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Operators which preserve a positive definite inner
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Abstract

Let H be a Hilbert space, A a positive definite operator in H and 〈f, g〉A =

〈Af, g〉, f, g ∈ H, the A-inner product. This paper studies the geometry of the set

Ia
A := { adjointable isometries for 〈 , 〉A}.

It is proved that Ia
A is a submanifold of the Banach algebra of adjointable oper-

ators, and a homogeneous space of the group of invertible operators in H, which

are unitaries for the A-inner product. Smooth curves in Ia
A with given initial con-

ditions, which are minimal for the metric induced by 〈 , 〉A, are presented. This

result depends on an adaptation of M.G. Krein’s extension method of symmetric

contractions, in order that it works also for symmetrizable transformations (i.e.,

operators which are selfadjoint for the A-inner product).
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1 Introduction

Let A be a positive contraction in the Hilbert space (H, 〈 , 〉) with trivial nullspace

N(A) = {0}. Denote by 〈 , 〉A the inner product defined by A:

〈f, g〉A = 〈Af, g〉, f, g ∈ H.
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This paper considers the operators which preserve this inner product, which will be called

A-isometries. That is, a bounded operator T ∈ B(H) is called an A-isometry if

〈ATf, Tg〉 = 〈Af, g〉,

or equivalently, T ∗AT = A. The focus will be on A-isometries which additionally admit an

adjoint for the A-inner product: there exists S ∈ B(H) such that 〈Tf, g〉A = 〈f, Sg〉A, for
f, g ∈ H. In general, an operator B in H will be called A-adjointable (or just adjointable)

if it admits an adjoint for the A-inner product, which shall be denoted by C = A♯. Denote

by

IA := {T ∈ B(H) : T is A− isometric}

and

Ia
A := {T ∈ IA : T is A− adjointable} (1)

It will be shown that there are A-isometries which are not A-adjointable. It is the

latter set Ia
A which admits a differentiable structure, and which is a homogeneous space

of a Banach-Lie group. Moreover, endowed with a natural Finsler metric (namely, the

one induced by he A-inner product), curves which have minimal length for given initial

conditions are computed.

The contents of the paper are the following. In Section 2 the basic facts needed are

stated, on operators in Hilbert spaces with two norms (these facts are taken from [11],

[13], [10]); examples of adjointable and non adjointable A-isometries are presented. Also

Theorem 2.6 is proved, characterizing adjointable A-isometries. A result by R. Douglas [9]

is used, on existence of solutions of the operator equation AX = B. In Section 3 the Wold

decomposition of A-isometries is briefly analized. Section 4 contains Theorem 4.3, stating

that Ia
A is a C∞-submanifold of the ∗-Banach algebra of adjointable operators (with a

suitable norm), and a homogeneous space of the Banach-Lie group of A-unitary operators

(see the definition below). Section 5 presents an adaptation of Krein’s method for the

extension of symmetric transformations with norm constraints, to work in the context

of symmetrizable transformations (Lemma 5.1). We believe that this section is of inde-

pendent interest. This result is used in Section 6 to prove Theorem 6.1, which computes

minimal curves in Ia
A satisfying given initial conditions. Section 7 treats the action of the

restricted group of A-unitaries, the orbits of the action of this group are characterized

(Theorem 7.2), and it is proved that these are also C∞-manifolds and homogeneous spaces

(Proposition 7.3).

Let us finish this section with basic facts and notations. Denote by L the completion

of the pre-Hilbert space (H, 〈 , 〉A). Note that T ∈ IA extends to an isometry T acting

in L (denote the inner product on L by 〈 , 〉L). Conversely, an isometry V ∈ B(L) that
leaves the dense subspace H invariant, i.e. V(H) ⊂ H, induces an operator V = V|H in

H, which is an A-isometry.
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This study relies on the theory of symmetrizable operators, (or more broadly, operators

in Hilbert spaces with two norms), developed initially (and independently) by M.G. Krein

[11] and P.D. Lax [13], and extended afterwards by I.C. Gohberg and M.K. Zambickii [10].

Upper case letters T, S,X,G, . . . will denote operators acting in H (with adjoints in H
denoted T ∗, S∗, X∗, G∗, . . . ). Their eventual extensions to L will be denoted with capital

bold letters: T,S,X,G, . . . , and adjoints T∗,S∗,X∗,G∗, . . . (in L). That is, which adjoint

is refered to, will depend on the context. Vectors in H will be denoted f, g, h and vectors

in L with Greek letters ϕ, γ, η.

A special class of A-isometries, is given by the A-unitary operators: G ∈ B(H) is called

A-unitary if it is an A-isometry which is invertible in H. Denote by

UA = {G ∈ B(H) : G is invertible and G∗AG = A},

the group of A-unitaries. Note that A-unitaries are adjointable. In [3] it was shown that

UA is a C∞ Banach-Lie group. Clearly, UA acts on IA and on Ia
A by left multiplication:

G · T = GT ∈ IA , if G ∈ UA and T ∈ IA,

and clearly GT is adjointable if T is adjointable. Again, G ∈ UA extends to a unitary

operator G such that G(H) = H.

2 Symmetrizable operators

Denote by σH(T ) the spectrum of T as an operator in H, and by σL(T) the spectrum

of its extension to L (when it exists). We will say that λ belongs to the point spectrum

of T if 0 < dim(N(T − λ1)), and λ is said to have finite multiplicity if this dimension is

finite. An operator B acting in H will be called A-symmetric (or symmetrizable) if it is

symmetric for the A-inner product. Let us recall the following facts, adapted from their

original broader context to our case:

Theorem 2.1. (See M.G.Krein [12], P.D. Lax [13]) Let B be an A-symmetric operator.

The following assertions hold:

1. B exists and is bounded selfadjoint operator in L.

2. σL(B) ⊂ σH(B).

