †

is the unique element in T [1, 2] with D(T †) = R(T )⊕N(T ∗), N(T †) = N(T ∗) and R(T †) = R(T ∗). If
T admits bounded inner inverses, then we say that T is relatively regular. An operator T is relatively
regular if and only if T has closed range. The aim of this section is to study operator orders by
means of inner inverses. The first result we present in this direction follows from Proposition 3.1:

Corollary 4.1. Let A,B ∈ L(H,K) with closed ranges. The following conditions are equivalent:

1. A
∗
≤ B;

2. A†
∗
≤ B†.

Proof. If A,B have closed ranges and A
∗
≤ B then, by Proposition 3.1, B =

(

a 0
0 b22

)

. Hence

B† =

(

a† 0

0 b†22

)

and, again applying Proposition 3.1, we get that A†
∗
≤ B†.

The next result can be found in [20, Theorem 3.7] for A,B relatively regular bounded linear
operators on Banach spaces.

Proposition 4.2. Let A,B ∈ L(H,K). Then, A
−
≤ B if and only if A

s
≤ B and B[1] ∩ A[1] is not

empty.

To prove Proposition 4.2, we need the following lemma:

Lemma 4.3. Let A,B ∈ L(H,K) such that A
s
≤ B. If B[1] ∩A[1] is not empty then B[1] ⊆ A[1].

8



Proof. If A
s
≤ B then, by Douglas’s theorem, there exist X ∈ L(K) and Y ∈ L(H) such that A = BX

and A∗ = B∗Y ∗. Furthermore, as B[1] ∩ A[1] is not empty then there exists B− ∈ B[1] such that
AB−A = A. Consider B= ∈ B[1] then, since R(A) ⊆ R(B) ⊆ D(B=), AB=A = Y BB=BX =
Y BB−BX = AB−A = A, i.e., B= ∈ A[1].

Proof of Proposition 4.2. Let A
−
≤ B. Hence, there are projections Q̃ and Q such that A = Q̃B =

BQ. Thus, A
s
≤ B. Moreover, let B− ∈ B[1], i.e., BB−B = B. Then, AB−A = Q̃BB−BQ =

Q̃BQ = A, and so B− ∈ A[1].

Conversely, assume that A
s
≤ B and B[1]∩A[1] is not empty. Define Q := B†A. then Q ∈ L(H)

since R(A) ⊆ R(B). From Lemma 4.3, it follows that B† ∈ A[1] so that AB†A = A. Therefore,
Q2 = B†AB†A = B†A = Q, and Q is a projection. Also,

BQ = BB†A = PR(B)|D(B†)A = A, (9)

because R(A) ⊆ R(B).
On the other hand, define Q̃ := (B∗)†A∗ ∈ L(K). Again by Lemma 4.3, Q̃2 = (B∗)†A∗(B∗)†A∗ =

(B∗)†A∗ = Q̃. In this case,

B∗Q̃ = B∗(B∗)†A∗ = PR(B∗)|D((B∗)†)A
∗ = A∗. (10)

From (9) and (10), it follows that A
−
≤ B. �

We recommend [7, Proposition 3.8 and Corollary 3.19], for other characterizations of the minus
order in terms of inner inverses.

We next study the equality AA∗A = AB∗A involved in the diamond order in terms of inner
inverses. This result can be found for regular elements in rings in [16, Lemma 5].

Proposition 4.4. Let A,B ∈ L(H,K) . Then the following conditions are equivalent:

1. AA∗A = AB∗A;

2. A†BA† = A† on D(A†);

3. A†BA† ∈ A[1, 2].

Proof. 1 ⇒ 2. Let AA∗A = AB∗A, or, equivalently, A = PABPA∗. Then, BPA∗x ∈ R(A) +R(A)⊥

for all x ∈ H. Thus, BPA∗x ∈ D(A†) for all x ∈ H, and so AA†BA†A = A; i.e., A†BA† ∈ A[1].
Moreover, A†BA† = A†AA†BA†AA† = A†AA† = A†, as desired.

2 ⇒ 3. Trivial.
3 ⇒ 1. Suppose that A†BA† ∈ A[1, 2] . Then, A = AA†BA†A = PR(A)|D(A†)BPA∗ = PABPA∗

.

The next relationship between the minus order and diamond order comes from [5]. We include
the proof for completeness.