3. If λ belongs to the point spectrum of B as an operator in H, then λ belongs to the

point spectrum of B as an operator in L. Moreover, if λ has finite multiplicity, then

the λ-eigenspaces over H and L are the same.

4. If B is a compact operator in H, then B is a compact operator in L and σL(B) =

σH(B).
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Remark 2.2. I.C. Gohberg and M.I. Zambickii [10] extended these results to operators

in Banach spaces with two norms. In particular, in our context, they proved that if an

operator B in H is compact and A-adjointable (they called adjointable operators proper),

the its extension B to L is also compact, with the same point spectrum, and also the

same eigenspaces of finite multiplicity.

Denote by

BA(H) = {B ∈ B(H) : B is A− adjointable} (2)

If A is not invertible, BA(H) is not closed in B(H), neither is the A-adjoint map B 7→ B♯

a continuous map (in the norm topology). BA(H) is endowed with he norm

|B| := max{‖B‖, ‖B♯‖}.

Then (BA(H), | |) becomes an involutive Banach algebra.

Remark 2.3. It is not difficult to see that if B is A-symmetric, then ‖B‖ ≤ ‖B‖. Also
note that A itself is A-symmetric, and that its extension A remains positive definite.

A closed linear subspace S ⊂ H is called compatible with A, A-compatible, or shortly

compatible, if it admits a supplement which is orthogonal with respect to the inner product

defined by A. In [4], the compatible Grassmannian was studied, namely

GrA = {S ⊂ H : S is closed and compatible with A}.

Since A has trivial nullspace, if S is compatible with A, then the supplement is unique,

and it is given by A(S)⊥. This allows us to identify each compatible subspace S with the

idempotent QS with range S and nullspace A(S)⊥. Thus the compatible Grassmannian

may be regarded as the following set

GrA = {Q ∈ B(H) : Q2 = Q,Q∗A = AQ}

= {Q ∈ B(H) : Q2 = Q is adjointable and symmetrizable}.

In other words, Q = PR(Q). Consider in GrA the topology inherited from the norm of

BA(H). The proof of the afore-mentioned facts and examples of compatible and non-

compatible subspaces can be found in [6], [7], where a systematic study of compatible

subspaces was done. The notion of compatible subspaces goes back to A. Sard [17], who

introduced an equivalent definition under a different terminology, to give an operator

theoretic approach to problems in approximation theory (see [5]). In [4] it was shown that

GrA is a complemented submanifold of BA(H), and an homogeneous space of the group

UA under the action

G · S = G(S)
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or equivalently

G ·QS = GQSG
−1, G ∈ UA, S ∈ GrA.

An A-isometry may not be an adjointable operator.

Examples 2.4.

1. Let L = H2(T) the Hardy space of the unit circle T, H = the Dirichlet space of the

unit disk D, i.e.,

L = {f : D → C : f is analytic and
∞
∑

n=0

|f̂(n)|2 < ∞},

H = {f ∈ L :

∞
∑

n=0

(n + 1)|f̂(n)|2 < ∞}.

Here the inner product of H is

〈f, g〉 =
∞
∑

n=0

(n+ 1)f̂(n)ĝ(n),

and the inner product of L is

〈f, g〉 =
∞
∑

n=0

f̂(n)ĝ(n),

in both cases for f, g ∈ H. So that A ∈ B(H) is given by

Af(z) =
∞
∑

n=0

1

n + 1
f̂(n)zn.

Note that A is compact. Let T = Mz ∈ B(L) be the shift operator. Clearly T(H) ⊂
H and T∗(H) ⊂ H, so that T = T|H is an adjointable A-isometry. In particular, see

below (Theorem 2.6), this means that R(T ) = zH is a compatible subspace.

2. Consider the slight modification of the above example. Put L = ℓ2 and H = {(xn) ∈
ℓ2 :

∑

∞

n=1 n|xn|2 < ∞}, with its natural inner product 〈(xn), (yn)〉H =
∑

∞

n=1 nxnȳn.

Let en, n ≥ 1 be the canonical orthonormal basis of ℓ2. Let A the subset of the

natural numbers which are squares of odd integers,

A := {(2k + 1)2 : k ≥ 0},

and denote its complement

A
c = {σ(1) < σ(2) < σ(3) < . . . }.
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Let U∗ be the unitary operator in ℓ2 given by

U∗en =

{

en2 if n is odd,

eσ(n/2) if n is even.

Clearly {U∗en : n ≥ 1} = {en : n ≥ 1}, so that U∗ is indeed a unitary operator in

ℓ2. Its adjoint U is given by (for x = (xn) ∈ ℓ2)

(Ux)n =

{

xn2 if n is odd,

xσ(n/2) if n is even.

We claim that U(H) ⊂ H, but U∗(H) is not contained in H. Which means that

U |H ∈ IA, but it is not A-adjointable. For the first assertion, note the fact that for

all k ≥ 1, k ≤ σ(k) ≤ 2k. Then, if (xn) ∈ H,

〈Ux, Ux〉
H

=
∑

n odd

n|xn2 |2 +
∑

n even

n|xσ(n/2)|2

≤
∑

n odd

n2|xn2 |2 +
∑

n even

2σ(n/2)|xσ(n/2)|2

≤ 2〈x, x〉
H
.

To prove that H is not invariant for U∗, pick xk = 1
k3/2

if k is odd and xk = 0

otherwise. Then clearly, x = (xn) ∈ H, and

(U∗x)n =

{

1
n3/4 if n ∈ A,

0 if n ∈ Ac

Or equivalently, (U∗x)(2k+1)2 =
1

(2k+1)3/2
and equal to 0 in all other entries. Then

〈U∗x, U∗x〉H =
∑

k=0

(2k + 1)2
(

1

(2k + 1)3/2

)2

=
∑

k=0

1

(2k + 1)
= +∞.