Corollary 4.5. Let A,B ∈ L(H,K) with closed ranges. The following conditions are equivalent:

1. A
⋄
≤ B;

2. A†
−
≤ B†.

9



Proof. Let A
⋄
≤ B then R(A) ⊆ R(B), R(A∗) ⊆ R(B∗). Also, by Proposition 4.4, A† = A†BA† =

A†(B†)†A†; i.e., B† ∈ A†[1]. Therefore, by Proposition 4.2, A†
−
≤ B†. Conversely, if A†

−
≤ B† then

R(A) ⊆ R(B), R(A∗) ⊆ R(B∗) and, by the proof of Proposition 4.2, B = (B†)† ∈ A†[1]. Thus,

A†BA† = A† or, equivalently, by Proposition 4.4, AA∗A = AB∗A. Hence, A
⋄
≤ B.

We turn to characterizing the equality A = Q̃BQ for projections Q, Q̃ involved in the plus order
in terms of inner inverses.

Proposition 4.6. Let A,B ∈ L(H,K) . Then the following conditions are equivalent:

1. There are two projections Q̃,Q such that A = Q̃BQ;

2. There exists A− ∈ A[1, 2] such that A−BA− = A− on D(A−);

3. There exists A− ∈ A[1, 2] such that A−BA− ∈ A[1, 2].

Proof. 1 ⇒ 2. Let Q̃ and Q be two projections such that A = Q̃BQ. Hence, BQx ∈ R(A) +N(Q̃)
for all x ∈ H. Thus, consider A− ∈ A[1, 2] with D(A−) = R(A) + N(Q̃) and AA− = Q̃|D(A−),
A−A = Q. Since BQx ∈ D(A−) for all x ∈ H, we have that AA−BA−A = A; i.e., A−BA− ∈ A[1].
Moreover, A−BA− = A−AA−BA−AA− = A−AA− = A− as desired.

2 ⇒ 3. Trivial.
3 ⇒ 1. Suppose that there exists A− ∈ A[1, 2] such that A−BA− ∈ A[1, 2]. Hence, D(A−) =

R(A) + S for some closed subspace S and AA− = QR(A)//S and A−A = QT //N(A) for some closed
subspace T . Therefore, A = AA−BA−A = QR(A)//SBQT //N(A) = QR(A)//SBQT //N(A).

Remark 4.7. Given A,B ∈ L(H,K) such that A
+
≤ B, we can change the inner products of H,K

in a convenient way so that A
⋄
≤ B in the new spaces. In fact, if A = Q̃BQ, where Q and Q̃ are

projection in H,K, respectively, the operator AQ := Q∗Q+ (I −Q∗)(I −Q) ∈ L(H)+ is invertible.
Thus, the sesquilinear form 〈x, y〉Q := 〈AQx, y〉 defines an inner product equivalent to the inner
product 〈 , 〉. In the Hilbert space HQ := (H, 〈 , 〉Q), the projection Q is orthogonal. Defining AQ̃

in a similar way we get that A
⋄
≤ B in L(HQ,KQ̃).

Proposition 4.8. Let A,B ∈ L(H,K) with closed ranges. If A
+
≤ B then there exist A− ∈ A[1, 2]

and B− ∈ B[1, 2] such that A−
−
≤ B−.

Proof. Suppose that A
+
≤ B and let Q, Q̃ be two projections such that A = Q̃BQ. Then, by Remark

4.7, A,B ∈ L(HQ,KQ̃) satisfy A
⋄
≤ B and so, by Corollary 4.5, the Moore-Penrose inverses of A

and B in L(KQ̃,HQ), denoted here by A− and B−, respectively; verify A−
−
≤ B−.

5 Operator orders, ranges and operator equations

5.1 Operator orders and ranges

Recall that given A,B ∈ L(H,K), A
s
≤ B if and only if R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗). This

condition is in turn equivalent to

R(B) = R(A) +R(B −A) and R(B∗) = R(A∗) +R(B∗ −A∗).
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It is easy to check that if A
∗
≤ B then A

s
≤ B and the same holds replacing

∗
≤ by the rest of the

orders we study. In what follows, we gather several characterization of this additivity.

Proposition 5.1. Let A,B ∈ L(H,K). The following conditions are equivalent:

1. A ∗≤ B;

2. R(B) = R(A)⊕R(B −A).

Proof. If A ∗≤ B then, from Proposition 3.1, there exists x ∈ L(R(A∗), N(A)) such that B =
(

a 0
b22x b22

)

. Thus, the result follows immediately. The converse is also trivial because R(B−A) ⊆
N(PA), and so PAB = A.