Consider the subclass of A-adjointable A-isometries, or shortly, adjointable isome-

tries. Operators G ∈ UA are examples of adjointable isometries. It is proved below that

adjointable isometries are those with compatible final spaces. It will be useful to recall

the following result by R. Douglas [9]:

Remark 2.5. Douglas’ theorem considers the existence of solutions of the operator equa-

tion AX = B [9]: let A,B ∈ B(H), then the following conditions are equivalent:

1. there exists X ∈ B(H) such that AX = B;

2. R(B) ⊂ R(A);

3. there exists λ > 0 such that BB∗ ≤ λAA∗.
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Theorem 2.6. Let T ∈ IA. Denote by T its (isometric) extension to L. The following

are equivalent:

1. T is A-adjointable;

2. T∗(H) ⊂ H;

3. R(T ) is a compatible subspace.

4. R(T ∗A) = R(A);

5. there exists λ > 0 such that

T ∗A2T ≤ λA2.

Proof. The equivalence between the first two conditions is clear: if T has an A-adjoint

S, then T∗ and S coincide on H. Then T∗(H) ⊂ H and S = T∗|H. If T∗(H) ⊂ H, then

T∗|H is the A-adjoint of T . Note that therefore the final projection P = TT∗ of T leaves

H invariant: P(H) ⊂ H. Thus, P induces an (A-symmetric) idempotent P = P|H in H.

Clearly, P = TS, and R(P ) = R(T ): P = TS implies that R(P ) ⊂ R(T ); on the other

hand, TT∗T = T, so that, restricting to H, TST = PT = T ans therefore R(T ) ⊂ R(P ).

Summarizing, R(T ) is the range of an A-symmetric projection, i.e., a compatible subspace.

Conversely, suppose that R(T ) is compatible and denote by P the unique A-symmetric

idempotent with R(P ) = R(T ). In particular, R(T ) is closed, and T has a pseudo-inverse

S such that TS = P . Indeed, T |N(T )⊥ → R(T ) is an isomorphism between Banach spaces,

thus it has a bounded inverse T ′. Put S

S =

{

T ′ in R(P ) = R(T )

0 in N(P )
.

Then TS equals the identity in R(P ) and is zero in N(P ), i.e., TS = P . Note that

PT = T , and that P ∗A = AP . Then T ∗AT = A implies that

AS = T ∗ATS = T ∗AP = T ∗P ∗A = (PT )∗A = T ∗A,

i.e., S is the A-adjoint of T .

The equivalence with the last two conditions follows using Douglas’ result: T is A-

adjointable if and only if there exists a solution X to the operator equation AX = T ∗A

(i.e., B = T ∗A), which occurs if and only if R(T ∗A) ⊂ R(A), or equivalently, there exists

λ > 0 such that

BB∗ = T ∗A2T ≤ λA2.

The former condition R(T ∗A) ⊂ R(A) is in turn equivalent to

R(A) = R(T ∗AT ) ⊂ R(T ∗A) ⊂ R(A),

i.e., R(A) = R(T ∗A).
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Remark 2.7. Note that if T ∈ Ia
A, then T is injective and has closed range, i.e. T is

bounded from below. Note the following example, of an operator in IA, with closed range,

but whose range is not a compatible subspace of H.

Example 2.8. Let H = H1
0 (0, 1), the subspace of the Sobolev space H1(0, 1) obtained

as the closure of the smooth functions in (0, 1) with compact support. Let L = L2(0, 1).

With the same argument as in [4] (Example 3.7), it can be shown that

S = {f ∈ H1
0(0, 1) : f ≡ 0 in [1/2, 1)}

is a (closed) non compatible subspace of H ⊂ L. Let us sketch how this is proved. Let f0

be a C∞ function in (0, 1), of compact support, which equals 1 on an interval centered a

t = 1
2
. Then f0 = f0 χ(0,1/2)+f0 χ[1/2,1) is an orthogonal sum in L, with f0 χ(0,1/2) ∈ S (the

closure of S in L). Thus P
S
(f0) = f0 χ(0,1/2), which does no belong to H, i.e., P

S
(H) 6⊂ H,

and S is not compatible. Consider the operator V in B(L) given by

Vf(t) =

{ √
2 f(2t) if t ∈ (0, 1/2)

0 if t ∈ [1/2, 1).

Note that

‖Vf‖2 =
∫ 1/2

0

|Vf(t)|2dt 2t=s
=

∫

0

(
√
2)2|f(s)|21

2
ds = ‖f‖2,

i.e. V is an isometry of L. Clearly V preserves smooth funcions of compact support,

V(H) ⊂ H. Also it is clear that V(H) consists of all functions in H1(0, 1) with compact

support contained in (0, 1/2), i.e., V(H) = S. Thus, V = V|H belongs to IA, has closed

range, but is not adjointable.

Examples 2.9.

1. Example 2.4.1, where T is the shift operator and H ⊂ L are, respectively, the

Dirichlet and the Hardy space of the circle, can be generalized. Let T ∈ IA such

that R(T ) is closed and has finite co-dimension. Then T ∈ Ia
A. Indeed, in [4] it was

shown that closed subspaces with finite co-dimension are compatible.

2. There are also examples of T ∈ Ia
A where R(T ) has infinite co-dimension. For

instance, consider the shift (of infinite multiplicity) T in L = ℓ2,Ten = e2n. Consider

as before, H = {(xn) ∈ ℓ2 :
∑

∞

n=1 n|xn|2 < ∞}. Clearly T(H) ⊂ H. Note that

(T∗x)n = x2n, and then

〈T∗x,T∗x〉H =

∞
∑

n=1

n|x2n|2 <
∞
∑

n=1

2n|x2n|2 ≤ 〈x, x〉H,

i.e., T∗(H) ⊂ H. Then T = T|H ∈ Ia
A.
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Remark 2.10. Again, using Douglas’ result, it holds that T ∈ IA is always A1/2-

adjointable:

T ∗(A1/2)2T = T ∗AT = A = (A1/2)2,

which is the second condition of Douglas for λ = 1.