As a corollary we retrieve the following from [7] and [2]:

Corollary 5.2. Let A,B ∈ L(H,K). The following conditions are equivalent:

1. A
∗
≤ B;

2. R(B) = R(A)⊕R(B −A) and R(B∗) = R(A∗)⊕R(B∗ −A∗);

3. R(B −A) = R(B)⊖R(A) and R((B −A)†) = R(B†)⊖R(A†).

Proof. The equivalence 1 ⇔ 2 follows from Proposition 5.1. On the other hand, R(B∗) = R(A∗)⊕
R(B∗−A∗) is equivalent to R(B∗) = R(A∗)⊕R(B∗ −A∗) or equivalently, R(B†) = R(A†)⊕R((B−
A)†). Therefore 2 ⇔ 3 holds.

A similar characterization can be given for the minus order. See [7].

Proposition 5.3. Let A,B ∈ L(H,K) the following conditions are equivalent:

1. A
−
≤ B;

2. R(B) = R(A)
.
+R(B −A) and R(B∗) = R(A∗)

.
+R(B∗ −A∗);

3. R(B) = R(A)
.
+R(B −A) and R(B∗) = R(A∗)

.
+R(B∗ −A∗).

As a corollary we get the next result concerning the diamond order:

Corollary 5.4. Let A,B ∈ L(H,K) with closed ranges. The following conditions are equivalent:

1. A
⋄
≤ B;

2. R(B) = R(A)
.
+R((B† −A†)∗) and R(B∗) = R(A∗)

.
+R(B† −A†).

Proof. Apply Proposition 5.3 and Corollary 4.5.
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5.2 Operator orders and operator’s equations

Here, we describe the operator orders by means of solutions of operator equations.

Proposition 5.5. Let A,B ∈ L(H,K). The following conditions are equivalent:

1. A ∗≤ B;

2. B = A+ C where C ∈ L(H,K) is such that R(C) ⊆ R(B) and A∗C = 0.

Proof. If A ∗≤ B, B = A+(B−A) and A∗(B−A) = 0. Thus, C := B−A verifies R(C) ⊆ R(B) and
A∗C = 0. Conversely, if B = A + C with R(C) ⊆ R(B) and A∗C = 0 then, trivially, A∗B = A∗A
and R(A) ⊆ R(B); i.e., A ∗≤ B.

In [13], the logic order between selfadjoint operators was introduced: for A,B ∈ L(H) selfadjoint
operators, A is less than or equal to B with respect to the logic order if there exists a selfadjoint
operator C ∈ L(H) such that B = A + C and AC = 0. Notice that the above proposition shows
that the logic order is the restriction of the left star order to selfadjoint operators. More generally,

A
∗
≤ B if and only if B = A+ C with C ∈ L(H,K) such that A∗C = AC∗ = 0.

Corollary 5.6. Let A,B ∈ L(H,K) such that A
s
≤ B. Then, A

∗
≤ B if and only if B†A and

(B∗)†A∗ ∈ P.

Proof. If A
∗
≤ B then A = PAB = BPA∗ . Thus, B†A = B†BPA∗ = PB∗PA∗ = PA∗ because R(A∗) ⊆

R(B∗). Analogously, (B∗)†A∗ = (B∗)†B∗PA = PA. Conversely, if B†A ∈ P then B†AB†A = B†A
and so AB†A = A. From this, N(B†A) = N(A), so that B†A = PA∗ . Therefore, A = BB†A =

BPA∗ . Similarly, from (B∗)†A∗ ∈ P, we get that A∗ = B∗PA. Therefore, A
∗
≤ B.

The following is an equivalent way of presenting the minus order. See [18].

Proposition 5.7. Let A,B ∈ L(H,K). The following conditions are equivalent:

1. A
−
≤ B;

2. there exist X ∈ L(K) and Y ∈ L(H) such that A = XB = BY and A = XA.

Proof. If A
−
≤ B then there exist projections Q̃ and Q with R(Q̃) = R(A) such that A = Q̃B = BQ

and A = Q̃A.
Conversely, suppose that there exist X ∈ L(K) and Y ∈ L(H) such that A = XB = BY and

A = XA. Define Q̃ := XPB and Q := Y PA∗ . Then, A = XB = XPBB = Q̃B and A = BY =
BY PA∗ = BQ. Finish by proving that Q̃ and Q are projections. Indeed, (Q̃∗)2 = PBX

∗PBX
∗ =

(B∗)†B∗X∗PBX
∗ = (B∗)†A∗PBX

∗ = (B∗)†A∗X∗ = (B∗)†A∗ = (B∗)†B∗X∗ = PBX
∗ = Q̃∗.