Note the evident facts that if T ∈ Ia
A, then T n ∈ Ia

A for n ≥ 1; also, T ♯T = 1 in H.

3 Wold decomposition of A-adjointable isometries

Recall the Wold decomposition of an isometry (see for instance [14]): given an isometry

V acting in L, there exists an orthogonal decomposition

L = L0 ⊕ L1

such that L0,L1 reduce V, V|L0
is a unitary operator and V|L1

is a shift (L1 =
∞
⊕

n=0

VnLw,

where Lw = L⊖VL is the so called wandering space of V). This decomposition is unique,

L1 is determined by V, as seen in the above formula; also L0 =
⋂

∞

n=0V
nL.

The next result shows that the Wold decomposition of V in L induces an analogous

compatible decomposition for V in H.

Theorem 3.1. Let V ∈ Ia
A and V its extension to an isometry of L, then the Wold

decomposition L = L0 ⊕ L1 of V induces a (direct sum, A-orthogonal) decomposition

H = H0 ⊕H1, H0 = L0 ∩ H, H1 = H ∩ L1,

of compatible subspaces. VH0 = H0, VH1 ⊂ H1, so that V |H0
is invertible in H0.

Proof. The wandering subspace Lw = L⊖VL is the orthogonal complement of the range

of V, therefore its intersection with H is the A-orthogonal complement R(V )⊥A of R(V )

(which are both compatible subspaces of H). Note that for n ≥ 1,

V n(R(V )⊥A) = Vn(R(V )⊥A) is dense in VnLw.

Thus the subspaces V n(R(V )⊥A) are in direct sum for different n, and their sum

∞
⊕

n=0

V n(R(V )⊥A) is dense in
∞
⊕

n=0

VnLw.

Note also that since V n ∈ Ia
A, V n(R(V )⊥A) is a compatible subspace (in particular,

closed). Therefore the A-orthogonal sum (and direct sum in H)
⊕

∞

n=0 V
n(R(V )⊥A) is a

compatible subspace.
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Next, VL0 = L0, and thus V (H0) ⊂ VL0 = L0, together with V (H0) ⊂ H, implies

V (H0) ⊂ H ∩ L0 = H0. By the same reason, since V ♯ = V∗|H. Also V ♯(H0) ⊂ H0.

Moreover,

H0 = V ♯V (H0) ⊂ V ♯(H0) ⊂ H0.

Since clearly H0 ⊂ R(V ), then V V ♯ = PV (the A-symmetric idempotent in H with range

equal to R(V )) satisfies V V ♯H0 = H0. Then

H0 = V V ♯(H0) ⊂ V (H0) ⊂ H0.

That is, V (H0) = H0, i.e. V |H0
is invertible.

Remark 3.2. In the above theorem it was shown that V |H0
is invertible in H0. The op-

erator A does not necessarily leave H0 invariant, nevertheless A induces an inner product

in H0. For this induced inner product (which is implemented by the compression of A to

H0: if f, g ∈ H0, 〈f, g〉A = 〈Af, g〉 = 〈APH0
f, PH0

g〉 = 〈PH0
APH0

f, g〉), the restriction

V |H0
is a isometric and onto, i.e. V |H0

belongs to the group UPH0
APH0

of the Hilbert space

H0.

4 Regular structure of Ia
A

In the introduction it was observed that UA acts on Ia
A: if G ∈ UA and T ∈ Ia

A, then

GT ∈ Ia
A, being a composition of A-adjointable isometries.

Let us recall in the next remark, certain facts on A-orthogonal projections (see [4])

Remark 4.1. Let

PA = {P ∈ B(H) : P 2 = P, P is A− symmetrizable}.

Recall that BA(H) denotes the algebra of operators acting in H that are A-adjointable. It

is an involutive Banach algebra with the norm |T | = max{‖T‖, ‖T ♯‖}. Clearly |T ♯| = |T |.
The set PA is a complemented C∞-submanifold of BA(H), and a homogeneous space of

UA (which in turn is a Banach-Lie group and a C∞ submanifold of BA(H)). This means

that for each P0 ∈ PA, the map πP0
: UA → PA, πP0

(G) = GP0G
−1, is a submersion: it is

surjective onto the orbit of P0 by the action, which is a union of connected components.

In particular, it has smooth local cross sections. That is, there exists a radius rP0
> 0 and

a map σP0
,

σP0
: {P ∈ OA : |P − P0| < rP0

} ⊂ PA → UA,

with the following properties:

• σP0
is a C∞ (local) cross section of πP0

:

πP0
(σP0

(P )) = σP0
(P )P0σP0

(P )−1 = P, for P ∈ PA with |P − P0| < rP0
;
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• the map σP0
extends to an open ball of Ba(H) centered at P0, as a C∞ map with

values in the invertible group of Ba(H);

• if one moves P and P0, locally, the element σP0
(P ) is C∞ in both variables.

The first two conditions, in fact, imply that πP0
is a submersion and PA a comple-

mented submanifold:

Lemma 4.2. Let A be a Banach algebra, U be a Banach-Lie subgroup of the invertible

group A× of A, and X a Banach space on which U acts smoothly. Let x0 ∈ X be a fixed

element. Suppose that the map

πx0
: U → Ox0

:= {u · x0 : u ∈ U}

has a continuous cross section σx0
defined on an neighbourhood of x0 in Ox0

in the relative

topology induced by X. If σx0
can be extended to a smooth map in an open neighbourhood

of x0 in X, then Ox0
is a complemented smooth submanifold of X and the map πx0

is a

submersion.

Proof. The hypothesis imply that πx0
is open as a map U → Ox0

, and is a smooth map

that splits, regarded as a map U → X .

Let us fix T0 ∈ Ia
A, and construct the extendable local cross sections of

πT0
: UA → Ia

A, πT0
(G) = GT0. (3)

For T ∈ Ia
A, denote by PT := TT ♯. Clearly PT is an A-symmetric projection, which

extends to the orthogonal projection PR(T) onto the range of T in L.
If T is close to T0, then PT is close in PT0

. Explicitly,

|PT − PT0
| = |TT ♯ − T0T

♯
0 | ≤ |TT ♯ − TT ♯

0 |+ |TT ♯
0 − T0T

♯
0 | ≤ |T ||T ♯ − T ♯

0 |+ |T − T0||T ♯
0 |

= |T − T0|(|T |+ |T0|) ≤ |T − T0|(|T − T0|+ 2|T0|),

In particular, there exists δT0
, which depends on T0, such that if |T − T0| < δT0

, then

|PT − PT0
| < rPT0

(the radius given in the above remark).

Suppose that |T − T0| < δT0
, and denote by GT = σPT0

(PT ) ∈ UA. Clearly GT is a

C∞ map of T which satisfies that GTPT0
G−1

T0
= PT . Then T ′ := G−1

T T is an element of Ia
A

which has final projection

T ′T ′♯ = G−1
T TT ♯(G−1)♯ = G−1

T PTGT = PT0
.

Two elements T ′, T0 of Ia
A with the same final projection PT0

are conjugate by the

action of UA: there exists H = HT0
(T ′) ∈ UA such that HT0 = T ′. Pick, for instance

H = T ′T ♯
0 + (1− PT0

).

11 October 22, 2021



Note that

HH♯ = T ′T ♯
0T0T

′♯ + T ′T ♯
0(1− PT0

) + (1− PT0
)T0T

′♯ + (1− PT0
)

= T ′T ′♯ + (1− PT0
) = PT0

+ 1− PT0

= 1,

because (1− PT0
)T ′ = T ♯

0(1− PT0
) = 0. Similarly H♯H = 1. Moreover,

HT0 = T ′T ♯
0T0 + (1− PT0

)T0 = T ′.

Clearly H = HT0
(T ′) is a C∞ map in terms of T ′ and T0, and thus a C∞ map in terms of

T .

Thus, H ∈ UA and HT0 = G−1
T T , i.e., T = GTHT0. Define

σT0
(T ) = GTH = GT (G

−1
T TT ♯

0+(1−PT0
) = TT ♯

0+GT (1−PT0
), for T ∈ Ia

A, |T−T0| < δT0
.

(4)

Theorem 4.3. Let T0 ∈ Ia
A. Then the orbit

OT0
:= {GT0 : G ∈ UA}

is a C∞ complemented submanifold of BA(H), and the map

πT0
: UA → OT0

, πT0
(G) = GT0

is a C∞ submersion. The orbit OT0
is a union of connected components of Ia

A, which

implies that Ia
A is a C∞ complemented submanifold of BA(H)

Proof. The fact that OT0
is a submanifold follows using Lemma 4.2, noting that the cross

section σT0
defined in (4) clearly extends to a C∞ map defined on a neighbourhood of T0

in BA(H). Let us check fact that OT0
is a union of connected components of Ia

A. In [4] it

was observed that the local cross section PT 7→ GT for πP0
satisfies that that GT0

= 1,

and therefore GT belongs to the connected component of the identity in UA if T is close

to T0. This implies that if T is close enough to T0, then σT0
(T ) belongs to the connected

component of the identity of UA. This observation implies that any T close to T0, can be

connected to T0 by means of a continuous path in the orbit.

5 The extension method of M.G. Krein for

symmetrizable operators

In this section the extension method of M.G. Krein [11] is considered (see also Section 125

of the classic book [16] for a detailed exposition). Krein shows that if S : L0 ⊂ L → L is a

contractive symmetric operator, then there exists a symmetric extension S : L → L which
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is also a contraction. Later on, other authors elaborated on this problem (see for instance

[8] were the solutions are parametrized, or the works of Parrott [15]). In this section,

following the ideas of M.G. Krein with slight modifications, it will be shown that an A-

symmetric operator defined on a A-compatible subspace H0 ⊂ H, which is contractive

for the norm induced by 〈 , 〉A, can be extended to a contraction for this norm to the

whole space H. Or rather, and equivalently, we shall work in the bigger Hilbert space L,
extending to a symmetric contraction of L which leaves H invariant.

Lemma 5.1. Let X be a selfadjoint operator in L such that X(H) ⊂ H, and let P be

a projection in L with range L0, such that P = P|H is an idempotent in H with range

H0. Suppose that ‖XP‖ = 1. Then there exists a selfadjoint operator Z in L such that

Z(H) ⊂ H, ZP = XP and ‖Z‖ = 1.

Proof. For m > 0, let us denote by Xm = 1
m
X, m will be adjusted in the process. Denote

by H0 = P(H). Let B0 = PXmP : L0 → L0. Then B0 extends to an operator in L with

the same norm: B̄0 = PXm : L → L0. Note that B̄0 leaves H invariant, because Xm and

P do.

Next extend B1 := P⊥XmP : L0 → L⊥
0 to the whole space L (not enlarging the norm

of B1 and leaving H invariant). Consider the inner product

[ϕ, γ] := 〈ϕ, γ〉L − 〈B̄0ϕ, B̄0γ〉L.