Similarly, Q2 = Y PA∗Y PA∗ = Y A†AY PA∗ = Y A†XBY PA∗ = Y A†XA = Y A†A = Y PA∗ = Q.

Corollary 5.8. Let A,B ∈ L(H,K) such that A
s
≤ B. Then, A

−
≤ B if and only if B†A ∈ Q.

Proof. If A
−
≤ B then, by the proof of Proposition 4.2, we have that Q := B†A is a bounded

projection. Conversely, if B†A is a projection then B†A = B†AB†A and so, as R(A) ⊆ R(B),

A = BB†A = BB†AB†A = AB†A. Therefore, B† ∈ A[1] and so, since A
s
≤ B, by Proposition 4.2,

A
−
≤ B.
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Proposition 5.9. Let A,B ∈ L(H,K) . Then the following conditions are equivalent:

1. AA∗A = AB∗A;

2. B = A+ C with C ∈ L(H,K) such that AC∗A = 0;

Proof. If item 1 holds, then C =

(

0 b12
b21 b22

)

verifies the desired conditions. Conversely, if item 2

holds then, clearly, AA∗A = AB∗A.

6 Partial orders onto projections

Evidently, all the operator orders studied in this paper are closely linked to projections. Our goal
in this section is to highlight this relationship in different senses. To this aim, we begin with the
following lemma, where for fixed order relation ≺ in L(H), we denote by [0, I]≺ := {T ∈ L(H) : 0 ≺
T ≺ I}.

Lemma 6.1. The following hold:

1. [0, I] ∗
≤
= [0, I]∗≤ = [0, I]≤∗ = P.

2. [0, I]−
≤
= Q.

3. [0, I] ⋄
≤
= PP.

4. [0, I]+
≤
= QQ.

Proof. It is straightforward.

As we have said, the star order coincides with the Löwner order restricted to orthogonal projec-
tions. More precisely:

Lemma 6.2. On orthogonal projections the partial orders ≤,
∗
≤,

−
≤,

⋄
≤ and

+
≤ coincide.

Proof. Let P,P ′ ∈ P. By Lemma 3.9, it suffices to prove that P ≤ P ′ ⇔ P
s
≤ P ′ ⇔ P

∗
≤ P ′. Clearly,

P ≤ P ′ if and only if R(P ) ⊆ R(P ′), i.e., P
s
≤ P ′. Now, if R(P ) ⊆ R(P ′) then P = P ′P = PP ′

and so P
∗
≤ P ′. Conversely, if P

∗
≤ P ′ then P = P ′P = PP ′, i.e., R(P ) ⊆ R(P ′) or, equivalently,

P
s
≤ P ′.

The Löwner order can also be related to the minus order on projections.

Lemma 6.3. Let Q,Q′ ∈ Q. The following conditions are equivalent:

1. Q
−
≤ Q′;

2. Q
s
≤ Q′;

3. PQ ≤ PQ′ and PQ′∗ ≤ PQ∗ .

13



Proof. If Q
s
≤ Q′ then R(Q) ⊆ R(Q′) and R(Q∗) ⊆ R((Q′)∗). Thus, Q = Q′Q = QQ′ and so

Q
−
≤ Q′. The converse always holds. Finally, 2 ⇔ 3 follows from the proof of Lemma 6.2.

Motivated by Lemma 6.1, we focus now on studying in more detail the relationship between the
diamond and plus orders with the sets PP and QQ, respectively. Recall that if A,B are subsets of
L(H,K), AB = {AB : A ∈ A and B ∈ B}, then partial orderings on the domain of both components
induce a partial ordering on the whole set. More precisely, given (A,≤A) and (B,≤B) two partially
ordered subsets of L(H,K), then if A = A1B1 and B = A2B2 with A1, A2 ∈ A and B1, B2 ∈ B then
the relation A≤̃B if A1 ≤A A2 and B1 ≤B B2 defines a partial order on AB. Under this scheme, we
propose to study the diamond order onto the set PP and the plus order onto QQ. Before stating
our next result, observe that if T ∈ PP then T = PTPT ∗ , see [6] for this fact and some other
properties of PP.