Note that

[ϕ, γ] := 〈ϕ, γ〉L − 〈PXmϕ,PXγ〉L = 〈(I −XmPXm)ϕ, γ〉L.

Take m > 0 so that ‖XmPXm‖ < 1, then I −XmPXm is (positive and) invertible. Then

(L, [ , ]) is a Hilbert space, whose norm is equivalent to the original norm induced by

〈 , 〉L. The operator B1 is bounded by (for ϕ = Pϕ ∈ L0)

‖B1ϕ‖2 = 〈P⊥XmPϕ,P⊥XmPϕ〉L = 〈Xm(1−P)XmPϕ,Pϕ〉L

= 〈X2
mPϕ,Pϕ〉L − 〈XmPXmPϕ,Pϕ〉L.

Since ‖XP‖ = 1
m
, the first term is bounded by

〈X2
mPϕ,Pϕ〉L = 〈PX2

mPϕ, ϕ〉L ≤ ‖PX2
mP‖‖ϕ‖2 = 1

m2
‖ϕ‖2.

Pick m so that m ≥ 1, one has that

‖B1ϕ‖2 ≤
1

m2
〈ϕ, ϕ〉L − 〈XmPXmϕ, ϕ〉L ≤ 1

m2
〈ϕ, ϕ〉L − 1

m2
〈XmPXmϕ, ϕ〉L =

1

m2
[ϕ, ϕ].

Therefore B1 induces an operator B : (L0, [ , ]) → (L⊥
0 , 〈 , 〉L) with norm less than

or equal to 1
m
. Since at the set level, this mapping coincides with B1, B maps H0 into

L⊥
0 ∩ H. Let Π : (L, [ , ]) → (L0, [ , ]) denote the [ , ]-orthogonal projection. Since
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[ , ] = 〈(1 −XmPXm) , 〉L, the [ , ] adjoint of an operator T acting in (L, [ , ])

is given by T ♯ = (1 − XmT ∗Xm)
−1T ∗(1 − XmT ∗Xm), with T ∗ the 〈 , 〉L- adjoint of

T . It is known (see for instance [1]), that the orthogonal projection onto the range of an

idempotent Q in a Hilbert space, is given by the formula

PR(Q) = Q(Q +Q∗ − 1)−1.

In our case, this implies that

Π = P{P+ (1−XmPXm)
−1P(1−XmPXm)− 1}−1.

If one further adjusts m > 0, one has that Π(H) ⊂ H. To shorten the writing, denote by

Qm the idempotent (1−XmPXm)
−1P(1−XmPXm). First one needs that Qm(H) ⊂ H.

Since 1−XmPXm leaves H invariant, it induces an operator in H. If one further enlarges

m so that XmPXm = XmPXm|H has norm strictly less than 1 in B(H), 1−XmPXm will

be invertible in B(H), i.e. (1−XmPXm)
−1 leaves H invariant. It follows that Qm(H) ⊂ H.

Next, note the elementary identity

(P+Qm − 1)2 = 1− (P−Qm)
2, (5)

which only uses the fact that P and Qm are idempotents. In view of (5), in order to to

have that (P+Qm− 1)2, and therefore also P+Qm− 1, is invertible, it suffices to adjust

m so that the norm of P−Qm as an operator restricted to H, is strictly less than 1. This

clearly can be done, since XmPXm → 0 in B(H) as m → +∞. It follows that Π(H) ⊂ H,

for m sufficiently large.

Denote by J : (L, 〈 , 〉L) → (L, [ , ]) the identity mapping. Note that J is contractive:

[ϕ, ϕ] = 〈(1−XmPXm)ϕ, ϕ〉L ≤ 〈ϕ, ϕ〉L,

because ‖Xm‖ < 1. Clearly J(H) ⊂ H. Therefore, if one puts

B̄1 := BΠJ : L → L⊥

0 ,

where both spaces are considered with their original inner product 〈 , 〉L, one has that

(since Π and J are contractive),

‖B̄1‖ ≤ 1

m
.

Note also that all the operators involved in this product leave H invariant, thus B̄1(H) ⊂
H. Put

B̄ = B̄0 + B̄1.

It is easily verified that for ϕ ∈ L with ‖ϕ‖ = 1,

‖B̄ϕ‖2 = ‖B̄0ϕ‖2 + ‖B̄1ϕ‖2 ≤
1

m2
,
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since ‖B̄0‖, ‖B̄1‖ ≤ 1
m
, R(B̄0) ⊂ L0 and R(B̄1) ⊂ L⊥

0 . Note that B̄0P = PXmP and that

if ϕ0 ∈ L0 = R(P),

B̄1ϕ0 = BΠJϕ0 = Bϕ0 = B1ϕ0,

because ϕ0 ∈ R(Π). Thus B̄1P = B1P = P⊥XmP. It follows that

B̄P = B̄0P+ B̄1P = PXmP+P⊥XmP = XmP.

Clearly B̄(H) ⊂ H. The last thing to fix is that B̄ is not selfadjoint.

Note that

PB̄ = PB̄0 = PXm,

and then B̄∗P = XmP.

Zm :=
1

2
(B̄+ B̄∗)

does the feat: Z∗
m = Zm, ZmP = XmP, ‖Zm‖ ≤ ‖B̄‖. In this case one needs further to

verify that B̄∗(H) ⊂ H. Note that

B̄∗ = XmP+ J∗Π∗B∗,

with the adjoints taken in their respective spaces. Since Π is an orthogonal projection,

Π∗ = Π. Note that the adjoint of J is given by

〈ϕ, J∗η〉L = [Jϕ, η] = 〈(1−XmPXm)ϕ, η〉L = 〈ϕ, (1−XmPXm)η〉L,

i.e., J∗ : (L, [ , ]) → (L, 〈 , 〉L) is J∗ = (1−XmPXm). The adjoint of

B : (L0, [ , ]) → (L⊥

0 , 〈 , 〉L)

is given by

[B∗ϕ, η] = 〈ϕ,Bη〉L = 〈ϕ,P⊥XmPη〉L = 〈(1−XmPXm)
−1(1−XmPXm)ϕ,P

⊥XmPη〉L

= [ϕ, (1−XmPXm)
−1P⊥XmPη],

i.e., B∗ = (1−XmPXm)
−1P⊥XmP, which leaves H invariant for the appropriate election

of m.

It follows that Zm(H) ⊂ H. Finally, m is disposed of: Z = mZm is selfadjoint, satisfies

ZP = XP, Z leaves H invariant, and

1 = ‖ZP‖ ≤ ‖Z‖ ≤ 1,

i.e. ‖Z‖ = 1.
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6 Minimality of curves in Ia
A with given initial con-

ditions

In [2], a metric was introduced in the set of isometries of a Hilbert space. If I denotes the

set of isometries in L, a natural metric in I is given by

d(V,W ) = inf{ℓ(γ) : γ is a smooth curve in I joining V and W},

where

ℓ(γ) =

∫

I

‖γ̇(t)‖dt.

Fix V ∈ I. A vector V tangent to I at V is the velocity vector γ̇(0) of a curve γ ⊂ I with

γ(0) = V . A smooth curve γ in I can be lifted to smooth curve of unitary operators in

L: γ(t) = Γ(t)V for Γ in U(L). It follows that V = iXV , for X∗ = X ∈ B(L). The main

result established in [2] (Theorem 2.2) states the following:

Suppose that ‖V‖ = 1, and let P = V V ∗ be the final projection of V . If Z∗ = Z

satisfies that ‖Z‖ = 1 and ZP = VP , then the curve

δ(t) = eitZV

has minimal length along its path for |t| ≤ π, among all smooth curves in I which join

the same endpoints as δ.

Define the metric in Ia
A, by considering the norm of B(L) at every tangent space: if

T ∈ Ia
A and V ∈ (TIa

A)T , then

|V| = ‖V‖,

where V is the extension of V to L. Formally, since one has considered the regular structure

of Ia
A regarding it as a submanifold of BA(H), one is introducing a (constant) distribution

of norms in the tangent bundle, consisting of the norm defined by the A-inner product.

Or, if one does not care about the regular structure of Ia
A, one just regards Ia

A as a subset

of the metric space (I, d).
A direct consequence of the result cited above and Lemma 5.1 is the following:

Theorem 6.1. Let T ∈ Ia
A, and V ∈ (TIa

A)T with |V| = 1. Then there exists a sym-

metrizable operator Z ∈ BA(H) such that the curve

δ(t) = eitZT|H = eitZT ∈ Ia
A

satisfies that δ(0) = T , δ̇(0) = V and δ has minimal length along its path for |t| ≤ π,

among all smooth curves in Ia
A which join the same endpoints as δ. In fact, δ is minimal

also in the bigger manifold I.
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Proof. The tangent vector V is of the form V = iXT , for some X ∈ B(H) symmetrizable

operator with |V| = ‖XT‖ = 1. We claim that there exists Z∗ = Z with ‖Z‖ = 1,

ZT = XT and Z(H) ⊂ H. Indeed, note that ZT = XT if and only if ZP = XP, for P

the final projection of T:

ZT = XT =⇒ ZP = ZTT∗ = XTT∗ = XP =⇒ ZPT = ZT = XPT = XP.

Also note that

‖XP‖ = ‖XTT∗‖ ≤ ‖XT‖ = ‖XTT∗T‖ ≤ ‖XTT∗‖ = ‖XP‖,

i.e. ‖XP‖ = 1. If Z = Z|H, then δ(t) = eitZT has minimal length along its path, due to

Theorem 2.2 in [2]. Clearly δ̇(0) = ZT = XT = V.

7 Components of Ia
A and the action of the restricted

group

The connected components of the set of usual isometries in a Hilbert space are parametrized

by the co-rank of the isometries: two isometries lie in the same connected component (i.e.,

are conjugate by the left action of the unitary group) if and only if they have the same

co-rank 0 ≤ n ≤ +∞. This fact follows easily and is a consequence of the connectedness

of the unitary group of a Hilbert space. We do not know if the group UA is connected (or

how the properties of the operator A determine the components of UA): we believe that

it is an interesting problem. What does hold in general, both for usual or A-isometries, is

that two isometries are conjugate by the group action if and only if their final projections

are conjugate. The argument is essentially contained in the discussion before Theorem

4.3.

Proposition 7.1. Let T1, T2 ∈ Ia
A, with final A-orthogonal idempotents P1 = T1T

♯
1 , P2 =

T2T
♯
2 .

1. There exists G ∈ UA such that GT1 = T2 if and only if there exists H ∈ UA such

that HP1H
−1 = P2.

2. T1 and T2 lie in the same connected component of Ia
A if and only if P1 and P2 lie in

the same component of PA.

Proof. If there exists G ∈ Ia
A such that GT1 = T2, then

P2 = T2T
♯
2 = GT1(GT1)

♯ = GT1T
♯
1G

♯ = GP1G
−1.

Conversely, if there exists H ∈ UA such that HP1H
−1 = P2, then T ′

1 = HT1 and T2

are A-isometries with the same final space P2. Consider the operator K given by K =
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T2(T
′
1)

♯ + 1− P2. Note that

KK♯ = (T2(T
′

1)
♯ + 1− P2)(T

′

1T
♯
2 + 1− P2) = T2(T

′

1)
♯T ′

1T
♯
2 + 1− P2,

because T2(T
′
1)

♯(1− P2) = 0 = (1− P2)T
′
1T

♯
2 . Since

T2(T
′

1)
♯T ′

1T
♯
2 = T2T

♯
2 = P2,

then KK♯ = 1. Similarly K♯K = 1, i.e. K ∈ UA. Moreover

KT ′

1 = (T2(T
′

1)
♯ + 1− P2)T

′

1 = T2(T
′

1)
♯T1 = T2.