Proposition 6.4. Let T, T ′ ∈ PP. The following conditions are equivalent:

1. T
⋄
≤ T ′;

2. T
s
≤ T ′.

If T ′ ∈ PP has closed range then the previous conditions are equivalent to:

3. PT ≤ PT ′ and PT ∗ ≤ PT ′∗ .

Proof. 1 ⇒ 2. Obvious.

2 ⇒ 1. If T
s
≤ T ′ then R(T ) ⊆ R(T ′) and R(T ∗) ⊆ R((T ′)∗). So TT ∗T = PTPT ∗PT ∗PTPTPT ∗ =

PTPT ∗PTPT ∗ = T 2 and T (T ′)∗T = TP(T ′)∗PT ′T = TT = T 2; i.e., TT ∗T = T (T ′)∗T , and so T
⋄
≤ T ′.

If T ′ ∈ PP has closed range then 2 ⇔ 3 follows from the proof of Lemma 6.2.

Now, consider the set QQ. Denote by [QQ]T := {(E,F ) ∈ Q × Q : T = EF,R(E) =
R(T ) and N(F ) = N(T )}. For characterizations and properties of the sets QQ and [QQ]T , see
[4].

Proposition 6.5. Let T, T ′ ∈ QQ and T ′ with closed range. The following conditions are equivalent:

1. T
+
≤ T ′;

2. for all (E′, F ′) ∈ [QQ]T ′ there exists (E,F ) ∈ [QQ]T such that E
−
≤ E′ and F

−
≤ F ′.

Proof. 1 ⇒ 2. If T
+
≤ T ′ then R(T ) ⊆ R(T ′), and R(T ∗) ⊆ R((T ′)∗) and there exist two projections

Q̃,Q such that T = Q̃T ′Q. Without loss of generality we can assume that R(Q̃) = R(T ) and
R(Q∗) = R(T ∗). Let T ′ = E′F ′ = QR(T ′)//S′QW ′//N(T ′). Then, Q̃E′ is a projection. Indeed,

(Q̃E′)2 = Q̃E′Q̃E′ = Q̃E′ since R(T ) ⊆ R(T ′). Moreover, R(Q̃E′) = R(T ). Let E := Q̃E′.
Analogously, F := F ′Q is a projection with R(F ∗) = R(T ∗). Therefore, T = Q̃T ′Q = Q̃E′F ′Q =
EF . Furthermore, as E = Q̃E′, R(E) ⊆ R(E′) and R(E′) is closed, we get by [7, Corollary 3.16]

that E
−
≤ E′. Similarly, F

−
≤ F ′.

2 ⇒ 1. Let (E′, F ′) ∈ [QQ]T ′ and (E,F ) ∈ [QQ]T such that E
−
≤ E′ and F

−
≤ F ′. Then, from

E
−
≤ E′, there exist Q̃1, Q̃2 ∈ Q such that E = Q̃1E

′ = E′Q̃2. Hence, R(T ) ⊆ R(T ) = R(E) ⊆
R(E′) = R(T ′). Similarly, since F

−
≤ F ′, there exist Q1, Q2 ∈ Q such that F = Q1F

′ = F ′Q2, and
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so R(T ∗) ⊆ R(T ∗) = R(F ∗) ⊆ R((F ′)∗) = R((T ′)∗). Finally, T = EF = Q̃1E
′F ′Q2 = Q̃1T

′Q2, and

so T
+
≤ T ′ as desired.

Finally, it is natural to consider the relation between operator orders and polar decompositions.
Consider polar decomposition of T ∈ L(H,K), T = |T ∗|VT , where VT is a partial isometry with

N(VT ) = N(T ). In [12] it is proven that A
∗
≤ B if and only if |A∗|

∗
≤ |B∗| and VA

∗
≤ VB. Furthermore,

if |A∗|
−
≤ |B∗| and VA

−
≤ VB then A

−
≤ B; and the converse is false in general; see also [12]. Here, we

complete this analysis by considering
⋄
≤ and

+
≤. We begin with the next lemma:

Lemma 6.6. The partial orders
∗
≤,

−
≤ and

⋄
≤ lead to the same relation within the class of partial

isometries.

Proof. Let F,G ∈ L(H,K) be partial isometries. Assume that F
⋄
≤ G. Then, F = FF ∗F =

FG∗F , R(F ) ⊆ R(G) and R(F ∗) ⊆ R(G∗). Therefore, (FG∗)2 = FG∗ and FG∗(FG∗)∗FG∗ =
FG∗GF ∗FG∗ = FPG∗F ∗FG∗ = FF ∗FG∗ = FG∗. Thus, FG∗ is a projection and a partial isome-
try; and so FG∗ is an orthogonal projection. Moreover, R(FG∗) = R(FG∗GF ∗) = R(FPG∗F ∗) =
R(FF ∗) and as a consequence FG∗ = FF ∗. Analogously, from F ∗ = F ∗FF ∗ = F ∗GF ∗ we get
that F ∗G is an orthogonal projection with R(F ∗G) = R(F ∗F ), i.e., F ∗G = F ∗F . Summarizing,

GF ∗ = FF ∗ and F ∗G = F ∗F , and so F
∗
≤ G. The converse implication always holds. For the

equivalence F
∗
≤ G if and only if F

−
≤ G we referred to [12, Lemma 2].

The partial order
+
≤ provides a new order relation within the partial isometries. Consider the

partial isometries F = 1
2

(√
2 0√
2 0

)

and G =

(

0 1
1 0

)

, and the projections Q =

(

1/2 1/2
1/2 1/2

)

and

Q̃ =

(

1 0√
2− 1 0

)

. Clearly, F = QGQ̃, R(F ) ⊆ R(G) and R(F ∗) ⊆ R(G∗), i.e., F
+
≤ G. However,

F 6= FG∗F, i.e., F
⋄

� G.

Proposition 6.7. Let A = |A∗|VA and B = |B∗|VB be the polar decompositions of A,B ∈ L(H,K)

respectively, and let B have closed range. If |A∗|
⋄
≤ |B∗| and VA

⋄
≤ VB then A

⋄
≤ B.

Proof. If VA

⋄
≤ VB then R(A) ⊆ R(A) = R(VA) ⊆ R(VB) = R(B) and R(A∗) ⊆ R(A∗) =

R(V ∗
A) ⊆ R(V ∗

B) = R(B∗). Furthermore, by Lemma 6.6, VA

∗
≤ VB ; i.e., VAV

∗
A = VAV

∗
B and V ∗

AVA =

V ∗
AVB. On the other hand, if |A∗|

⋄
≤ |B∗| then |A∗||A∗||A∗| = |A∗||B∗||A∗|. Therefore, AA∗A =

|A∗||A∗||A∗|VA = |A∗||B∗||A∗|VA = |A∗|VAV
∗
A|B∗||A∗|VA = |A∗|VAV

∗
B |B∗||A∗|VA = AB∗A.

Remark 6.8. The converse of Proposition 6.7 does not hold in general. For example, let A =
(

1 0
1 0

)

and B =

(

0 2
2 0

)

. Then, VA = 1
2

(√
2 0√
2 0

)

and VB =

(

0 1
1 0

)

. A simple computation

shows that A
⋄
≤ B but VA

⋄

� VB .

However, if A
⋄
≤ B and VA

⋄
≤ VB then |A∗|

⋄
≤ |B∗|. Indeed, if VA

⋄
≤ VB then by Lemma

6.6, VAV
∗
A = VAV

∗
B. Now, as A

⋄
≤ B, |A∗|3VA = AA∗A = AB∗A = |A∗|VAV

∗
B |B∗||A∗|VA =

|A∗|VAV
∗
A|B∗||A∗|VA = |A∗||B∗||A∗|VA. Postmultiplying by V ∗

A, we get that |A∗|3 = |A∗||B∗||A∗|;
i.e, |A∗|

⋄
≤ |B∗|.
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Proposition 6.9. Let A = |A∗|VA and B = |B∗|VB be the polar decompositions of A,B ∈ L(H,K)

respectively, and let B with closed range. If |A∗|
∗
≤ |B∗| and VA

+
≤ VB then A

+
≤ B.

Proof. If |A∗|
∗
≤ |B∗| then |A∗| = |B∗|PA. On the other hand, if VA

+
≤ VB then R(A) ⊆ R(A) =

R(VA) ⊆ R(VB) = R(B) and R(A∗) ⊆ R(A∗) = R(V ∗
A) ⊆ R(V ∗

B) = R(B∗) and VA = QVBQ̃

for some Q, Q̃ ∈ Q and R(Q) = R(A). Hence, A = |A∗|VA = |B∗|PAQVBQ̃ = |B∗|QVBQ̃ =

|B∗|Q|B∗|†BQ̃. Now, |B∗|Q|B∗|† ∈ Q and Q̃ ∈ Q. Thus, A
+
≤ B.
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