Therefore, T2 = KT ′
1 = KHT1, with KH ∈ UA.

In order to prove part 2., one uses the fact that both

πT1
: UA → {GT1 : G ∈ UA}, πT1

(G) = GT1

and

πP1
: UA → {GP1G

−1 : G ∈ UA}, πP1
(G) = GP1G

−1

C∞ submersions, and that the orbits {GT1 : G ∈ UA} and {GP1G
−1 : G ∈ UA} are

unions of connected components of Ia
A and PA, respectively. Therefore a continuous path

T (t) ∈ Ia
A with T (0) = T1 and T (1) = T2 lifts to a continuous path G(t) ∈ UA, i.e.,

T (t) = G(t)T1. Then P (t) = G(t)P1G
−1(t) is a continuous path in PA joining P1 and P2.

Similarly, if P (t) is a continuous path in PA, there exists a continuous path H(t) ∈ UA

such that P (t) = H(t)P1H
−1(t). Then as in the proof of part 1.,

K(t) = T2(H(t)T1)
♯ + 1− P2 ∈ UA

is a continuous path, and T (t) = K(t)H(t)T1 is a continuous path in Ia
A, joining T1 and

T2.

In the remaining of this section, the action of the restricted group

U∞

A := {G ∈ UA : G− 1 is compact}

on Ia
A is considered. In [3] it was shown that U∞

A is a C∞-Banach-Lie group, whose

Banach-Lie group is

u
∞

A = {iX ∈ BA(H) : X is symmetrizable and compact}.

Denote by K(H) the space of compact operators in H. In [3] it was also proved that the

usual exponential map exp(iX) = eiX ,

exp : u∞A → U∞

A

is surjective. This implies, in particular, that U∞
A is connected. Let us consider the action

of the restricted group U∞
A on Ia

A. The first result characterizes the orbits of the restricted

action. Note that these orbits are connected.
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Theorem 7.2. Let T0 ∈ Ia
A. Then

{GT0 : G ∈ U∞

A } = {T ∈ Ia
A : T − T0 ∈ K(H)}.

Proof. If T = GT0 for G ∈ U∞
A , then clearly T ∈ Ia

A and

T − T0 = GT0 − T0 = (G− 1)T0 ∈ K(H).

Conversely, suppose that T ∈ Ia
A satisfies that T − T0 is compact. Then, by a theorem of

I.C. Gohberg and M.I. Zambickii [10] (see Remark 2.2) the extension T−T0 is compact in

L. Then T∗(T−T0) = 1−T∗T0 is compact, i.e. T∗T0 is a Fredholm operator in L with

zero index. Then, since T is an isometric isomorphism between L and R(T) = R(TT∗),

and T∗
0 is an isometric isomorphism between R(T0) = R(T0T

∗
0) and L, it follows that

TT∗T0T
∗

0 : R(T0T
∗

0) → R(TT∗)

is a Fredholm operator of zero index. In [4] (Theorem 6.3) it was shown this implies

that PT = TT ♯ and PT0
= T0T

♯
0 lie in the same connected component (same orbit) of the

restricted Grassmannian: there exists G ∈ U∞
A such thatGPT0

G−1 = PT . As in Proposition

7.1, let K = T (GT0)
♯ + 1− PT ∈ UA, which satisfies KGT0 = T . We claim that K ∈ U∞

A .

Indeed,

K − 1 = T (GT0)
♯ − PT = TT ♯

0G
−1 −GT0T

♯
0G

−1 = (T −GT0)T
♯
0G

−1,

and since G ∈ U∞
A is of the form G = 1 + C with C ∈ K(H),

T −GT0 = T − (1 + C)T0 = T − T0 − CT0 ∈ K(H).

With a similar argument as the one used to prove that Ia
A has differentiable structure,

it can be shown that the orbit of T0 under the action on U∞
A is a C∞-manifold and a

homogeneous space of this group.

Proposition 7.3. Given a fixed T0 ∈ Ia
A, the set {T ∈ Ia

A : T − T0 ∈ K(H)} is a

complemented C∞-submanifold of the affine space T0 +BA(H)∩K(H), and the onto map

π∞

T0
: U∞

A → {T ∈ Ia
A : T − T0 ∈ K(H)}, π∞

T0
(G) = GT0

is a C∞-submersion

Proof. We shall use Lemma 4.2. Consider the Banach algebra B = C1 + BA(H) ∩ K(H),

with the norm |B| = max{‖B‖, ‖B‖♯}. The group U∞
A is a subgroup of the Banach-Lie

group of invertible operators in B. The element

K = T (GT0)
♯ + 1− PT ∈ U∞

A
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defines a map - in fact a cross section - on a neighbourhood of T0 in {T ∈ Ia
A : T − T0 ∈

K(H)}, with values in U∞
A . Indeed, the operator G is also a C∞ map in the argument T

(because of the regular structure of the restricted orbit of PT0
under the action of U∞

A [4]).

Note that the map T 7→ PT = TT ♯ is C∞, it is the restriction (to the orbit of T0) of the

global C∞ map B 7→ BB♯ of the ambient algebra B. Clearly, then, the local cross section
T 7→ KG extends to a C∞ map defined on a neighbourhood of T0 in B.

The space on which U∞
A acts by left multiplication, namely {X ∈ BA(H) : X − T0 ∈

K(H)}, is not a Banach space. It is the affine Banach space T0+BA(H)∩K(H). Therefore

the argument proceeds, with slight modifications.
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